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Abstract. In one dimension, sofic shifts are fairly well-understood and spe-
cial examples of shift spaces which must satisfy very restrictive properties.
However, in multiple dimensions there are very few known conditions which
guarantee nonsoficity of a shift space. In this paper, we show that for any Zd

sofic shift X which satisfies a uniform mixing condition called block gluing in
all directions ~e2, . . . , ~ed, the set of legal rows of X in the ~e1-direction has a
synchronizing word. This allows us to define a (new) large class of nonsofic Zd

shift spaces.

1. Introduction

The field of topological dynamics is concerned with the study of topological
dynamical systems; a topological dynamical system is comprised of a compact space
X and a group action (Tg)g∈G of self-homeomorphisms of X . (In this paper, G will
always be Zd for some d.)

Symbolic dynamics is devoted to the study of a specific type of topological dy-
namical system called a shift space, defined by a finite set A (called an alphabet)
and a (possibly infinite) set F of functions from finite subsets of Zd to A, called

configurations. The Zd shift space XF induced by F is then the set of all x ∈ AZ
d

which contain no translate of any of the configurations from F . We always think of

AZ
d

as being endowed with the (discrete) product topology, and any Zd shift space
as a topological space with the induced topology. Any shift space is a topological
dynamical system when acted on by the Zd shift action of translations by vectors
in Zd.

A specific type of well-studied shift space occurs when F is finite. In this case,
we call XF a Zd shift of finite type, or SFT. A slightly more general class of shift
spaces are the Zd sofic shifts, which are the images of SFTs under shift-commuting
continuous maps.

In one dimension, SFTs and sofic shifts are fairly well-behaved and satisfy many
restrictive properties. For example, under the fairly mild assumption of topological
mixing, any one-dimensional SFT or sofic shift has dense periodic points, topological
entropy equal to the log of an algebraic number, and a unique measure of maximal
entropy. (We postpone the formal definition of topological entropy until Section 2;
for now, we only note that it is an isomorphism invariant assigned to any shift
space X which in some sense measures the “information” contained in X . We will
not define the notions of topological mixing or measure of maximal entropy in this
paper; see [13] for more information.) There also exist algorithmically checkable
necessary and sufficient conditions for being a Z SFT or sofic shift.
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In Zd, the situation is much different; sofic shifts and SFTs seem to be much
more difficult objects to study. For instance, the question of whether a Zd SFT is
even nonempty is algorithmically undecidable given the forbidden configurations.
([2], [14]) It is quite easy, however, to give examples of Zd shift spaces which are not
SFTs. For example, consider the Zd shift space X on the alphabet {0, 1} consisting

of all ω ∈ {0, 1}Z
d

which have either zero or one occurrences of the symbol 1. Then
X is not an SFT: suppose for a contradiction that it is an SFT with F contained

in {0, 1}{1,...,n}
d

for some n. Then consider any ω ∈ {0, 1}Z
d

which contains two 1
symbols, separated by a distance of more than n. Clearly ω does not contain any
configuration from F , but by definition ω /∈ X . This contradicts the assumption
that X = XF .

The situation with sofic shifts is different; it seems difficult to prove that a Zd

shift is nonsofic, since a Zd sofic shift might be induced by a factor map from an
SFT with a much larger alphabet which loses a great deal of information.

There are (at least) two sufficient conditions in the literature for nonsoficity.
Firstly, it was shown in [7] that any Zd sofic shift S must satisfy a condition
called effectiveness, which means that there exists a Turing machine T which,
on input n, outputs a configuration u(n), such that the collection {u(n)} is a

set of forbidden configurations inducing the shift space S, e.g. S = {x ∈ AZ
d

:
x does not contain any u(n)}. Therefore, any noneffective shift space must be non-
sofic. However, this condition is not so helpful for giving explicit examples of non-
sofic shift spaces; most shift spaces in the literature have algorithmic descriptions,
meaning that they are effective.

Secondly, it was shown in [4] that any Zd sofic shift S with positive topological
entropy h(S) contains proper subsystems of topological entropy arbitrarily close to
h(S). As an application, we note that if a Zd shift space X has positive topological
entropy and is minimal, meaning that it contains no proper nonempty subshift,
then this result implies that X is nonsofic. (See [8] for a method of constructing
such shift spaces.)

Our main result is a new sufficient condition for nonsoficity of a Zd shift space
X .

Theorem 1.1. If Z is a Zd shift space on the alphabet A which is block gluing in the

directions ~e2, . . . , ~ed, and if the Z shift space {z|Z×~v : z ∈ Z,~v ∈ Zd−1} consisting

of all rows of points of Z in the ~e1-direction does not have a synchronizing word,

then Z is not sofic.

(Here and in the rest of the paper, {~ei} is the standard collection of basis vectors
in Zd.) We postpone rigorous definitions until the next section, but will briefly
address the two hypotheses of the theorem.

Block gluing, informally speaking, is a condition that allows very large rectan-
gular configurations which appear in some points of X (possibly different ones) to
coexist in a single point of X as long as they are separated by a certain distance,
which does not depend on the size of the configurations chosen.

A synchronizing word for a Z shift space X is essentially a word w for which
the possible words which can appear to the left and right of w in a point of X are
independent. More rigorously, w is synchronizing if for any words u and v for which
the concatenations uw and wv appear in some points of X , the concatenation uwv
appears in some point of X . It is well-known that Z sofic shifts and SFTs have
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synchronizing words (in fact, for any Z SFT, all sufficiently long words are syn-
chronizing!), and so our assumption that the set of rows of X has no synchronizing
words is simply a condition guaranteeing that the set of rows of X is far from being
sofic.

Our result gives at least one way to generate a large class of new nonsofic Zd shift
spaces. First, choose any Z shift space Y which is effective and has no synchronizing
word, for example a Sturmian shift space with computable rotation number. (See
[6], Chapter 6, for an introduction to Sturmian shift spaces.) Then, define X to
be the independent product of Y along the directions ~e2, . . . , ~ed, i.e. X := {x ∈

AZ
d

: ∀~v ∈ Zd−1, . . . x(−1, ~v)x(0, ~v)x(1, ~v) . . . ∈ Y }. Then X is block gluing in
those directions and so nonsofic by our main result, but we claim that it does not
satisfy either of the aforementioned existing conditions for nonsoficity.

Firstly, the fact that Y is effective implies that X is effective. Secondly, X
contains subsystems with topological entropy arbitrarily close to h(X): for any
k, define Xk to be the subsystem of X consisting of points in X for which there
exists i ∈ [0, k) such that x|Zd−1×{j} = x|Zd−1×{i} for every j ≡ i (mod k). In
other words, for each point in Xk, every kth (d− 1)-dimensional hyperplane in the
~ed-direction is the same. It is then easily checked that h(Xk) =

k−1
k

h(X).

Theorem 1.1 is also related to results about subdynamics of Zd sofic shifts, such
as the following result, paraphrased slightly from comments following Theorem 1.4
from [7].

Theorem 1.2. ([7]) For any effective Z shift space X, there exists a Z3 sofic shift

X̃ such that X is the set of rows of X̃ in the ~e1-direction. The effective Z shift

spaces are the only ones which can arise in this way.

Two recent preprints ([1], [5]) extend this result to Z2. These results all imply
that an incredibly diverse class of Z shift spaces can be realized as the rows of a
Zd sofic shift. However, their examples are very deterministic (in fact, constant!)
along the other cardinal directions. Theorem 1.1 can then be thought of as a weak
counterpoint: if one wishes to realize sufficiently esoteric shift spaces in the ~e1-
direction (such as a shift space without a synchronizing word), then at least some
determinism is necessary along another direction.

2. Definitions and preliminaries

Definition 2.1. A configuration in Zd over a finite alphabet A is a function w
from a finite set S ⊂ Zd, called the shape of w, to A. A word is a configuration in Z

whose shape is [m,n] for some m ≤ n ∈ Z. (Here and elsewhere, for any a ≤ b ∈ Z,
[a, b] refers to the interval of integers {a, a+ 1, . . . , b}.)

For any d and alphabet A, we denote by A∗ the set of configurations in Zd over
A.

Definition 2.2. A point x ∈ AZ
d

contains a configuration w ∈ AS if there exists
~v ∈ Zd such that x(~u + ~v) = w(~u) for all ~u ∈ S.

Definition 2.3. For any d and set F ⊆ A∗, we say that F induces a Zd shift space

XF := {x ∈ AZ
d

: no configuration in F appears in x}.
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We repeat that shift spaces are compact topological spaces when endowed with

the induced product topology from AZ
d

. They are also topological dynamical sys-
tems under the Zd shift action σ~v by homeomorphisms, defined by (σ~v(x))(~u) =

x(~u+ ~v) for any x ∈ AZ
d

.

Definition 2.4. For any d, a Zd shift of finite type or SFT is a shift space XF

induced by a finite set F of forbidden configurations. If all configurations in F are
adjacent pairs of letters, then XF is called a Zd nearest neighbor SFT.

Definition 2.5. A Zd factor map is a continuous map φ from a Zd shift space X
to a Zd shift space Y which is shift-commuting, i.e. σ~v(φ(x)) = φ(σ~v(x)) for any
x ∈ X and ~v ∈ Zd.

Definition 2.6. A Zd sofic shift is the image of a Zd SFT under a Zd factor map.

In fact, given a Zd sofic shift S, it is well-known that there exists a Zd nearest
neighbor SFT X and a factor map φ such that S = φ(X), and φ is a letter-to-letter
map, i.e. for any x ∈ X and ~v ∈ Zd, (φ(x))(~v) depends only on x(~v).

Definition 2.7. For any Zd shift space X on the alphabet A, the language of X
is L(X) := {w ∈ A∗ : ∃x ∈ X containing w}. For any finite S ⊂ Zd, we make the
notation LS(X) = L(X) ∩AS .

Definition 2.8. The topological entropy of a Zd shift space X is

h(X) := lim
n→∞

1

nd
log |L[1,n]d(X)|.

For the next five definitions, for words u, v, we use uv to denote the concatenation
of u and v.

Definition 2.9. For any Z shift space X and any word w ∈ L(X), the follower set

of w is F (w) := {v ∈ L(X) : wv ∈ L(X)}.

Definition 2.10. For any Z shift space X and any word w ∈ L(X), the predecessor
set of w is P (w) := {v ∈ L(X) : vw ∈ L(X)}.

Definition 2.11. For any Z shift space X , a word w ∈ L(X) is synchronizing

if for all u, v ∈ L(X) for which uw and wv are in L(X), it is also the case that
uwv ∈ L(X).

It follows immediately from the definition that w is synchronizing if and only if
P (w) = P (wv) for all v for which wv ∈ L(X).

Definition 2.12. For any finite alphabet A, a set S ⊆ A∗ is left-factorial if for any
v, w ∈ A∗, if vw ∈ S, then v ∈ S.

Definition 2.13. For any finite alphabet A, a set S ⊆ A∗ is left-extendable if for
any w ∈ S, there exists v ∈ A∗ so that vw ∈ S.

It is easily checked that for any Z shift space X , L(X) is left-factorial and left-
extendable.

Definition 2.14. A Zd shift space X is block gluing in direction ~ei (with filling
length L) if for any rectangular prisms R, R′ with min

~r∈R,~r′∈R′

|ri − r′i| ≥ L, and for

any configurations u ∈ LR(X) and u′ ∈ LR′(X), there exists x ∈ X with x|R = u
and x|R′ = u′.
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In [3] and [12], a shift space is said to be block gluing if it is block gluing in every
cardinal direction ~e1, . . . , ~ed.

Definition 2.15. For any Zd shift space X on the alphabet A, the Z-projective

subdynamics of X , denoted by PZ(X), is the set of biinfinite sequences in the ~e1-
direction appearing in points of X .

Projective subdynamics were first defined in [10]. They were further studied in
[12], where, among other things, the class of sofic shift spaces realizable as PZ(X)
for a Z2 SFT X was determined.

Definition 2.16. ~u,~v ∈ Zd are adjacent if
∑d

i=1 |ui − vi| = 1.

Definition 2.17. For any finite set S ⊂ Zd, the boundary of S, written ∂S, is the
set of ~u ∈ S adjacent to some ~v ∈ Zd \ S.

Note that our definition of ∂S is an “inner” boundary, meaning that ∂S ⊆ S.
Many authors use ∂S to refer to the set of sites outside S but adjacent to a site
within S, which is ∂(Sc) in our notation.

3. Proof of Theorem 1.1

We for now assume that d = 2. Take any Z2 shift space Z with alphabet A
as in the statement of Theorem 1.1, denote by L an integer greater than the fill-
ing length of Z in the ~e2-direction, and define X = PZ(Z). By assumption, X
has no synchronizing word. Choose any w(1) ∈ L(X). Since w(1) is not syn-
chronizing, there exists w(2) ∈ L(X) so that w(1)w(2) ∈ L(X) and P (w(1)w(2)) (
P (w(1)). Since w(1)w(2) is not synchronizing, there exists w(3) ∈ L(X) so that
w(1)w(2)w(3) ∈ L(X) and P (w(1)w(2)w(3)) ( P (w(1)w(2)). We can continue in
this fashion to define words w(1), w(2), . . . such that w(1) . . . w(n) ∈ L(X) for all
n > 0, and P (w(1) . . . w(n)w(n+1)) ( P (w(1) . . . w(n)) for all n > 0. For every

n, choose x(n) ∈ P (w(1) . . . w(n)) \ P (w(1) . . . w(n)w(n+1)). Then for all n > 0,

w(1) . . . w(n) ∈ F (x(n)), but w(1) . . . w(n)w(n+1) /∈ F (x(n)).
For ease of notation, we define y(i) = w(1)w(2) . . . w(i) for any i ∈ N. For any

m ∈ N, if Nm = max({|x(i)|}i∈[1,m]), then we can use left-extendability of L(X) to

extend each word {x(i)}i∈[1,m] on the left to words {x(m,i)}i∈[1,m] of common length

Nm sharing the defining property of x(i); y(i) ∈ F (x(m,i)), but y(i+1) /∈ F (x(m,i)).
Since L(X) is left-factorial and y(i) is a prefix of y(i+1) for every i ∈ [1,m− 1], for
any i, j ∈ [1,m], y(j) ∈ F (x(m,i)) iff j ≤ i.

Suppose for a contradiction that Z is sofic. Then there exists a Z2 nearest
neighbor SFT Y and letter-to-letter factor map φ so that φ(Y ) = Z. Define k to

be the size of the alphabet B of Y , and as above define a set {x(k2L+1,i)}i∈[1,k2L+1]

of words of common length N := Nk2L+1 and another set of words {y(i)}i∈[1,k2L+1]

such that for all i, j ∈ [1, k2L + 1], y(j) ∈ F (x(k2L+1,i)) iff j ≤ i.
We need one new notation: for the remainder of the proof, for any b ∈ N and

words u(1), . . . u(b) ∈ A∗ with lengths a1, . . . , ab respectively, we identify the b-tuple

(u(1), u(2), . . . , u(b)) with the configuration with shape
⋃b

i=1([1, ai] × {Li}) whose

(Li)th row is u(i).

In this notation, for any p ∈ N, define the collection Sp = ({x(k2L+1,i)}i∈[1,k2L+1])
p

= {(x(k2L+1,i1), . . . , x(k2L+1,ip)) : 1 ≤ i1, . . . , ip ≤ k2L+1} consisting of configura-

tions made up of p words from the set {x(k2L+1,i)}i∈[1,k2L+1], separated by bands of
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L− 1 rows. Since each of the words x(k2L+1,i) is in L(X) ⊂ L(Z), by block gluing
of Z in the ~e2-direction each configuration in Sp is also in L(Z).

Next, for any w ∈ Sp, define

B(w) = {v|∂([1,N ]×[1,Lp]) : v ∈ L[1,N ]×[1,Lp](Y ), φ(v)|⋃p

i=1([1,N ]×[Li]) = w},

the set of boundaries of extensions of φ-preimages of w to legal configurations (in
Y ) on [1, N ]× [1, Lp].

For any p ∈ N, define Dp = L∂([1,N ]×[1,Lp])(Y ). Finally, for any δ ∈ Dp,

define the (possibly empty) set of configurations U(δ) ⊆ ({y(i)}i∈[1,k2L+1])
p by

(y(i1), . . . , y(ip)) ∈ U(δ) iff there exists z ∈ Y so that z|∂([1,N ]×[1,Lp]) = δ and, for

each 1 ≤ j ≤ p, φ(z|
[N+1,N+|y(ij)|]×{Lj}

) = y(ij). U(δ) is then the set of p-tuples of

words from the set {y(i)}i∈[1,k2L+1] which have φ-preimages which, when separated
by spaces of L−1 rows, can simultaneously “follow” δ on the right in some configu-
ration in L(Y ). For example, if the configuration in Figure 1 is in L(Y ), and if each
φ(u(j)) is in the set {y(j)}j∈[1,k2L+1], then (φ(u(1)), φ(u(2)), . . . , φ(u(p))) ∈ U(δ).

δ

(1)

u
(p)

u
(2)

L − 1

u

Figure 1. A configuration in L(Y ) demonstrating that
(φ(u(1)), φ(u(2)), . . . , φ(u(p))) ∈ U(δ)

Since Y is a nearest neighbor SFT, for any rectangular configuration v ∈ LR(Y ),
the set of configurations on Z2 \ R which can be combined with v to make a legal
point of Y depends only on the boundary of v. This means that for any w ∈ Sp,⋃

δ∈B(w) U(δ) is just the set of all p-tuples of words from {y(i)}i∈[1,k2L+1], separated

vertically by bands of L − 1 rows, which can “follow” w on the right in some
configuration in L(Z).

If w =
∏p

j=1 x
(k2L+1,ij), then we claim that this set is

∏p
j=1(F (x(k2L+1,ij)) ∩

{y(i)}i∈[1,k2L+1]): if (y
(kj))j∈[1,p] can “follow” w on the right in some configuration

in L(Z), then clearly each y(kj) is in F (x(k2L+1,ij)). Also, for any configuration

(y(kj))j∈[1,p] ∈
∏p

j=1 F (x(k2L+1,ij)), each word x(k2L+1,ij)y(kj) is in L(Z), and so the

configuration (x(k2L+1,i1)y(k1), . . . , x(k2L+1,ip)y(kp)) is also in L(Z), by block gluing

of Z in the ~e2-direction. We simplify further by recalling that F (x(k2L+1,ij)) ∩
{y(i)}i∈[1,k2L+1] = {y(i)}i∈[1,ij ].
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Lexicographically order the set of all (ij) ∈ [1, k2L + 1]p, denoting the rth such

p-tuple by (i
(r)
j ). We have shown that for any r ∈ [1, (k2L + 1)p], there exists

Br ⊆ Dp (Br = B(
∏p

j=1 x
(k2L+1,i

(r)
j

))) so that
⋃

δ∈Br
U(δ) =

∏p
j=1{y

(i)}
i∈[1,i

(r)
j

]
.

Choose any r > r′ ∈ [1, (k2L + 1)p].

Then by the definition of lexicographic order, for some j′ ∈ [1, p], i
(r)
j′ > i

(r′)
j′ ,

and so the configuration
(
y

(
i
(r)
j

))
j∈[1,p]

is in
∏p

j=1{y
(i)}

i∈[1,i
(r)
j

]
\
∏p

j=1{y
(i)}

i∈[1,i
(r′)
j

]
.

Since r′ was arbitrary between 1 and r − 1, this implies that

p∏

j=1

{y(i)}
i∈[1,i

(r)
j

]
\

r−1⋃

r′=1

p∏

j=1

{y(i)}
i∈[1,i

(r′)
j

]
6= ∅,

which clearly implies that Br \
⋃r−1

r′=1 Br′ 6= ∅ for all r ∈ [2, (k2L + 1)p], and

so
∣∣∣
⋃(k2L+1)p

i=1 Bi

∣∣∣ ≥ (k2L + 1)p. Since
⋃(k2L+1)p

i=1 Bi ⊂ Dp, |Dp| ≥ (k2L + 1)p.

However, for any p, Dp consists of configurations in L∂([1,N ]×[1,Lp])(Y ), so |Dp| ≤

k|∂([1,N ]×[1,Lp])| < k2Lp+2N . We then have a contradiction for large enough p,
meaning that our original assumption was wrong and Z is not sofic.

The proof for d > 2 is similar, and we leave the details to the reader; the
only change is that one must use the block gluing of Z in the ~e2, . . . , ~ed-directions
to create (d − 1)-dimensional grids of words from {y(i)}i∈[1,k2L+1], separated by

distances of L − 1, rather than the one-dimensional “stacks” of y(i) used when
d = 2.

4. Can Theorem 1.1 be strengthened?

It seems very likely that the condition that PZ(Z) has no synchronizing word
could be weakened, perhaps even to the natural condition that PZ(Z) be nonsofic.

Question 4.1. Is it true that if Z is a Zd shift space which is block gluing in

directions ~e2, . . . , ~ed with PZ(Z) nonsofic, then Z is nonsofic?

A slightly weaker version of Question 4.1 was posed by Emmanuel Jeandel for
d = 2: ([9])

Question 4.2. Is it true for any Z shift space X that XZ := {y ∈ AZ
2

:
all rows of y are in X} is sofic if and only if X is sofic?

To address this possibility, we will examine the proof of Theorem 1.1 a bit
more deeply. (We focus on the d = 2 case treated in detail in the proof, though
our analysis can apply to any d > 1.) The contradiction derived in the proof of
Theorem 1.1 (under the assumption that Z was sofic and block gluing in the ~e2-
direction while PZ(Z) had no synchronizing word) was essentially a set-theoretic
obstruction. Specifically, in the last paragraph of the proof, we essentially showed
the following fact:

Proposition 4.3. For any m, there exists n such that for any C, there exists p
so that there does not exist a collection of Cmp sets {Bi}i∈[1,Cmp] for which every

one of the np different Cartesian products
∏p

j=1[1, ij], ij ∈ [1, n], can be written as

a union of the form
⋃

i∈I Bi.
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In our proof, we needed Proposition 4.3 for m = k2L and C = k2N (which
depended on m), and used n = k2L + 1. The sets Bi were the sets U(δ), and
the sets [1, ij], ij ∈ [1, n], represented intersections of distinct follower sets from

PZ(Z) with a distinguished collection {y(j)} of words, and were obtained from the
assumption that PZ(Z) had no synchronizing word. We point out that Z shift
spaces with finitely many follower sets are known to be sofic. (See [11] for a proof.)
This means that even under the much weaker hypothesis that PZ(Z) were nonsofic,
we would still get the existence of infinitely many distinct follower sets, and could
still attempt to obtain a similar set-theoretic obstruction.

However, we would no longer be able to achieve any particular structure on the
sets inside the Cartesian products. The set-theoretic obstruction we would need
would look like the following:

Possible Proposition 1. For any m, there exists n such that for any C, there

exists a p so that for ANY distinct finite sets A1, . . . , An, there does not exist a

collection of Cmp sets {Bi}i∈[1,Cmp] so that every one of the np different Cartesian

products
∏p

j=1 Aij , ij ∈ [1, n], can be written as a union of the form
⋃

i∈I Bi.

If Possible Proposition 1 were true, then we could strengthen Theorem 1.1 to
the case where PZ(Z) is only assumed to be nonsofic. Unfortunately, it is not.

Proposition 4.4. Possible Proposition 1 is false. Specifically, for every n and p,
there exist finite sets A1, . . . , An and a collection of dlog(n+ 1)e8p sets

{Bi}i∈[1,dlog(n+1)e8p] so that every one of the np different Cartesian products
∏p

j=1 Aij ,

ij ∈ [1, n] can be written as a union of the form
⋃

i∈I Bi.

Proof. Choose any n and p. For now we assume that n is even. Our sets Ai,
1 ≤ i ≤ n, will be [1, n]\{i}. We will define a collection of sets {Bi}i∈[1,dlog(n+1)e8p],

where each Bi will be a Cartesian product of sets C
(i)
j , 1 ≤ j ≤ p, each of cardinality

0.5n, to be chosen soon. For any~i = (i1, . . . , ip) ∈ [1, n]p, to show that
∏p

j=1 Aij is a

union of the form
⋃

i∈I Bi, it suffices to show that for any ~k = (k1, . . . , kp) ∈ [1, n]p

with km 6= im for all m, there exists Bi which contains ~k, but is contained in∏p
j=1 Aij =

∏p
j=1([1, n] \ {ij}). Since each Bi will be chosen to be a Cartesian

product, this is equivalent to saying that there is a Bi containing ~k but not ~i.

Therefore, to prove the theorem, it suffices to show that for any ~k,~i ∈ [1, n]p with

km 6= im for all m, there exists Bi =
∏p

i=1 C
(i)
j containing ~k but not ~i.

For each i ∈ [1, dlogne8p] and j ∈ [1, p], independently choose C
(i)
j ⊂ [1, n]

of cardinality 0.5n uniformly at random, and for each i ∈ [1, dlogne8p], define

Bi =
∏p

j=1 C
(i)
j . Then for any ~k,~i ∈ [1, n]p with km 6= im for all m, the probability

that a specific Bi contains ~k but not~i is exactly 4−p. Since the Bi are independently
chosen, the probability that none of the Bi has this property is (1− 4−p)dlog ne8p =
(1 − 4−p)(4

p)dlog ne2p < e−2p logn = n−2p . But then by summing over all choices

for ~k and ~i, the probability that there exist any choices of ~k and ~i so that none of

the Bi contains ~k but not ~i is less than 1, meaning that with nonzero probability,
every product

∏p
j=1 Aij can be written as a union of the form

⋃
i∈I Bi. Since this

happens with nonzero probability, there must be some choice of the Bi for which
it does happen, completing the proof for even n.
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If n is odd, then n+1 is even, and so there are dlog(n+1)e8p sets Bi ⊆ [1, n+1]p

such that all products
∏p

j=1 Aij , 1 ≤ ij ≤ n+1, can be written as unions of the form⋃
i∈I Bi. Restricting eachBi to [1, n]

p gives a collection of size at most dlog(n+1)e8p

satisfying the conditions of the theorem.
This provides a contradiction to Possible Proposition 1 for m = 8 and C always

chosen to be dlog(n+ 1)e.
�

Of course this does not by itself preclude extending Theorem 1.1 to the general
nonsofic case, since the specific case Ai = [1, n] \ {i} might never occur as intersec-
tions of follower sets with a collection {y(j)} of words. Unfortunately, there is at
least one example of a nonsofic subshift whose follower set structure is of this form.

Example 4.5. Define the reverse context-free shift X on the alphabet {a, b, c} by
the forbidden configurations F = {canbnc}n∈N. Then the following are descriptions
of all follower sets of X : (we describe the complements of the follower sets, as it is
more concise)

(F (∅))c = ∅,
(F (cai))c = {ajbi+jc . . . : j ≥ 0} for any i ≥ 0,

(F (caibj))c = {bi−jc . . .} for any i ≥ 0 and j ≤ i.

X has infinitely many follower sets, so it is nonsofic. However, the word c is
synchronizing for X , and so Theorem 1.1 does not let us show that XZ is nonsofic.

We note that for any two unequal follower sets F (u) 6= F (u′) in X , (F (u))c ∩
(F (u′))c = ∅. This means that we are essentially in the “bad situation” from
Proposition 4.4; for any collections {F (x(k))} of distinct follower sets and {y(j)} of
words in L(X), each intersection Ak := F (x(k)) ∩ {y(j)} is of the form {y(j) : j ∈
[1, n]\Jk}, where the sets Jk are pairwise disjoint. This allows for the construction
of a collection of at most (2p log(n+ 1))4p sets for which each product

∏p
j=1 Aij is

a union of the form
⋃

i∈I Bi; simply take the collection {Bi} from Proposition 4.4,

and identify each k ∈ [1, n] with the entire set {y(j) : j ∈ Jk}. (If the union of
all Jk is a proper subset of [1, n], then simply add to each Bi the set of p-tuples
(y(j1), . . . , y(jp)) in which one of the y(jm) is not in any Jk.)

At the moment, we do not see how to extend the ideas in the proof of Theorem 1.1
to address the case where PZ(Z) is only assumed to be nonsofic, or even the specific
case where PZ(Z) is the reverse context-free shift. One idea would be to show
some additional properties about the sets U(δ) so that a weaker version of Possible
Proposition 1, where the sets Bi are assumed to have these additional properties, is
true. (For instance, the sets Bi constructed in the proof of Proposition 4.4 were all
products; perhaps the U(δ) are far from being products in some sense, and perhaps
a version of Possible Proposition 1 where the sets Bi are assumed to be far from
being products in this sense is true.) However, the same phenomena behind the
usual undecidability issues for Zd SFTs might make it very difficult to get such
explicit information about the sets U(δ).
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