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Abstract. In this paper, we consider extender sets, first defined in [4], which

are a Zd extension of follower sets from one-dimensional symbolic dynamics.
As our main result, we show that for any d ≥ 1 and any Zd subshift X, if

there exists n so that the number of extender sets of words on a d-dimensional

hypercube of side length n is less than or equal to n, then X is sofic. We also
give an example of a non-sofic system for which this number of extender sets

is n + 1 for every n.

We prove this theorem in two parts. First we show that if the number of
extender sets of words on a d-dimensional hypercube of side length n is less

than or equal to n for some n, then there is a uniform bound on the number

of extender sets for words on any sufficiently large rectangular prisms; to our
knowledge, this result is new even for d = 1. We then show that such a uniform

bound implies soficity, which extends a well-known result in d = 1.

1. Introduction

For any Z subshift X (i.e. a closed shift-invariant subset of AZ for a finite set
A) and finite word w appearing in some point of X, the follower set of w, written
FX(w), is defined as the set of all one-sided infinite sequences s such that the infinite
word ws occurs in some point of X. (In some sources, the follower set is defined as
the set of all finite words which can legally follow w, but the former definition may
be obtained by taking limits of the latter.) It is well-known that for a Z subshift
X, finiteness of {FX(w) : w in the language of X} is equivalent to X being sofic,
i.e. the image of a shift of finite type under a continuous shift-commuting map.
(For instance, see [5].)

In [4], extender sets were defined and introduced as a natural extension of follower
sets to Zd subshifts with d > 1. The extender set of any finite word w in the
language of X with shape S ⊂ Zd, written EX(w), is the set of all configurations on
Zd \S which, when concatenated with w, form a legal point of X. We can no longer
speak of a subshift having only finitely many extender sets, since extender sets of
patterns with different shapes cannot be compared as in the one-dimensional case.
One way to deal with this is examine the growth rate of the number of distinct
extender sets for words in X with a given shape S (which we denote by NS(X)),
as the size of S approaches infinity. This works nicely in the one-dimensional case;
our Lemma 3.4 (which is routine) shows that soficity of a one-dimensional subshift
is equivalent to boundedness of the number of extender sets of n-letter words as
n→∞. Interestingly, this sequence need not stabilize; Example 3.5, due to Martin
Delacourt ([1]), demonstrates a Z sofic shift X where N[1,n](X) oscillates between
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two values as n increases (In this paper, [a, b] for a, b ∈ Z will always represent the
set {a, a+ 1, . . . , b}).

There are many relations between properties of X and the behavior of NS(X).
For instance, it is easy to see that when X is a nearest-neighbor shift of finite type,
the extender set of a word with shape [1, n]d is determined entirely by the letters on
the boundary. This implies that for such X, N[1,n]d(X) is bounded from above by

|AX |∂[1,n]d ≤ |AX |2dn
d−1

, where AX denotes the alphabet of X. It was conjectured

in [4] that X sofic implies that
logN

[1,n]d
(X)

nd
→ 0, but this remains open.

A partial answer was proven in [4], using an argument basically present in [7]. A
finite sequence Sn of sets, 1 ≤ n ≤ N , was defined to be a union increasing chain if
Sn *

⋃n−1
i=1 Si for all 1 ≤ n ≤ N . Theorem 2.3 of [4] states that if there exist union

increasing chains of size eω(nd−1) of extender sets of words with shape [1, n]d, then
X is not sofic. These results can, broadly speaking, be thought of as showing that
a very fast growth rate for extender sets implies that a subshift is not an SFT or
sofic. Our main result is in the opposite direction, namely it demonstrates that a
slow enough growth rate implies soficity.

Theorem 1.1. For any d ≥ 1 and any Zd subshift X, if there exists n so that
N[1,n]d(X) ≤ n, then X is sofic.

The proof of Theorem 1.1 is broken into two mostly disjoint parts:

Theorem 1.2. For any d ≥ 1 and any Zd subshift X, if there exists n so that
N[1,n]d(X) ≤ n, then there exist K,N such that for any rectangular prism R with
dimensions at least K, NR(X) ≤ N .

Theorem 1.3. For any d ≥ 1 and any Zd subshift X, if there exist K,N so that
NR(X) ≤ N for all rectangular prisms R with all dimensions at least K, then X is
sofic.

Theorem 1.3 can be thought of as a generalization of the previously mentioned
fact that one-dimensional shifts with only finitely many follower sets are sofic. We
also show that the upper bound in Theorem 1.1 cannot be improved.

Theorem 1.4. For any d ≥ 1, there exists a nonsofic Zd subshift X for which
N[1,n]d(X) = n+ 1 for all n.

Our results have similarities to the famous Morse-Hedlund theorem.

Theorem 1.5. ([6]) If X is a Z subshift and there exists an n such that the number
of words of length n is less than or equal to n, then X consists entirely of periodic
points. Equivalently, there is a uniform upper bound on the number of words of
length n.

It is well-known that the bound in Theorem 1.5 is also tight. Sturmian subshifts
have no periodic points and have so-called minimal complexity, i.e. any Sturmian
subshift has n + 1 words of length n for all n. (For an introduction to Sturmian
subshifts, see [2].)

There are similarities between Theorems 1.1 and 1.5; in fact Theorem 1.5 is used
in our proof of Theorem 1.2. However, there are also some interesting differences.
In the usual proof of Theorem 1.5, a key component is that the number of n-letter
words is nondecreasing in n. However, Example 3.5 shows that N[1,n](X) is not
necessarily nondecreasing.
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2. Definitions and preliminaries

Let A denote a finite set, which we will refer to as our alphabet.

Definition 2.1. A pattern over A is a member of AS for some S ⊂ Zd, which is
said to have shape S. For d = 1, patterns are generally called words, especially
in the case where S is an interval.

For any patterns v ∈ AS and w ∈ AT with S∩T = ∅, we define the concatenation
vw to be the pattern in AS∪T defined by (vw)|S = v and (vw)|T = w.

Definition 2.2. For any finite alphabet A, the Zd-shift action on AZd , denoted
by {σt}t∈Zd , is defined by (σtx)(s) = x(s+ t) for s, t ∈ Zd.

We always think of AZd as being endowed with the product discrete topology,
with respect to which it is obviously compact.

Definition 2.3. A Zd subshift is a closed subset of AZd which is invariant under
the Zd-shift action.

Definition 2.4. The language of a Zd subshift X, denoted by L(X), is the set
of all patterns which appear in points of X. For any finite S ⊂ Zd, LS(X) :=
L(X) ∩AS , the set of patterns in the language of X with shape S.

Any subshift inherits a topology from AZd , and is compact. Each σt is a homeo-
morphism on any Zd subshift, and so any Zd subshift, when paired with the Zd-shift
action, is a topological dynamical system. Any Zd subshift can also be defined in
terms of disallowed patterns: for any set F of patterns over A, one can define the

set X(F) := {x ∈ AZd : x|S /∈ F for all finite S ⊂ Zd}. It is well known that any
X(F) is a Zd subshift, and all Zd subshifts are representable in this way. All Zd
subshifts are assumed to be nonempty in this paper.

Definition 2.5. A Zd shift of finite type (SFT) is a Zd subshift equal to X(F)
for some finite F . If F consists only of patterns consisting of pairs of adjacent
letters, then X(F) is called nearest-neighbor.

Definition 2.6. A (topological) factor map is any continuous shift-commuting
map φ from a Zd subshift X onto a Zd subshift Y . A factor map φ is 1-block if
(φx)(v) depends only on x(v) for v ∈ Zd.

Definition 2.7. A Zd sofic shift is the image of a Zd SFT under a factor map. It
is well-known that for any Zd sofic shift Y , there exists a nearest-neighbor Zd SFT
X and 1-block factor map φ so that Y = φ(X).

For d = 1, any Z sofic shift can also be defined using graphs; a Z subshift is sofic
if and only if it is the set of labels of bi-infinite paths for some (edge-)labeled graph
G (see [5] for a proof.)

Definition 2.8. For any Zd subshift X and rectangular prism R =
∏d
i=1[0, ni−1],

the R-higher power shift of X, denoted XR, is a Zd subshift with alphabet

LR(X) defined by the following rule: x ∈ (LR(X))Z
d ∈ XR if and only if the point

y defined by concatenating the x(v), viewed themselves as patterns with shape X,
is in X. Formally,

∀v ∈ Zd, y(v) :=
(
x(bv1n

−1
1 c, . . . , bvdn

−1
d c)

)
(v1 (mod n1), . . . , vd (mod nd)).
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Definition 2.9. For any Z-subshift X and word w ∈ L[1,n](X), the follower set

of w is FX(w) = {x ∈ A{n+1,n+2,...} : wx ∈ L(X)}. For any n, we use M[1,n](X)
to denote |{FX(w) : w ∈ L[1,n](X)}|, the number of distinct follower sets of words
of length n.

Definition 2.10. For any Zd-subshift X and pattern w ∈ LS(X), the extender

set of w is EX(w) = {x ∈ AZd\S : wx ∈ X}. For any S, we use NS(X) to denote
|{EX(w) : w ∈ LS(X)}|, the number of distinct extender sets of patterns with
shape S.

3. Proofs

For the proof of Theorem 1.2 we need the following finite version of the Morse-
Hedlund theorem. We include a proof for completeness, though it is essentially the
same proof as that of the original theorem.

Lemma 3.1. For any word w ∈ AN and n ≤ N
4 so that the number of n-letter

subwords of w is less than or equal to n, we can write w = tuv where |t| = |v| = n
and u is periodic with some period less than or equal to n.

Proof. Since there are less than or equal to n subwords of w of length n and there
are N−n+1 > n values of i for which w(i)w(i+1) . . . w(i+n−1) is a subword of w,
there exists an n-letter subword of w which appears twice. In fact, by the pigeonhole
principle we may fix indices i < k ∈ [1, n+1] such that w(i)w(i+1) . . . w(i+n−1) =
w(k)w(k + 1) . . . w(k + n − 1). Similarly, we may fix indices ` < j ∈ [N − n,N ]
such that w(` − n + 1) . . . w(` − 1)w(`) = w(j − n + 1) . . . w(j − 1)w(j). Set w′ =
w(i)w(i+ 1) . . . w(j − 1)w(j).

It suffices to show that w′ is periodic of period less than or equal to n; if this is
true, then taking t = w(1) . . . w(n), u = w(n+ 1) . . . w(N −n), and v = w(N −n+
1) . . . w(N) completes the proof since u is a subword of w′.

Let us now consider the number of m-letter subwords of w′ for values of m ∈
[1, n]. If the number of one-letter subwords of w′ is equal to 1, then w′ is of the form
ss . . . s for some symbol s and we are done. If not, then the number of one-letter
subwords of w′ is greater than 1, whereas the number of n-letter subwords of w′

is less than or equal to n. Therefore, there must be an m ∈ [1, n − 1] for which
the number of (m+ 1)-letter subwords of w′ is less than or equal to the number of
m-letter subwords of w′. Fix m to be this number for the remainder of the proof.

We now claim that for every m-letter subword t of w′, there exists a ∈ A so that
ta is a subword of w′ as well. For any choice of t aside from the m-letter suffix
of w′, this is obvious. But it is true for the suffix as well, since by construction
of w′, if t is a suffix of w′ then t is also the suffix of w(` − n + 1) . . . w(` − 1)w(`)
which means tw(`+ 1) is a subword of w′. A similar argument shows that for every
m-letter subword t of w′, there exists a b ∈ A so that bt is a subword of w′ as well.

Note that because the number of m-letter subwords is less than or equal to the
number of (m + 1)-letter subwords of w′, the a and b constructed in the previous
paragraph are always unique.

Let p = k − i, and note that w(i)w(i + 1) . . . w(i + m − 1) = w(i + p)w(i + 1 +
p) . . . w(i+m− 1 + p). Since there is a unique a which extends the word w(i)w(i+
1) . . . w(i+m−1) as a subword of w′, we get that w(i+1)w(i+2) . . . w(i+m) = w(i+
1+p)w(i+2+p) . . . w(i+m+p). Using the same argument and working inductively,
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we see that w(i+ r)w(i+ r) . . . w(i+ r) = w(i+ r + p)w(i+ r + p) . . . w(i+ r + p)
for any 0 ≤ r ≤ j − i− p. In other words, w′ is periodic with period p ≤ n. �

We remark that since the word u in the previous lemma is periodic with period
less than or equal to n, this clearly implies that u is periodic with period n! (though
this may be a meaningless statement if |u| ≤ n!)

Proof of Theorem 1.2. Consider a Zd subshift X and n so that |N[1,n]d(X)| ≤ n.
Define an equivalence relation on L[1,n]d(X) by w ∼ w′ iff EX(w) = EX(w′). For
each of the k ≤ n equivalence classes, choose a lexicographically maximal element,
and denote the collection of these words by M . Then for every w ∈ L[1,n]d(X), there
exists w′ ∈M so that EX(w) = EX(w′). Equivalently, in any x ∈ X containing w,
w can be replaced by w′ to make a new point x′ ∈ X.

Now, consider any rectangular prism R =
∏d
i=1[1, ni] with ni > max 4n, 2n+ n!

for all i, and any finite word v ∈ LR(X). Iterate the following procedure: if v
contains a subword with shape [1, n]d which is not in M , then replace it by the
element of M in its equivalence class. Since each of these replacements increases
the entire word on R in the lexicographic ordering, the procedure will eventually
terminate, yielding a word v′ in which every subword with shape [1, n]d is in M .
(These replacements could possibly be done in many different ways or orders; simply
choose a particular one and call the result v′.) In particular, v′ contains less than
or equal to n distinct subwords with shape [1, n]d. Since v′ was obtained from v by
a sequence of replacements with identical extender sets, EX(v) = EX(v′).

We wish to bound the number of such possible v′ for a given R. For any trans-

late of the (d − 1)-dimensional hypercube t + [1, n]d−1 ⊂
∏d
i=2[1, ni], consider the

subpattern v′|[1,n1]×(t+[1,n]d−1). This can be viewed as an n1-letter word in the

x1-direction, where each “letter” is a cross-section with shape t+ [1, n]d−1. When
viewed in this way, each n-letter subword of v′|[1,n1]×(t+[1,n]d−1) is a subpattern of

v′ with shape [1, n]d, and there are less than or equal to n such subpatterns. There-
fore, by Lemma 3.1, v′|[n+1,n1−n]×(t+[1,n]d−1) is periodic with period n!e1. Since

t + [1, n]d−1 was arbitrary, in fact v′|[n+1,n1−n]×
∏d
i=2[1,ni]

is periodic with period

n!e1 as well. In other words, if t and t + n!e1 both have first coordinate between
n+ 1 and n1 − n inclusive, then v′(t) = v′(t+ n!e1). A similar proof shows that if
t and t + n!ei both have ith coordinate between n + 1 and ni − n inclusive, then
v′(t) = v′(t+ n!ei).

The above shows that except for sites within n of the boundary of R, v′ is
determined by the subpattern occuring within a d-dimensional hypercube of side

length n!. More specifically, the values of v′ on the sites in
∏d
i=1([1, n] ∪ [ni − n+

1, ni]∪ [n+1, n+n!]) uniquely determine v′, and there are (2n+n!)d such sites. So,

regardless of our choice for R, there are less than or equal to |AX |(2n+n!)d possible

v′. Since EX(v) = EX(v′) for every v, this shows that |NR(X)| ≤ |AX |(2n+n!)d for
every R with all dimensions at least n, completing the proof for K = 2n + n! and

N = |AX |(2n+n!)d . �

We now need a few lemmas for the proof of Theorem 1.3. The first shows that
for the purposes of proving X sofic, we may always without loss of generality pass
to a higher power shift.
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Lemma 3.2. For any d, for any Zd subshift X and rectangular prism R ⊆ Zd, X
is sofic if and only if the higher power shift X [R] is sofic.

Proof. =⇒: Suppose that X is sofic. Then there is a 1-block factor map φ and
Zd nearest-neighbor SFT Y so that X = φ(Y ). But then it is easy to check that
X [R] = φ[R](Y [R]), where φ[R] acts on patterns in ARY via coordinatewise action of

φ. Since Y [R] is a Zd SFT and φ[R] is a factor map, clearly X [R] is sofic.

⇐=: Suppose thatX [R] is sofic, and without loss of generality, writeR =
∏d
i=1[0, ni−

1]. Then there is a 1-block factor map ψ and Zd nearest-neighbor SFT Z so that
X [R] = ψ(Z). Define a Zd nearest-neighbor SFT Z ′ with alphabet AZ × R by the
following rules:

(1) In the xi-direction, a letter of the form (a, (v1, . . . , vd)) must be followed by a
letter of the form (b, (v1, . . . , vi1 , vi + 1 (mod ni), vi+1, . . . , vd)).
(2) In rule (1), if vi 6= ni − 1, then b = a.
(3) In rule (1), if vi = ni−1, then b must be a legal follower of a in the xi-direction
in the nearest-neighbor SFT Z.

The effect of these rules is that in any point of Z ′, Zd is partitioned into translates
of R, each translate of R has a constant “label” from AZ , and the “labels” of these
translates comprise a legal point of Z. We now define a 1-block factor map φ′ on
Z ′ by the rule φ′(a, v) = (φ(a))(v), i.e. the letter of AZ appearing at location v in
φ(a), which was by definition a pattern in ARZ . This has the effect of, in each point
of Z ′, filling every translate of R with the image under φ of the letter of AZ which
was its label. Since these labels comprise a point of Z and since φ(Z) = X [R], the
reader may check that φ′(Z ′) = X, and so X is sofic.

�

Our next lemma shows that an upper bound for NR(X) over all large finite
rectangular prisms R must also be an upper bound for NR(X) even when we allow
R to have some infinite dimensions.

Lemma 3.3. For any d and any Zd subshift X, if there exist K,N so that NR(X) ≤
N for any rectangular prism R with dimensions at least K, then it is also the case

that NR′(X) ≤ N for any “infinite rectangular prism” of the form R′ =
∏d
i=1 Ii,

where each of the Ii is either an interval of integers with length at least K or Z.

Proof. Consider any K,N,X satisfying the hypotheses of the theorem, and any
“infinite rectangular prism” R′ with all dimensions either finite and greater than K
or infinite. Suppose for a contradiction that there exist N+1 distinct configurations
w1, . . . , wN+1 in LR′(X) and that their extender sets EX(wi) are distinct. Then,
for each pair i < j ∈ [1, N + 1], there exists a pattern vij ∈ LR′c(X) s.t. vijwi ∈ X
and vijwj /∈ X or vice versa. By compactness, for each vij , there exists nij so
that vijwi|[−nij ,nij ]d∩R′ ∈ L(X) and vijwi|[−nij ,nij ]d∩R′ /∈ L(X), or vice versa.
This property is clearly preserved by increasing nij . Therefore, if we define M =
max(K, {nij}i<j), then for every i < j ∈ [1, N+1], either vijwi|[−M,M ]d∩R′ ∈ L(X)
and vijwi|[−M,M ]d∩R′ /∈ L(X) or vice versa. Put another way, EX(wi|[−M,M ]d∩R′)
contains a pattern which equals vij on R′c, and EX(wj |[−M,M ]d∩R′) contains no
such pattern, or vice versa. Either way, this shows that EX(wi|[−M,M ]d∩R′) 6=
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EX(wj |[−M,M ]d∩R′) and, since i, j were arbitrary, that all N + 1 of the extender

sets EX(wi|[−M,M ]d∩R′), i ∈ [1, N + 1], are distinct. Since [−M,M ]d ∩R′ is a finite
rectangular prism with all dimensions at least K, this contradicts the hypotheses
of the theorem. Our original assumption was therefore wrong, and NR′(X) ≤ N .

�

Our final preliminary lemma shows that for d = 1, boundedness of N[1,n](X) is
equivalent to soficity of X.

Lemma 3.4. For a Z subshift X, X is sofic if and only if N[1,n](X) is a bounded
sequence.

Proof. =⇒: If X is sofic, then there is a 1-block map φ and nearest-neighbor SFT
Y , with alphabet AY , so that X = φ(Y ). Then, for any finite word w ∈ L[1,n](Y ),
clearly EX(w) =

⋃
y∈φ−1(w) φ(EY (y)). Since Y is a nearest-neighbor SFT, this

clearly depends only on the set of pairs of first and last letters of φ-preimages of w,

and there are fewer than 2|AY |
2

such sets. Therefore, N[1,n](X) ≤ 2|AY |
2

for all n,
and so the sequence N[1,n](X) is bounded.

⇐=: We prove the contrapositive, the proof will be similar to Lemma 3.3. Sup-
pose that X is not sofic. Then there are infinitely many follower sets F (p) for

infinite pasts p ∈ AZ−
X . For any N , choose N pasts p1, . . . , pN with distinct follower

sets. This means that for every i < j ∈ [1, N ], there exists a future fij ∈ AN
X so

that either pifij ∈ X and pjfij /∈ X, or vice versa. By compactness, there exists
Nij so that for any n > Nij , either pi|(−n,0)fij ∈ X and pj |(−n,0)fij /∈ X or vice
versa. But then if we take M = maxNij , then for every i < j ∈ [1, N ], either
pi|(−M,0)fij ∈ X and pj |(−M,0)fij /∈ X or vice versa, meaning that the N extender
sets EX(pi|(−M,0)), i ∈ [1, N ], are distinct. Therefore, N[1,M ](X) ≥ N . Since N
was arbitrary, N[1,n](X) is not bounded.

�

As an aside, before proving Theorem 1.3 we present the example mentioned in
the introduction, of a Z sofic shift X where N[1,n](X) is bounded, but does not
stabilize. In fact, the number of distinct follower sets of words of length n also fails
to stabilize for this shift, which may be of independent interest.

Example 3.5. ([1]) Define X to be the sofic shift consisting of all labels of bi-
infinite paths on the labeled graph G below. Then for all n > 1, M[1,2n](X) = 14,
M[1,2n+1](X) = 13, N[1,2n](X) = 46, and N[1,2n+1](X) = 44.
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Proof. The reader may check that G is follower-separated (see [5] for a definition),
and so for any w ∈ L(X), the follower set FX(w) is determined by the set of termi-
nal vertices for paths in G with label w, which we’ll denote by T (w). We now simply
describe the possible sets T (w) for words of even and odd length, with examples
of words realizing each set. We use the notation ∗ to indicate that any word may
replace the ∗, and n to represent any nonnegative integer.

(even length)

T (w) w
{0} ∗cc
{1} ∗ccb
{2} ∗cbb
{3} ∗bba
{4} ∗bbc
{5} ∗bcb
{6} ∗cba
{7} ∗cbc
{8} ∗bca
{1, 5} ancb
{3, 6} ba2n+1

{4, 7} ba2nc
{0, 4, 7} anc

{2, 3, 5, 6, 7, 8} a2(n+1)

(odd length)

T (w) w
{0} ∗cc
{1} ∗ccb
{2} ∗cbb
{3} ∗bba
{4} ∗bbc
{5} ∗bcb
{6} ∗cba
{7} ∗cbc
{8} ∗bca
{1, 5} ancb
{2, 5} ba2(n+1)

{0, 4, 7} anc
{2, 3, 5, 6, 7, 8} a2n+1

We leave it to the reader to check that there are no follower sets aside from the
ones described here, and so M[1,2n](X) = 14 and M[1,2n+1](X) = 13 for all n > 1.
Informally, the reason that words of even length have an additional follower set is
that the word ba2nc has a follower set (given by the set {3, 6} of terminating states)
which can not be recreated by odd length; every cycle has even length, knowledge of
at least one letter on each side of the cycle is required to create a new follower set,
and knowledge of two letters on either side makes the word synchronizing (meaning
there is only a single terminating state.)
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Since listing 46 and 44 extender sets similarly (for even and odd lengths re-
spectively) would be quite cumbersome, we will not give a complete list of these,
but will give a sketch of how they appear. First, note that G is also predecessor
separated, and so the extender set of a word w ∈ L(X) is determined entirely by
the set {v → v′} of possible pairs of initial and terminal vertices of paths in G
with label w, which we denote by S(w). Note that partitioning the vertices into
{0, 2, 5, 7} and {1, 3, 4, 6, 8} shows that G is bipartite. The reader may check that
every possible singleton {v → v′} for pairs v, v′ in the same vertex class occurs as
S(w) for a word w of even length, and every possible singleton {v → v′} for pairs
v, v′ in opposite vertex classes occurs as S(w) for a word w of odd length. This
contributes 52 + 42 = 41 extender sets to N[1,2n](X) and 2 · 5 · 4 = 40 extender sets
to N[1,2n+1](X) for every n > 1. The remaining sets S(w), along with w presenting
them, appear in the table below. Note that though we can informally pair up the
first through fourth types in each case, again the word ba2n−2c creates an extender
set with no analogous extender set for a word of odd length.

(even length)

S(w) w
{2→ 2, 3→ 3, 5→ 5, 6→ 6, 7→ 7, 8→ 8} a2n

{1→ 3, 4→ 6} ba2n−1

{2→ 5, 7→ 1} a2n−2cb
{3→ 4, 6→ 7, 8→ 0} a2n−1c
{1→ 4, 4→ 7} ba2n−2c

(odd length)

S(w) w
{2→ 3, 3→ 2, 5→ 6, 6→ 5, 7→ 8, 8→ 7} a2n−1

{1→ 2, 4→ 5} ba2n

{3→ 5, 8→ 1} a2n−1cb
{2→ 4, 5→ 7, 7→ 0} a2nc

�

Proof of Theorem 1.3. Our proof proceeds by induction on d. The base case d = 1
is precisely Lemma 3.4. We now assume that the result holds for Zd−1 subshifts,
and will prove it for Zd subshifts. To that end, assume that X is a Zd subshift
and that there exist K,N so that for any rectangular prism R with dimensions at
least K, NR(X) ≤ N . By Lemma 3.3, the same is true even if R has some infinite
dimensions.

Note that by Lemma 3.2, we may without loss of generality replace X by the

higher power shift X [[1,K]d]. Since NR(X [[1,K]d]) ≤ N for all rectangular prisms,
with no restrictions on the dimension, we will assume this property for X in the
remainder of the proof.

Define X ′ = {x|Zd−1×{0} : x ∈ X}, the set of restrictions of points of X to
hyperplanes spanned by the first d − 1 cardinal directions. By the assumption
above, there are fewer than N distinct extender sets for x ∈ X ′, and so we define
equivalence classes Ci, i ∈ [1,M ], M ≤ N , for the equivalence relation defined by
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x ∼ y if EX(x) = EX(y). In a slight abuse of notation, we denote by EX(Ci) the
common extender set shared by all x ∈ Ci.

Now, consider any x ∈ X ′ and k ∈ [1, d− 1]. By the pigeonhole principle, there
exist i < j ∈ [1,M +1] so that σiekx ∼ σjekx. But then for y ∈ LZd−1×{0}c(X), y ∈
EX(x) ⇐⇒ σieky ∈ EX(σiekx) ⇐⇒ σieky ∈ EX(σjekx) ⇐⇒ y ∈ EX(σ(j−i)ekx).
Therefore, x ∼ σ(j−i)ekx, and the same logic shows that σ(j−i)mekx ∼ x for any
m ∈ Z. Since j − i ≤ M ≤ N , this shows that the Ci containing x is invariant
under shifts by N !ek for k ∈ [1, d− 1]. Since x ∈ X ′ was arbitrary, this means that
every Ci is invariant under shifts by each N !ek. We may then, again by Lemma 3.2,

replace X by its higher power shift X [[1,N !]d−1×{0}], which allows us to assume with-

out loss of generality that all of the Ci are shift-invariant subsets of AZd−1

X . The
classes Ci need not, however, be closed. Their closures are Zd−1 subshifts though,
and we will show that they in fact must be sofic.

Claim 1: Ci is sofic for each i.

It suffices to show that for any rectangular prism R ⊆ Zd−1 and w,w′ ∈ LR(Ci),
EX(w) = EX(w′) =⇒ ECi(w) = ECi(w

′), since then NR×{0}(X) ≤ N =⇒
NR(Ci) ≤ N for all rectangular prisms R, which will imply the desired conclu-
sion by our inductive hypothesis.

So, assume that EX(w) = EX(w′) for w,w′ ∈ LR(Ci). Suppose also that

vw ∈ Ci for some v ∈ AZd−1\R
X . Then there exists vn ∈ AZd−1\R

X so that vn → v
and vnw ∈ Ci for all n. Then for any y ∈ EX(Ci), yvnw ∈ X, since all vnw share
the same class Ci. Since EX(w) = EX(w′), yvnw

′ ∈ X as well. Similarly, for any
y /∈ EX(Ci), yvnw /∈ X, and so yvnw

′ /∈ X. But then EX(vnw
′) = EX(Ci), and so

vnw
′ ∈ Ci. By taking limits, vw′ ∈ Ci. We’ve then shown that vw ∈ Ci =⇒ vw′ ∈

Ci. The converse is true by the same proof, and so ECi(w) = ECi(w
′), completing

the proof of soficity of Ci as described above.

Since all elements of any class Ci are interchangeable in points of X, we can
define V ⊆ [1,M ]Z which lists legal sequences of classes (in the ed-direction) within
points in X:

V := {(in) ∈ [1,M ]Z : ∃x ∈ X such that ∀n ∈ Z, x|Zd−1×{n} ∈ Cin}.

It is obvious that V is shift-invariant since X is shift-invariant. However, it is not
immediately clear that V is closed since the Ci are not necessarily closed. We will
show that V is closed by proving the following claim.

Claim 2: X = {x ∈ AZd
X : ∃(in) ∈ V such that ∀n ∈ Z, x|Zd−1×{n} ∈ Cin}.
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In other words, given v ∈ V , not only can you make points of X by substituting
in configurations from the classes given by the letters in v, but you may also sub-
stitute configurations from the closures of these classes.

X ⊆ {x ∈ AZd
X : ∃(in) ∈ V such that ∀n ∈ Z, x|Zd−1×{n} ∈ Cin}:

First, we note that for any x ∈ X, by definition x|Zd−1×{n} ∈ X ′ for all n ∈ Z,

and so each of these is in some class Ci. Define v = (in) ∈ [1,M ]Z by saying that
the x|Z×{n} of x is in Cin . Then by definition of V , v ∈ V . This clearly shows the
desired containment.

X ⊇ {x ∈ AZd
X : ∃(in) ∈ V such that ∀n ∈ Z, x|Z×{n} ∈ Cin}:

Choose any x ∈ AZd
X so that there is v = (in) ∈ V with the property that ∀n ∈ Z,

x|Zd−1×{n} ∈ Cin . Then, for each n ∈ Z, there exists a sequence x(k,n) ∈ Cin so

that x(k,n) −→
k→∞

x|Zd−1×{n} for all n. Also, since v ∈ V , there exists x′ ∈ X so that

∀n ∈ Z, x′|Zd−1×{n} ∈ Cin .

We now define, for every k, the point x(k) ∈ AZd
X by

x(k)|Zd−1×{n} =

{
x(k,n) if |n| ≤ k
x′|Zd−1×{n} if k ≤ |n|

The central 2k+1 (d−1)-dimensional hyperplanes of x(k) are given by the x(k,n),
and the remaining (d−1)-dimensional hyperplanes are unchanged from x′. We note
that x(k) can be obtained from x′ ∈ X by making 2k + 1 consecutive replacements
of x′|Zd−1×{n} by x(k,n). Since these replacements involve configurations in the

same class Cin , each of these replacements preserves being in X, and so x(k) ∈ X
for all k. Finally, we note that x(k) → x, so x ∈ X as well, showing the desired
containment.

Claim 3: V is a sofic subshift.

We first show that V is closed and therefore a subshift. Let v(k) ∈ V and v(k) →
v = (in). By passing to a subsequence, we may assume that for all k ≥ |n|, v(k)

n = in.
By definition of V , for every k ∈ N there exists x(k) ∈ X where x(k)|Zd−1×{n} ∈ Cv(k)n

for every n. For all n ≤ k, since C
v
(k)
n

= Cin = C
v
(n)
n

we may replace the pattern

x(k)|Zd−1×{n} in x(k) with x(n)|Zd−1×{n} to form a legal point in X. In such a way

we obtain a new sequence of points y(k) ∈ X where y(k)|Zd−1×{n} ∈ C
v
(k)
n

, but

with the additional property that y(k)|Zd−1×{n} = y(n)|Zd−1×{n} for k ≥ |n|. The

sequence y(k) clearly converges to a point y ∈ AZd
X , and y ∈ X since X is closed.

Since y|Zd−1×{n} = y(n)|Zd−1×{n} ∈ Cin , we have v ∈ V .
We claim that N[1,m](V ) ≤ N for all m ∈ N, which will prove the claim by

Lemma 3.4. Suppose for a contradiction that there areN+1 words v(1), . . . , v(N+1) ∈
Lm(V ) s.t. the extender sets EV (v(i)) are all distinct. Then, for every i < j ∈
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[1, N + 1], there exists w(ij) ∈ L[1,m]c(V ) s.t. either v(i)w(ij) ∈ V and v(j)w(ij) /∈ V
or vice versa.

For each v(i) = v
(1)
1 . . . v

(1)
m , define S(i) ∈ AZd−1×[1,m]

X by choosing S(i)|Zd−1×{n} to

be any row in C
v
(i)
n

. Similarly, for each w(ij), define a pattern O(ij) ∈ AZd−1×[1,m]c

X

by choosing O(ij)|Zd−1×{b} to be any row in C
w

(ij)
n

. Then, by Claim 2, S(i)O(ij) ∈ X
and S(j)O(ij) /∈ X or vice versa, meaning that all extender sets EX(S(i)), i ∈
[1, N + 1], are distinct. This is a contradiction to Lemma 3.3, and so our original
assumption was wrong, N[1,m](V ) is a bounded sequence, and V is sofic.

We may now finally construct an SFT cover of X to show that it is sofic. Since
V is sofic by Claim 3, we may define a 1-block factor ψ and nearest-neighbor SFT
W so that ψ(W ) = V . For each a ∈ AV , since Ca is sofic by Claim 1, there is a
1-block factor φa and nearest-neighbor Zd−1 SFT Ya (whose alphabet we denote by
Aa) so that φa(Ya) = Ca. Now, define a nearest-neighbor Zd SFT Y with alphabet
AY :=

⋃
a∈AW ({a} ×AYψ(a)

) by the following adjacency rules:

(1) Any pair of letters (a, s), (b, t) which are adjacent in one of the first d − 1
cardinal directions must share the same first coordinate, i.e. a = b.
(2) (a, s) may legally precede (a, t) in the ei-direction for i ∈ [1, d − 1] if and only
if s may legally precede t in the same direction in Yψ(a).
(3) (a, s) may legally precede (b, t) in the ed-direction if and only if a may legally
precede b in W . (There is no restriction on the second coordinates s, t.)

Clearly for any y ∈ Y , these rules force the (d − 1)-dimensional hyperplanes
y|Zd−1×{n} to have constant first coordinate (say an), force the second coordinates
to form a point in Yψ(an), and force the sequence (an) to be in W . We now define
the 1-block factor map φ on Y by φ(a, s) = φψ(a)(s).

Claim 4: φ(Y ) = X.

φ(Y ) ⊆ X: Take any y ∈ Y , and define an to be the first coordinate shared by
all letters in y|Zd−1×{n}. Then by definition of Y , (an) ∈ W . Also by definition of
Y , the second coordinates of the letters in y|Zd−1×{n} form a point of Yψ(an), call

it b(n). Then, (ψ(an)) ∈ V , and for every n ∈ Z, (φ(y))|Zd−1×{n} = φψ(an)(b
(n))

is the φψ(an)-image of a point of Yψ(an), and so is in Can . But then, by Claim 2,
φ(y) ∈ X, and since y ∈ Y was arbitrary, φ(Y ) ⊆ X.

φ(Y ) ⊇ X: Choose any x ∈ X. For every n ∈ Z, x|Zd−1×{n} is in one of the Ci,
and if we define a sequence in by x|Zd−1×{n} ∈ Cin , then (in) ∈ V . Choose any

(an) ∈ W s.t. (ψ(an)) = (in). For each n ∈ Z, since x|Zd−1×{n} ∈ Cin = Cψ(an),

there exists b(n) ∈ Yψ(an) s.t. φψ(an)(b
(n)) = x|Zd−1×{n}. Define a point y ∈ AZ2

Y

by setting, for all t = (t1, . . . , td) ∈ Zd, y(t) = (atd , b
(n)(t1, . . . , td−1)). Then y ∈ Y

since (an) is in W , and for all n ∈ Z, the second coordinates in each hyperplane
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y|Zd−1×{n} create a point of Yψ(an). It is also clear that φ(y) = x, and since X was
arbitrary, φ(Y ) ⊇ X.

Since Y was an SFT and φ a factor map, this shows that X is sofic, completing
the proof of Theorem 1.3.

�

We would like to say a bit more about shifts satisfying the hypotheses of The-
orem 1.3, i.e. those with eventually bounded numbers of extender sets, because in
fact they satisfy a much stronger (though technical) condition than just being sofic.

Definition 3.6. We say that a Zd nearest-neighbor SFT X is decouplable if
either d = 1 (in which case X is automatically called decouplable) or there exist
i ∈ [1, d], a Z nearest-neighbor SFT W , and decouplable Zd−1 nearest-neighbor
SFTs Ya for each a ∈ AW , with disjoint alphabets, so that

X = {x ∈ AZd
X : ∃w = (wn) ∈W s.t. ∀n ∈ Z, x|Zi−1×{n}×Zd−i ∈ Ywn}.

(Here, we have made the obvious identification between Zi−1 × {n} × Zd−i and
Zd−1.)

In other words, X is decouplable if one can construct it by starting from a one-
dimensional nearest neighbor SFT and then arbitrarily replacing occurrences of
each letter in its alphabet by points from a Zd−1 decouplable nearest-neighbor SFT
associated to that letter. This definition is obviously recursive; X is decouplable if
its (d− 1)-dimensional hyperplanes are given by decouplable SFTs, whose (d− 2)-
dimensional hyperplanes are given by decouplable SFTs, and so on. This means
that though X is a Zd SFT, its behavior is in some sense one-dimensional.

Remark 3.7. In fact the SFT cover in the proof of Theorem 1.3 can always be
chosen to be decouplable. By the inductive hypothesis, the covers Ya can each be
chosen to be decouplable Zd−1 SFTs, and then the construction of X from W and
all Ya clearly yields a decouplable Zd SFT.

In order to give an application of Theorem 1.3 and to elucidate the idea of
decouplable SFTs, we will present a brief example.

Example 3.8. Define X to be the Z2 subshift on {0, 1} consisting of all x ∈ {0, 1}Z2

with either no 1s, a single 1, or two 1s.

Then it is not hard to see that for any S ⊆ Z2 with |S| > 1, NS(X) = 3. It is
easily checked that the three possible extender sets for w ∈ LS(X) are:

• If w contains no 1s, then EX(w) consists of all patterns on Sc with either no 1s,
a single 1, or two 1s.
• If w contains a single 1, then EX(w) consists of all patterns on Sc with either no
1 or a single 1.
• If w contains two 1s, then EX(w) consists of the single pattern on Sc with no 1s,
namely 0S

c

.

We will now describe how the proof of Theorem 1.3 yields an SFT cover for X.
Using the language of the proof of Theorem 1.3, X ′ consists of all bi-infinite 0-1
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sequences with either no 1s, a single 1, or two 1s. X ′ is broken into three classes of
rows with the same extender sets in X, which are again classified by number of 1s
contained:

• C0 = {x ∈ {0, 1}Z : x contains no 1s} = {0Z}.
• C1 = {x ∈ {0, 1}Z : x contains exactly one 1}.
• C2 = {x ∈ {0, 1}Z : x contains exactly two 1s}.

(We’ve written the Cis with subscripts starting from 0 rather than 1 so that V
can be more easily described; clearly this has no effect on the proof.) Note that each
of the Ci is shift-invariant, but C1 and C2 are not closed. However, each closure
Ci is sofic. This is easily checked, but we will momentarily explicitly describe SFT
covers of the Ci anyway.

We now wish to find V , the Z subshift with alphabet {0, 1, 2} which describes
how the rows in various classes can fit together to make points of X. This is not
so hard to see: since points of X must have at most two 1s, and since the classes
Ci are partitioned by number of 1s,

V = {v ∈ {0, 1, 2}Z : v has only finitely many nonzero digits, and
∑

vn ≤ 2}.

Points of X are then constructed by beginning with a sequence in V , writing
it vertically, and replacing each letter vn with an arbitrary element of Cvn . So,
for instance, one could start with . . . 0002000 . . . ∈ V , replace all 0s by the single
sequence . . . 000000 . . . ∈ C0, and replace 2 by any sequence in C2, for instance
. . . 0001001000 . . .. Clearly every point obtained in this way will have at most two
1s and so will be in X. In addition though, as described in Claim 2, one can also
replace each vn by an arbitrary element of the closure Cvn . For instance, if we
chose to replace the 2 in our earlier sequence by . . . 0001000 . . ., which is not in C2

(in fact it’s in C1), but is in C2, we would still arrive at a legal point of X.
We now note that V is a sofic shift, with nearest-neighbor SFT cover W defined

as follows: AW = {A,B,C,D,E, F}, and legal adjacent pairs in W are AA, AB,
BC, CC, CD, DE, EE, AF , and FE. So,

W = {A∞, C∞, E∞, A∞BC∞, C∞DE∞, A∞BCnDE∞, A∞FE∞}.
The factor ψ is defined by ψ(A) = ψ(C) = ψ(E) = 0, ψ(B) = ψ(D) = 1, and
ψ(F ) = 2, and it is easily checked that ψ(W ) = V .

Following our proof of Theorem 1.3, the next step is to construct SFT cov-
ers of each Ci, which is straightforward. Define Y0 to consist of the single fixed
point {a∞}, and φ0 by φ0(a) = 0. Define Y1 to have alphabet {a, b, c} with
legal adjacent pairs aa, ab, bc, and cc; then Y1 = {a∞, c∞, a∞bc∞}. Define
φ1 by φ1(a) = φ1(c) = 0 and φ1(b) = 1. Finally, define Y2 to have alphabet
{a, b, c, d, e} with legal adjacent pairs aa, ab, bc, cc, cd, de, and ee; then Y2 =
{a∞, c∞, e∞, a∞bc∞, c∞de∞, a∞bcnde∞}. Define φ2 by φ2(a) = φ2(c) = φ2(e) = 0
and φ2(b) = φ2(d) = 1. The reader may check that φi(Yi) = Ci for each i.

We may now construct an SFT cover Y for X following our proof. The alphabet
AY :=

⋃
a∈AW ({a}×Aψ(a)) = {(A, a), (B, a), (B, b), (B, c), (C, a), (D, a), (D, b), (D, c),

(E, a), (F, a), (F, b), (F, c), (F, d), (F, e)}. The adjacency rules are that horizontally
adjacent letters have the same first (capital) coordinate Π and second (lowercase)
coordinates satisfying the adjacency rules given by Yψ(Π), and that vertically adja-
cent letters have first (capital) coordinates satisfying the adjacency rules of W . So,
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for instance, (D, a) cannot appear immediately to the left of (D, c), since ac is not
a legal pair in Yψ(D) = Y1. On the other hand, (A, a) can appear below (F, d), since
AF is a legal pair in W . The map φ is defined, as before by φ(a, b) = φψ(a)(b),
meaning that φ(B, b) = φ(D, b) = φ(F, b) = φ(F, d) = 1, and all other letters of AY
have φ-image 0. It’s easy to see that φ(Y ) = X; the rules defining Y mean that
there are at most two letters with second coordinate b or d, and these are the only
letters of AY which have φ-image 1.

�

Finally, we will prove Theorem 1.4, but first need the following definition and
theorem from [3].

Definition 3.9. ([3]) A Zd subshift X is effective if there exists a forbidden list
(wn) for X and a Turing machine which, on input n, outputs wn.

It is easy to see that not every subshift is effective; there are only countably
many Turing machines, and so only countably many effective subshifts.

Theorem 3.10. ([3]) Any Zd sofic shift is effective.

Proof of Theorem 1.4. For any Sturmian Z subshift S, we can extend S to a Zd
subshift S̃ by enforcing constancy along all cardinal directions ei, i ∈ [2, d]. There

are uncountably many Sturmian subshifts, and so there exists one, call it S′, s.t. S̃′

is not effective. (In fact, effectiveness of Sturmian S and/or the shift S̃ is equivalent
to computability of the rotation number defining S, but we will not need this fact.)

By Theorem 3.10, S̃′ is not sofic. In addition, by the minimal complexity definition

of Sturmian subshifts, for every n ∈ N, |L[1,n]d(S̃′)| = |L[1,n](S
′)| = n + 1, and

so trivially N[1,n](S̃′) ≤ n + 1. Since S̃′ is not sofic, by Theorem 1.1, in fact

N[1,n](S̃′) = n+ 1 for all n.
�
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