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Abstract. In a previous paper ([7]), the author gave a charac-
terization for when a Zd-shift of finite type (SFT) has no non-
trivial subshift factors with zero entropy, a property which we
here call zero-dimensional topologically completely positive en-
tropy (ZTCPE). In this work, we study the difference between
this notion and the more classical topologically completely posi-
tive entropy (TCPE) of Blanchard. We show that there are one-
dimensional subshifts and two-dimensional SFTs which have ZTCPE
but not TCPE. In addition, we show that strengthening the hy-
potheses of the main result of [7] yields a sufficient condition for a
Zd-SFT to have TCPE.

1. Introduction

This work is motivated by an unfortunate misuse of the term “topo-
logically completely positive entropy” (hereafter called TCPE) in some
works written or co-written by the author (see [2], [7]). Blanchard ([1])
originally defined TCPE to mean that a topological dynamical system
has no nontrivial (i.e. containing more than one point) factors with
zero entropy. However, in [2] and [7], the proofs furnished were for
Zd subshifts and only proved that all nontrivial subshift factors have
positive entropy. It is quite simple to show that any system has a
nontrivial subshift factor with zero entropy if and only if it has a non-
trivial zero-dimensional factor with zero entropy (see Theorem 3.1),
and so we say a system has zero-dimensional TCPE (or ZTCPE) if all
nontrivial zero-dimensional factors have positive entropy. It is obvi-
ous that TCPE implies ZTCPE, and just as obvious that the converse
is false in general: any topological dynamical system on a connected
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space trivially has ZTCPE since it has no nontrivial zero-dimensional
factors.
However, it is natural to wonder whether or not the two notions

coincide if (X,T ) is itself assumed to be zero-dimensional, a subshift, or
even a shift of finite type. This is not the case; we will construct several
examples of systems in these classes with ZTCPE but not TCPE. We
prove the following results in the one-dimensional case.

Theorem 1.1. There exists a Z-subshift which has ZTCPE but not
TCPE.

Theorem 1.2. Any Z-SFT with ZTCPE also has TCPE.

In the two-dimensional case, the picture is even more interesting.
The following theorem was proved by the author in [7]; it erroneously
purported to give conditions equivalent to TCPE for multidimensional
SFTs (and had an unfortunate typo which replaced “SFT” with “sub-
shift”), but we’ve given the corrected version below.

Theorem 1.3. ([7], Theorem 1.1) A Zd-SFT has ZTCPE if and only
if it has the following two properties: every w ∈ L(X) has positive
measure for some µ ∈ M(X), and for every S ⊂ Zd and w,w′ ∈
LS(X), there exist patterns w = w1, w2, . . . , wn = w′ so that for 1 ≤
i < n, there exist homoclinic points x, x′ ∈ X with x(S) = wi and
x′(S) = wi+1.

The second property in Theorem 1.3 was called “chain exchange-
ability” of w and w′ in [7]. Note that even if all pairs of patterns with
the same shape are chain exchangeable, it is theoretically possible that
the number n of required “exchanges” could increase with the size of
the patterns. In fact this is related to TCPE as well, as shown by the
following theorem.

Theorem 1.4. If a Zd-SFT satisfies the hypotheses of Theorem 1.3
with a uniform bound on the required n over all patterns w,w′, then X
has TCPE.

Theorem 1.4 implies that the previously mentioned results of [2] and
[7] in fact do yield TCPE for the subshifts in question (see Corollar-
ies 3.3 and 3.4), since all of those proofs included such a uniform bound
on n. The remaining question of whether ZTCPE in fact implies TCPE
for Zd-SFTs is answered negatively by the following.

Theorem 1.5. There exists a Z2-SFT X which has ZTCPE but not
TCPE.
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We note that by necessity, the X from Theorem 1.5 has the property
that all pairs of patterns are chain exchangeable, but that larger and
larger patterns may require more and more exchanges. We do not know
whether this property is sufficient as well as necessary, i.e. whether the
converse of Theorem 1.4 holds as well.

Question 1.6. Does every Zd SFT with TCPE satisfy the hypotheses
of Theorem 1.3 with a uniform bound on n over all w,w′?
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2. Definitions

We begin with some definitions from topological/symbolic dynamics.

Definition 2.1. A Zd topological dynamical system (X,Tv) is
given by a compact metric space X and a Zd action {Tv}v∈Zd by home-
omorphisms on X. In the special case d = 1, it is standard to refer to
the system as (X,T ) rather than (X,Tn); the single homeomorphism
T generates the entire action in this case anyway.

Definition 2.2. For any finite set A (called an alphabet), the Zd-

shift action on AZd

, denoted by {σt}t∈Zd , is defined by (σtx)(s) =
x(s+ t) for s, t ∈ Zd.

We always endow AZd

with the product discrete topology, with re-
spect to which it is obviously compact metric.

Definition 2.3. A Zd-subshift is a closed subset of AZd

which is
invariant under the Zd-shift action. When dimension is clear from
context, we often just use the term subshift.

Any Zd-subshift inherits a topology from AZd

, and is compact. Each
σt is a homeomorphism on any Zd-subshift, and so any Zd-subshift,
when paired with the Zd-shift action, is a topological dynamical system.
Where it will not cause confusion, we suppress the action σv and just
refer to a subshift by the space X.

Definition 2.4. A pattern over A is a member of AS for some finite
S ⊂ Zd, which is said to have shape S. When d = 1 and S is an
interval of integers, we use the term word rather than pattern.
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For any set F of patterns over A, one can define the set X(F) :=

{x ∈ AZd

: x(S) /∈ F ∀ finite S ⊂ Zd}. It is well known that any
X(F) is a Zd-subshift, and all Zd-subshifts are representable in this
way. All subshifts are assumed to be nonempty in this paper.
For any patterns v ∈ AS and w ∈ AT with S ∩ T = ∅, define vw to

be the pattern in AS∪T defined by (vw)(S) = v and (vw)(T ) = w.

Definition 2.5. A Zd-shift of finite type (SFT) is a Zd-subshift
equal to X(F) for some finite F . The type of X is defined to be the
minimum integer t so that F can be chosen with all patterns on shapes
which are subsets of [1, t]d.

Throughout this paper, for a < b ∈ Z, [a, b] will be used to denote
{a, . . . , b}, except for the special case [0, 1], which will have its usual
meaning as an interval of real numbers.

Definition 2.6. The language of a Zd-subshift X, denoted by L(X),
is the set of all patterns which appear in points of X. For any finite
S ⊂ Zd, LS(X) := L(X) ∩ AS, the set of patterns in the language of
X with shape S.

The following definitions are from [7] and relate to the conditions
given there characterizing ZTCPE.

Definition 2.7. For any Zd-subshift X and any finite S ⊆ Zd, patterns
w,w′ ∈ LS(X) are exchangeable in X if there exist homoclinic points
x, x′ ∈ X such that x(S) = w and x′(S) = w′.

It should be reasonably clear that if X is an Zd-SFT with type t,
then w,w′ are exchangeable if and only if there exists N and δ ∈
L[−N,N ]d\[−N+t,N−t]d(X) such that δw, δw′ ∈ L(X).

Definition 2.8. For any Zd-subshift X and any finite S ⊆ Zd, patterns
w,w′ ∈ LS(X) are chain exchangeable in X if there exists n and
patterns (wi)

n
i=1 in LS(X) such that w1 = w, wn = w′, and wi and wi+1

are exchangeable in X for i ∈ [1, n).

Alternately, the chain exchangeability relation is just the transitive
closure of the exchangeability relation.

Definition 2.9. The topological entropy of a Zd topological dy-
namical system (X,Tv) is given by

h(X,Tv) := sup
U

lim
n→∞

1

nd
N





∨

v∈[1,n]d

TvU



 .

where U ranges over open covers of X and N(U) is the minimal size of
a subcollection of U which covers X.
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We will not need any advanced properties of topological entropy in
this paper. (For a detailed treatment of topological entropy, see [8].)
We do, however, note the following sufficient condition for positive
topological entropy. If K and K ′ are disjoint nonempty closed sets in
X, and if there exists a subset S of Zd with positive density so that
for any y ∈ {0, 1}S, there exists x ∈ X with Tsx ∈ K when y(s) = 0
and Tsx ∈ K ′ when y(s) = 1, then it follows that h(X,Tv) > 0; in
particular, for U = {Kc, K ′c}, the limit in the definition is at least
log 2 times the density of S. For brevity, we refer to this property by
saying that (X,Tv) contains points which “independently visit K and
K ′ in any predetermined way along a set of iterates of positive density.”

Definition 2.10. A (topological) factor map is any continuous shift-
commuting map φ from a Zd topological dynamical system (X,Tv) to
a Zd topological dynamical system (Y, Sv). Given such a factor map φ,
the system (φ(X), Sv) is called a factor of (X,Tv).

It is well-known that topological entropy does not increase under
factor maps; again, see [8] for a proof.

Definition 2.11. A Zd topological dynamical system (X,Tv) has topo-
logically completely positive entropy (or TCPE) if for every sur-
jective factor map from (X,Tv) to a Zd topological dynamical system
(Y, Sv), either h(Y, Sv) > 0 or |Y | = 1.

Definition 2.12. A Zd topological dynamical system (X,Tv) has zero-
dimensional topologically completely positive entropy (or ZTCPE)
if for every surjective factor map from (X,Tv) to a Zd zero-dimensional
topological dynamical system (Y, Sv), either h(Y, Sv) > 0 or |Y | = 1.

Our final set of definitions relates to so-called balanced sequences.
For any word w on {0, 1}, we use #(w, 1) to denote the number of 1
symbols in w.

Definition 2.13. A sequence x ∈ {0, 1}Z is k-balanced if every two
subwords of x of the same length have numbers of 1 symbols within k,
i.e. if for every n, i, j, |#(w([i, i+n−1]), 1)−#(w([j, j+n−1]), 1)| ≤ k.
We use simply the term balanced to mean 1-balanced.

The following lemma and corollary are standard; see for instance
Chapter 2 of [5] for proofs in the 1-balanced case which trivially extend
to arbitrary k.

Lemma 2.14. For every k-balanced sequence x, there is a uniform
frequency of 1s, i.e. there exists α ∈ [0, 1] so that for every ǫ > 0,
there exists N such that for n > N , every n-letter subword of x has
proportion of 1 symbols between α− ǫ and α + ǫ.
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Corollary 2.15. For every k-balanced sequence x with frequency α,
every n ∈ N, and every i ∈ Z, |nα−#(x([i, i+ n− 1]), 1)| ≤ k.

For convenience, we refer to the uniform frequency of 1s in a k-
balanced sequence as its slope. The following is immediate.

Corollary 2.16. For any balanced sequence x with slope α and n ∈ N,
if nα /∈ Z, then for every i ∈ Z, #(x([i, i+n− 1]), 1) is either ⌊nα⌋ or
⌈nα⌉.

Here are two examples of simple algorithmically generated balanced
sequences; see Chapter 2 of [5] for a proof that they are in fact balanced
with slope α.

Definition 2.17. For any α ∈ [0, 1], the lower characteristic se-
quence xα is defined by xα(n) = ⌊(n + 1)α⌋ − ⌊nα⌋ for all n ∈ Z.
The upper characteristic sequence xα is defined by xα(n) = ⌈(n+
1)α⌉ − ⌈nα⌉ for all n ∈ Z.

The lower and upper characteristic sequences are not shifts of each
other for irrational α, but for rational α we note that they are. If we
write α = i

j
in lowest terms, then there exists k ∈ N so that kα = m+ 1

j

for an integer m. Then,

σk(xα(n)) = xα(k + n) = ⌈(k + n+ 1)α⌉ − ⌈(k + n)α⌉

= m+(⌈(n+1)α+
1

j
⌉)−m−(⌈nα+

1

j
⌉) = ⌊(n+1)α⌋−⌊nα⌋ = xα(n).

(We here used the easily checked fact that for any rational x with
denominator j, ⌈x+ 1

j
⌉ = 1 + ⌊x⌋.)

Characteristic sequences also have useful convergence properties.

Lemma 2.18. If αn approaches a limit α from above, then the lower
characteristic sequences xαn

converge to the lower characteristic se-
quence xα. Similarly, if αn approaches α from below, then the upper
characteristic sequences xαn

converge to the upper characteristic se-
quence xα.

Proof. This follows immediately from the continuity of the floor func-
tion from the right and the continuity of the ceiling function from the
left. �

For irrational α, the structure of balanced sequences is well-known;
the set of such balanced sequences is just the so-called Sturmian sub-
shift with rotation number α. We omit a full treatment of Sturmian
sequences here and instead refer the reader to Chapter 2 of [5] for a
detailed analysis. We will say that Sturmian sequences are defined
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similarly to upper and lower characteristic sequences, with the change
that one is also allowed to add any constant to the terms inside floor
or ceiling functions (e.g. x defined by x(n) = ⌈π+(n+1)α⌉−⌈π+nα⌉
is Sturmian).
For rational α, the structure of balanced sequences is more com-

plicated. All balanced sequences with rational slope are eventually
periodic (Proposition 2.1.11, [5]). The periodic balanced sequences are
easy to describe; the following is essentially Lemma 2.1.15 from [5],
combined with the above observation that upper and lower character-
istic sequences are shifts of each other for rational α.

Lemma 2.19. Every balanced sequence with rational slope α which is
periodic is a shift of xα.

The eventually periodic but not periodic balanced sequences are
more complicated, they are described as “skew sequences” in [6]. Luck-
ily we do not need a complete description of such sequences in this work,
but we will need the following useful fact, stated as Proposition 2.1.17
in [5].

Lemma 2.20. Every balanced sequence can be written as the limit of
balanced sequences with irrational slopes, i.e. Sturmian sequences.

3. Proofs

We first establish the claim from the introduction that “subshift
TCPE” is in fact the same as ZTCPE.

Theorem 3.1. A Zd topological dynamical system has a nontrivial
Zd-subshift factor with zero entropy if and only if it has a nontrivial
zero-dimensional factor with zero entropy.

Proof. The forward direction is trivial, so we prove only the reverse.
Suppose that (X,Tv) is a topological dynamical system with a fac-
tor (Y, Sv) where |Y | > 1, Y is zero-dimensional, and h(Y, Sv) = 0.
Then, since |Y | > 1 and Y is zero-dimensional, there exists a nontriv-
ial partition of Y into clopen sets A and B. Then, define the map
φ : Y → {0, 1}Z

d

as follows: (φ(y))(v) = χB(Sv(y)), i.e. (φ(y))(v) = 0
if Sv(y) ∈ A and (φ(y))(v) = 1 if Sv(y) ∈ B. Since A and B are closed,
φ is a surjective factor map from (Y, Sv) to the subshift (φ(Y ), σv).
Moreover, if a ∈ A and b ∈ B, then (φ(a))(0) = 0 and (φ(b))(0) = 1,
meaning that |φ(Y )| > 1. Therefore, (φ(Y ), σv) is a nontrivial subshift
factor of (X,Tv), and it has zero entropy since it is a factor of the zero
entropy system (Y, Sv).

�
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Theorem 1.2 is a corollary of well-known results, but for completeness
we supply the simple proof here.

Proof of Theorem 1.2. We assume basic knowledge of the structure of
Z-SFTs; for more information, see [4].
Consider a Z-SFTX, which without loss of generality we may assume

to be nearest-neighbor. If X is not mixing, then it is either reducible
or periodic. If X is reducible, then the factor map which carries each
letter to its irreducible component has (zero-dimensional) image which
is a nontrivial (there are at least two irreducible components) SFT
given by a directed graph with no cycles, thereby of zero entropy. If X
is periodic, then the factor map which carries each letter to its period
class has image which is a nontrivial (and zero-dimensional) finite union
of periodic orbits, thereby of zero entropy. We have shown that any
Z-SFT with ZTCPE is mixing.
Then, it is well-known that a Z-SFT is mixing if and only if it has the

specification property, which clearly implies TCPE since specification
is preserved under factors, and every nontrivial dynamical system with
specification has positive entropy.

�

Proof of Theorem 1.4. We assume some familiarity with the proof of
Theorem 1.3 from [7], and so only summarize the required changes.
Suppose that X is a Zd-SFT of type t with the properties that every
w ∈ L(X) has positive measure for some µ ∈ M(X) and that there
exists N so that for all S ⊆ Zd and w,w′ ∈ LS(X), there exist w =
w1, w2, . . . , wN = w′ so that for every i ∈ [1, N), there are homoclinic
points in [wi] and [wi+1]. Now, consider any surjective factor map
φ : (X, σv) → (Y, Sv) with |Y | > 1. Since |Y | > 1, there exist y, y′ ∈ Y
with dY (y, y

′) = α > 0. By uniform continuity of φ, there exists δ > 0
so that dX(x, x

′) < δ =⇒ dY (y, y
′) < α

N
. Choose n so that the cylinder

set of any w ∈ L[−n,n]d(X) has diameter less than δ.

Choose x ∈ φ−1(y) and x′ ∈ φ−1(y′), and define w = x([−n, n]d) and
w′ = x′([−n, n]d). Then by assumption, there exist w = w1, w2, . . .
wN = w′ with the above described properties. Note that each φ([wi])
has diameter less than α

N
, y ∈ φ([w1]), y

′ ∈ φ([wN ]), and d(y, y
′) = α.

This implies that there exists i for which φ([wi]) and φ([wi+1]) are
disjoint closed subsets of Y . From here, the proof proceeds essentially
as in [7]; we again will only briefly summarize. Firstly, since there exist
homoclinic points in [wi] and [wi+1], there exists a boundary pattern δ
of thickness t which can be filled with either wi or wi+1 at the center.
By assumption, there exists µ ∈ M(X) with µ([δ]) > 0 and therefore a
point x ∈ X with a positive frequency of occurrences of δ. Then, since
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X is an SFT with type t, each occurrence of δ in x can be independently
filled with either wi or wi+1 at the center. The φ-images of this family
of points then visit the disjoint closed sets φ([wi]) and φ([wi+1]) under
Sv in any predesignated way along a set of v ∈ Zd of positive density,
which is enough to imply positive entropy of (Y, Sv).

�

In particular, several existing proofs in the literature which pur-
ported to prove TCPE while in truth only verifying ZTCPE can be
shown to actually yield TCPE via Theorem 1.4.

Corollary 3.2. The topologically mixing Z2-SFT defined in Section
6.3 of [3] has TCPE.

Proof. It was shown in [2] that any two patterns in the example in
question are exchangeable, i.e. that the hypotheses of Theorem 1.3 are
satisfied with n = 2. Therefore, Theorem 1.4 implies TCPE. �

Corollary 3.3. Every nontrivial block gluing Zd-SFT has TCPE.

Proof. Theorem 1.5 from [7] shows that any two patterns in a block glu-
ing Zd-SFT are exchangeable, i.e. that the hypotheses of Theorem 1.3
are satisfied with n = 2. Therefore, Theorem 1.4 implies TCPE. �

Corollary 3.4. The Z2-SFT from Examples 1.2 and 1.3 of [7] has
TCPE.

Proof. It is shown in [7] that the example in question satisfies the hy-
potheses of Theorem 1.3 with n = 3. Therefore, Theorem 1.4 implies
TCPE. �

Our main tool for constructing the examples of Theorems 1.1 and
1.5 is the following “black box” which, given an input subshift X with
some very basic transitivity properties, yields a subshift with TCPE.
Though the technique should work in any dimension, for brevity we
here restrict ourselves to d ≤ 2.

Theorem 3.5. For d ≤ 2 and any alphabet A, there exists an alphabet
B and a map f taking any orbit of a point in AZd

to a union of orbits
of points in BZd

with the following properties.

(1) O(x) 6= O(x′) =⇒ f(O(x)) ∩ f(O(x′)) = ∅.
(2) For any Zd-subshift (resp. SFT) X, f(X) is a Zd-subshift (resp.
SFT).
(3) If X is a Zd-subshift with the following two properties:
(3a) Every w ∈ L(X) has positive measure for some µ ∈ M(X)
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(3b) there exists N so that for every w,w′ ∈ L[−n,n]d(X), there exist
patterns w = w1, w2, . . . , wN = w′ in L[−n,n]d(X) so that for all
i ∈ [1, N), wi and wi+1 coexist in some point of X,

then f(X) has TCPE.

Proof. Before beginning the proof, we note that by the pointwise er-
godic theorem, (3a) is clearly equivalent to the statement that for every
w, X contains a point with a positive frequency of occurrences of w.
Where it is useful, we prove/use this equivalent version without further
comment.
We first deal with d = 1, which is a significantly easier proof and

shows the ideas required for the more difficult d = 2 case. Consider any
alphabet A, take a symbol 0 /∈ A, and to any orbit O(x), define f(x) to
be the set of all points in (A∪0)Z of the form . . . a−10

n−1a00
n0a10

n1 . . .,
where . . . a−1a0a1 . . . ∈ O(x) and each ni is 2, 3, or 4.
It is easily checked that f(x) is shift-invariant, i.e. a union of orbits.

Clearly, if some point . . . a−10
n−1a00

n0a10
n1 . . . is in f(O(x))∩f(O(x′)),

then . . . a−1a0a1 . . . ∈ O(x) ∩O(x′), verifying (1).
If X is a Z-subshift defined by a set F of forbidden words, then the

reader may check that f(X) is a Z-subshift defined by the forbidden
list

F ′ = {00000} ∪ {ab : a, b ∈ A} ∪ {a0b : a, b ∈ A}

∪ {w10
n1w20

n2 . . . 0nk−1wk : ni ∈ {2, 3, 4}, w1w2 . . . wn ∈ F}.

If X is an SFT, then F can be chosen to be finite, in which case F ′ is
also finite, showing that f(X) is an SFT and verifying (2).
It remains only to show (3). We begin with some notation. For

any point y ∈ f(X), there exists x for which y ∈ f(x), and by (1),
x is uniquely determined up to shifts. We say for any such x that y
is induced by x. Similarly, for any finite word w ∈ L(f(X)), the
non-zero letters of w (in the same order) form a word v ∈ L(X), and
we say that w is induced by v. Suppose that X satisfies (3a) and
(3b), and consider any surjective factor map φ : (f(X), σ) → (Y, S)
with |Y | > 1. By considering the words in L(X) “inducing” arbitrary
words w,w′ ∈ L(f(X)), it is easily checked that (3a) and (3b) hold for
f(X) as well.
SinceN does not depend on the words chosen in (3b), we can proceed

as in the proof of Theorem 1.4 to find words wi, wi+1 ∈ L(f(X)) of the
same length L for which φ([wi]) and φ([wi+1]) are disjoint closed sets,
and wi and wi+1 coexist in some word u ∈ L(f(X)). We can assume
without loss of generality that u begins and ends with non-zero letters
by extending it slightly on the left and right, and define v ∈ L(X)
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which induces u. We fix single occurrences of wi and wi+1 within u,
assume without loss of generality that wi appears to the left of wi+1,
and denote by k the horizontal distance between them.
Since v ∈ L(X), we may choose p, s ∈ Lk(X) so that pvs ∈ L(X).

Then, we define the following words:

u′ = p(1)03p(2)03 . . . 03p(k)03u03s(1)03s(2)03 . . . 03s(k) and

u′′ = p(1)02p(2)02 . . . 02p(k)02u04s(1)04s(2)03 . . . 04s(k).

Since both u′ and u′′ are induced by pvs ∈ L(X), u′ and u′′ are both
in L(f(X)). They also have the same length. In addition, since u′′ is
created by reducing the first k gaps of 0s in u′ by one and increasing the
last k gaps of 0s in u′ by one, the occurrence of wi+1 in the central u of u′

occurs at a location k units further to the left within u′′. In other words,
there exists j so that u′([j, j+L−1]) = wi and u

′′([j, j+L−1]) = wi+1.
Since u′ ∈ L(f(X)), by (3a) there exists y ∈ f(X) containing a pos-

itive frequency of occurrences of u′. The rules defining f(X) should
make it clear that any subset of these occurrences of u′ can be replaced
by u′′ to yield a collection of points of f(X). Then, as before, the im-
age under φ of this collection yields a collection of points of Y which
independently visit the disjoint closed sets φ([wi]) and φ([wi+1]) under
S in any predesignated way along a set of iterates of positive density,
proving that h(Y, S) > 0 and completing the proof of (3).

Now, we must describe f and prove (1)-(3) for d = 2 as well. Many
portions of the argument are quite similar, and so we will only com-
ment extensively on the portions which require significantly more de-
tails. First, we describe auxiliary Z2 shifts of finite type XH and XV

which will help with the definition of f . The alphabet for XH is {0, H},
and the SFT rules are as follows.

• Each column consists of H symbols separated by gaps of 0 symbols
with lengths 2, 3, or 4.
• Given any H symbol, exactly two of its neighbors (in cardinal direc-
tions) are H symbols.
• If two H symbols are diagonally adjacent, they must have exactly
one H symbol as a common neighbor.
• Three H symbols may not comprise a vertical line segment.
• If three H symbols comprise a diagonal line segment, then the central
of the three must have H symbols to its left and right. (For instance,
H
H H H

H
is legal, but

H H
H H

H
is not.)
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The reader may check these rules make XH a Z2-SFT of type 5.
Points of XH consist of biinfinite meandering ribbons of H symbols,
which either move up one unit, down one unit, or stay at the same
height for each unit moved to the right or left, and which may not
“meander” twice consecutively in the same direction. Informally, this
means that any horizontal ribbon has “slope” with absolute value less
than or equal to 1

2
. Every point of XH contains infinitely many such

ribbons, and any pair of closest ribbons may not touch diagonally and
are always separated by a vertical gap of 0 symbols of length either 2,
3, or 4; see Figure 1.

H

H

H

H

H
HH

HHHHHHH

HHH
HH

HH
HHHH

H
HHHH

HH
HH

HH

HH
HHH

HH
HH

H

H
H H

H H
H

H

H
H

H
H

H

H
H H

Figure 1. Part of a point of XH

We also define the Z2-SFT XV with alphabet {0, V } with vertical
rather than horizontal ribbons, where legal points are just legal points
of XH , rotated by ninety degrees, with H symbols replaced by V sym-
bols. In particular, vertical ribbons have “slope” with absolute value
at least 2. We will require the following fact about XH .

Claim A1: Every pattern w ∈ L(XH) appears in a point x ∈ XH

homoclinic to the point x0 ∈ XH consisting of flat horizontal ribbons,
equispaced by 3 units, one of which passes through the origin.

Proof. Our proof is quite similar to a proof given in [7] for a slightly
different system, and so for brevity we do not include every technical
detail here. It clearly suffices to only treat w ∈ L[−n,n]d(XH) for some
n. We proceed in three steps.

Step 1: Complete each horizontal ribbon segment in w to create w′ in
which each horizontal ribbon segment touches the infinite vertical lines
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given by the left and right edges of w.

Step 2: Allow the ribbons in w′ to meander on the left and right until
they are equispaced with distance 3, each ribbon has the same height
at the left and right edge, and those heights are the same as those of
ribbons in x0, i.e. multiples of 4.

Step 3: Place additional ribbons above, one at a time, with left and
right edges equispaced with distance 3, each of which “unravels” the
leftmost meandering in the ribbon below, until arriving at a completely
horizontal ribbon; then continue with infinitely many more completely
horizontal ribbons equispaced with distance 3. Perform a similar pro-
cedure below. (See Figure 2 for an illustration.)

H H
H H H

H H H
H

H H

H H

H
H

HHH
H

H

H

H
H H H

H
H

HH

HH

H
HHH

HHH
HH

H H

HHHH
HHH

HH

HH

H
HH

H
HH H

H H
H H H

H H H H

H HHH

HH

HH
H

H

H

H H

HH
HHH

H H

H

H
H H H

H
H

HH

HH

H
HHH

HHH
HH

H

H
H H H

H
H

HH

HH

H
HHH

HHH
HH

H H

HHHH
HHH

HH

HH

H
HH

H
HH H

H H
H H H

H H H H

H HHH

HH

HH
H

H

H

HHHHHHHHHHHHHHH

HHHHHHHH
HHHHHHH

HH

H H H H H H H H H H H HHHH

HHHH
HHHHH

HHHHHHHH

Figure 2. The steps of embedding w in a point x ∈ XH

homoclinic to x0

The resulting point x ∈ XH is clearly homoclinic with x0 and con-
tains w, completing the proof.

�

Every point of XH must contain infinitely many ribbons; in a point
of XH , we index these by Z, beginning with the 0th as the first encoun-
tered when beginning from the origin and moving straight up, and then
proceeding with the positively-indexed ribbons above it and negatively-
indexed ribbons below it. Similarly, the vertical ribbons of a point of
XV are indexed starting at the 0th ribbon being the first encountered by
beginning from the origin and moving to the right, positively-indexed
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ribbons to the right, and negatively-indexed ribbons to the left. By
the earlier noted restrictions on slopes, any horizontal ribbon and any
vertical ribbon must intersect at either a single site or a pair or triple
of adjacent (including diagonals) sites (see Figure 3), and so for any
pair of points x ∈ XH and y ∈ XV , we can assign an injection fx,y
from Z2 to itself by defining fx,y(i, j) to be the lexicographically least
site within the intersection of the ith horizontal ribbon and jth vertical
ribbon.
We are now ready to define f . For any alphabet A and orbit O(x) in

AZ2

, choose a symbol 0 /∈ A and define f(x) to be the collection of all
points z on the alphabet B = {(0, 0, 0), (0, V, 0), (H, 0, 0)}∪({(H, V )}×
(A ⊔ {0})) with the following properties:

• The first coordinate of z is a point x of XH

• The second coordinate of z is a point y of XV

• Letters of A may only appear in the third coordinate at the lexico-
graphically least sites within intersections of ribbons from x and y. If
we define t ∈ AZ2

by taking t(i, j) to be the letter of A in the third
layer at z(fx,y(i, j)), then t ∈ O(x).

We claim now that this f has the desired properties. It is easily
checked that f(x) is shift-invariant, i.e. a union of orbits. Clearly, if
f(O(x)) and f(O(x′)) share a point z, then t defined as in the third
bullet point above must be in O(x) ∩O(x′), verifying (1).
An explicit description of a forbidden list inducing f(X) for a Z2-

subshift X would be needlessly long and complicated; instead we just
informally describe the restrictions. Firstly, a finite forbidden list can
be used to force the first and second coordinates of any point in f(X)
to be in XH and XV respectively. Then, since intersections of ribbons
are finite sets of adjacent or diagonally adjacent sites which cannot be
adjacent or diagonally adjacent to each other, a finite forbidden list
can force letters of A to occur on the third coordinate precisely at
lexicographically minimal sites within ribbon crossings. Finally, one
must only choose a forbidden list F which induces X and forbid all
finite patterns whose first and second coordinates form legal patterns
in XH and XV , but whose third coordinate contains a pattern from F
on the lexicographically least sites within intersections of ribbons from
the first two. Then f(X) is a subshift, and again it should be clear that
if X is an SFT, then F can be chosen finite, yielding a finite forbidden
list for f(X), implying that f(X) is an SFT and completing the proof
of (2).
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A
D

F
E

K
L

M

B
C

G
H

I

O P

PONM
LKJI
HGFE
DCBA

J

N

Figure 3. A point of f(X) and the pattern in L(X)
given by the letters of A at (lexicographically minimal
sites within) its ribbon intersections; × and ◦ here rep-
resent H and V respectively

It remains to prove (3). Choose any X satisfying (3a) and (3b),
and again we begin with notation: any point y ∈ f(X) is induced
by x ∈ X if y ∈ f(x), and by (1), x is uniquely determined up to
shifts. For finite patterns, the geometry of the ribbons makes a simi-
lar definition trickier. For any w ∈ LS(f(X)), choose y ∈ f(X) with
w = y(S), define a, b to be the first and second coordinates of y, define
T = f−1

a,b (S), and define v ∈ LT (X) by taking v(i, j) to be the third
coordinate of y(fa,b(i, j)) = w(fa,b(i, j)); we say that w is induced by
v. We begin with the following auxiliary claim.

Claim A2: f(X) satisfies (3a) and (3b).

Proof. Choose any v ∈ LS(f(X)), which is induced by v′ ∈ LT (X).
Since X satisfies (3a), there is a point x ∈ X with positive frequency
of occurrences of v′; say x(i + T ) = v′ for all i ∈ I a subset of Z2

with positive density. Define v′′ ∈ LS(XH) and v′′′ ∈ LS(XV ) to be
the restrictions of v to its first and second coordinates respectively.
By Claim A1 above, v′′ appears within a point x′′ ∈ XH homoclinic
to the point x0 of equispaced flat horizontal ribbons, and v′′′ appears
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within a point of x′′′ ∈ XV homoclinic to the point y0 of equispaced
flat vertical ribbons. Then the pair (v′′, v′′′) appears within a point of
XH×XV homoclinic to the doubly periodic point (x0, y0) of equispaced
horizontal and vertical ribbons. Finally, since XH × XV is an SFT,
this means that (v′′, v′′′) appears within some periodic point (y1, y2) ∈
XH ×XV , which then contains (v′′, v′′′) at a set of sites forming a coset
G of Z2 of finite index. Denote by H the set f−1

y1,y2
(G), which is also a

finite index coset of Z2. Since I has positive density, there exists t ∈ Z2

so that H∩(t+I) also has positive density. Construct a point z ∈ f(X)
by “superimposing” σtx in the third coordinate at (lexicographically
minimal sites within) intersections of ribbons in y. Then v appears
with positive frequency in z, proving (3a) for f(X).
Now, consider any two patterns v 6= w ∈ L[−n,n]2(f(X)). As above,

they are induced by v′ ∈ LT (X) and w′ ∈ LT ′(X). We may extend
v′ and w′ to patterns t′, u′ ∈ L[−n,n]2(X) which induce t, u ∈ L(f(X))
containing v, w respectively. Then, by assumption, there exist t′ =
w′

1, w
′
2, . . . , w

′
N = u′, all in L[−n,n]2(X), so that for every i, w′

i and
w′

i+1 coexist in a point of X. We may in fact assume that both occur
infinitely many times in the same point of X, since by (3a), any pattern
containing both occurs with positive frequency in some point of X.
In particular, w′

i and w
′
i+1 appear with arbitrarily large separation in

some point of X. Choose any patterns t = w1, w2, . . . , wN = u, all
in L(f(X)), where each wi is induced by w′

i. Each wi then has shape
containing [−n, n]2 since the letters of w′

i are “stretched out” to be
placed within intersections of ribbons. For each i, define w′′

i to be the
pattern given by the first two coordinates of wi. By Claim A1, for
i ∈ [1, N), for any large enough v ∈ (4Z)2, we may place w′′

i and w′′
i+1,

separated by v, in some point of XH × XV homoclinic to the doubly
periodic point (x0, y0).
We can then create a point of X containing w′

i and w
′
i+1 with large

enough separation that they may be superimposed over w′′
i and w′′

i+1

in such a point of XH ×XV to yield a point of f(X) containing wi and
wi+1. Though the patterns w′

i do not have the proper shape [−n, n]2,
each has shape containing [−n, n]2, and we can pass to subpatterns
with that shape (yielding v from w1 and w from wN in particular)
which still have the desired properties. We have then shown that f(X)
satisfies (3b).

�

Now, consider any surjective factor map φ : (f(X), σv) → (Y, Sv)
with |Y | > 1. Again, as was done in the proof of Theorem 1.4, we can
find patterns wi, wi+1 ∈ L[−n,n]2(f(X)) for which φ([wi]) and φ([wi+1])
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are disjoint closed sets, and wi and wi+1 coexist in some pattern u ∈
L(f(X)).
We fix single occurrences of wi and wi+1 within u, denote by t the

vector pointing from wi to wi+1 in u, and denote by k the ℓ1-norm
|t1|+ |t2| of t. Our goal is now to extend u to a larger pair of patterns
in L(f(X)) which contain wi and wi+1 at the same location. We begin
by defining a pair u1 and u′1 which contain occurrences of wi and wi+1

respectively, separated by a vector t1 with ℓ1-norm smaller than k.
First, by Claim A1, we can extend u to an entire point y1 ∈ f(X)

whose first two coordinates (i.e. “ribbon structure”) are homoclinic to
x0×y0, the point with equispaced horizontal and vertical ribbons. The
(lexicographically minimal sites within) ribbon crossings of y1 are filled
as in some point x ∈ X extending u.
Then, we perturb y1 to create a new point y′1 in a way controlled by t.

If the first coordinate of t is nonzero, then we force all vertical ribbons
which intersect the occurrence of u within y1 to meander a single unit
to move the occurrence of u within y1 either left or right depending on
whether the first coordinate of t is positive or negative, respectively.
The resulting point, which we call y′1, is still in f(X) since we changed
no horizontal ribbons, did not change the A letters at crossing points of
ribbons, and the horizontal separation between vertical ribbons could
only have been changed from 3 to 2 or 4, both legal in f(X). If it was
the second coordinate of v that was nonzero, then we force horizontal
ribbons to meander to move the occurrence of u within y1 either down
or up depending on whether the second coordinate of v is positive or
negative, respectively. (See Figure 4.)
Since we only changed finitely many ribbons of y1 at finitely many

locations to create y′1, y1 and y′1 are homoclinic. Clearly u is still a
subpattern of both y1 and y′1, and so we may restrict y1 and y′1 to
some finite box to create patterns u1 and u′1 which are equal on their
boundaries of thickness 5. By the movement of the copy of u within
u1 to create u′1, there exists a vector t1 with ℓ1 norm less than k and a
location i1 so that u1(i1 + S) = wi and u

′
1(i1 + t1 + S) = wi+1.

We now simply repeat this procedure finitely many times until ar-
riving at uk and u′k in L(f(X)) which agree on their boundaries of
thichness t and for which there exists ik with uk(ik + S) = wi and
u′k(ik + S) = wi+1. Then, since uk ∈ L(f(X)), by (3a) there is a point
y ∈ f(X) containing a positive frequency of occurrences of uk. Since uk
and u′k carry the same letters of A at (lexicographically minimal sites
within) ribbon intersections and have the same boundaries of thickness
5 (the type of XH ×XV ), the rules of f(X) should make it clear that
any subset of these occurrences of un in y can be replaced by u′n to
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u u

Figure 4. Changing y1 to y′1 when the first coordinate
of t is negative; again × and ◦ represent H and V re-
spectively

yield a collection of points of f(X). Then, as before, the image under
φ of this collection yields a collection of points of Y which indepen-
dently visit the disjoint closed sets φ([wi]) and φ([wi+1]) under Sv in
any predetermined way along a set of positive density, proving that
h(Y, Sv) > 0 and completing the proof of (3).

�

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For every α ∈ [0, 1], denote byBα the Z-subshift
consisting of all balanced sequences on {0, 1} with slope α. (Recall that
[0, 1] denotes the usual interval of real numbers, not the set {0, 1}.)
Then, define

B =
⊔

α∈[0,1]

Bα,

the Z-subshift consisting of all balanced sequences on {0, 1}. Then, by
(2) of Theorem 3.5, f(B) is a Z-subshift, and by (1) of Theorem 3.5,
it can be written as

f(B) =
⊔

α∈[0,1]

f(Bα).

Claim B1: (f(B), σ) does not have TCPE.

Proof. We will show that there is a surjective factor map from (f(B), σ)
to the nontrivial zero entropy system ([0, 1], id). The map π is defined
as follows: for every c ∈ f(B), π(c) is defined to be the unique α so that
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c ∈ f(Bα), i.e. the slope of any point b ∈ B inducing c. Since each
f(Bα) is shift-invariant, clearly π(σ(c)) = π(c) = id(π(c)) for every
c ∈ f(B). Also, π is clearly surjective. It remains only to show that π
is continuous.
Consider any sequence (cn) ∈ f(B) for which cn → c. Define αn =

π(cn) and α = π(c), so that cn ∈ f(Bαn
) and c ∈ f(Bα). It remains to

prove that αn → α. Since cn ∈ f(Bαn
), there exists bn ∈ Bαn

inducing
cn, and similarly there exists b ∈ Bα inducing c. Clearly, since cn → c,
it must be the case that bn → b as well.
By Corollary 2.15, the slope of any balanced sequence containing the

word b([1, k]) is trapped between #(b([1,k]),1)−1
k

and #(b([1,k]),1)+1
k

. Since
for every k, bn([1, k]) eventually agrees with b([1, k]), αn → α, complet-
ing the proof that B does not have TCPE.

�

Claim B2: (f(B), σ) has ZTCPE.

Proof. Consider any surjective factor map ψ : (f(B), σ) → (Y, S) where
h(Y, S) = 0 and Y is a zero-dimensional topological space. We must
show that |Y | = 1. We first note that all Sturmian shifts are minimal
(see Chapter 2 of [5]) and so satisfy (3a) and (3b) in Theorem 3.5.
Therefore, for every irrational α, f(Bα) has TCPE by Theorem 3.5. For
every α, since ψ(f(Bα)) ⊂ Y , clearly (ψ(f(Bα)), S) has zero entropy as
well. Therefore, for every α /∈ Q, ψ(f(Bα)) consists of a single point,
call it g(α).
Now we consider the more complicated case of rational α. We first

define Bα,0 ⊂ Bα to be the orbit O(xα) of the lower characteristic
sequence for α defined in Section 2. Then Bα,0 is a single periodic orbit
and so satisfies (3a) and (3b) in Theorem 3.5, therefore f(Bα,0) has
TCPE, and as above, ψ(f(Bα,0)) consists of a single point, which we
again denote by g(α).
We have now defined g on all of [0, 1], and claim that it is continuous.

First, by Lemma 2.18, for any sequence αn ∈ [0, 1] converging to a
limit α from above, the corresponding lower characteristic sequences
xαn

∈ Bαn
converge to xα ∈ Bα,0. Then, we can define yαn

∈ f(Bαn
)

induced by xαn
and yα ∈ f(Bα) induced by xα so that yαn

→ yα;

just give them all the same pattern of 0 and non-0 symbols (say by
making all gaps of 0s have length 3). Continuity of ψ then means that
ψ(yαn

) = g(αn) approaches ψ(yα) = g(α), proving that g is continuous
from the right. A similar argument using upper characteristic sequences
proves that g is also continuous from the left, and therefore continuous.
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Now, choose any α ∈ Q and cα ∈ f(Bα). Then cα is induced by some
bα ∈ Bα, and by Lemma 2.20, bα is the limit of a sequence bαn

∈ Bαn

for some sequence of irrational αn converging to α. Then, we can define
cαn

∈ f(Bαn
) so that cαn

→ cα by using the same structure of 0 and
non-0 symbols as cα for all cαn

. Then by continuity, ψ(cαn
) = g(αn)

converges to ψ(cα), implying that ψ(cα) = g(α) by continuity of g.
We’ve then shown that ψ collapses every f(Bα) to a single point g(α)
for a continuous function g on [0, 1]. Then g([0, 1]) = Y must be
connected (as the continuous image of a connected set), and the only
connected subsets of Y are singletons. We have therefore shown that
g is constant, and so |Y | = 1. Since ψ was arbitrary, this shows that
(f(B), σ) has ZTCPE.

�

We’ve shown that (f(B), σ) has ZTCPE but not TCPE, completing
the proof of Theorem 1.1.

�

We are finally ready to present the proof of Theorem 1.5. It is
quite similar to that of Theorem 1.1, but requires a somewhat technical
description of a Z2-SFT which will play the role of B from the former
proof.

Proof of Theorem 1.5. We begin with the description of a Z2-SFT X
in which all rows of points in X have a property similar to being bal-
anced. The alphabet is A = {0, 1}3, and the rules are as follows:

• The first coordinate is constant in the vertical direction, i.e. for any
x ∈ X and (i, j) ∈ Z2, (x(i, j))(1) = (x(i, j + 1))(1).
• The second coordinate is constant along the line y = x, i.e. for any
x ∈ X and (i, j) ∈ Z2, (x(i, j))(2) = (x(i+ 1, j + 1))(2).
• The third coordinate is the difference between the running totals
of the first two coordinates, i.e. for any x ∈ X and (i, j) ∈ Z2,
(x(i, j))(3) = (x(i− 1, j))(3) + (x(i, j))(2)− (x(i, j))(1).

It should be clear thatX is an SFT. For any x ∈ X, define a(x), b(x) ∈
{0, 1}Z by (a(x))(n) = (x(n, 0))(1) and (b(x))(n) = (x(n, 0))(2). Note
that a(x) and b(x) completely determine the first and second coordi-
nates of x due to the constancy of the first and second coordinates in
their respective directions. Also note that given the first and second
coordinates in a row of a point of x, the third coordinate along that
row is determined up to an additive constant. For any row of a point of
x in which the first and second coordinates along a row are not equal
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sequences, the third coordinate contains a 0 and 1 and therefore is
completely forced by the first two coordinates (since no constant can
be added to keep the third coordinate using only 0 and 1). This means
that a(x) and b(x) uniquely determine x as long as a(x) and b(x) are
not shifts of each other. If a(x) = σn(b(x)) for some n, then the nth
row of x has first and second coordinates both equal to a(x), mean-
ing that the third coordinate may either be all 0s or all 1s along that
row. Similar facts are true even for finite patterns; in any rectangular
pattern, the first and second coordinates along a row force the third
unless the first and second coordinates are equal words along that row,
in which case it is locally allowed for the third coordinate to either be
all 0s or all 1s. We note that this does not necessarily mean that both
choices are globally admissible; it may be the case that a rectangular
pattern with equal first and second coordinates along a row can only
be extended in such a way that the first and second coordinates along
that row are eventually unequal, forcing the entire row.
Since a(x) and b(x) determine x up to some possible constant third

coordinates of rows, we wish to understand the structure of which pairs
a(x), b(x) may appear for x ∈ X, for which we need a definition.

Definition 3.6. Two sequences a, b ∈ {0, 1}Z are jointly balanced
if for every n and every pair of subwords w,w′ of a, b of length n, the
numbers of 1s in w and w′ differ by at most 1, i.e. |#(w, 1)−#(w′, 1)| ≤
1.

Claim C1: There exists x ∈ X with a(x) = a and b(x) = b if and only
if a and b are jointly balanced.

Proof. =⇒: Consider any x ∈ X and arbitrary n-letter subwords w =
(a(x))([i, i+ n− 1]) of a(x) and w′ = (b(x))([j, j + n− 1]) of b(x). The
(i−j)th row of x contains a(x) and σi−jb(x) as its first two coordinates,
and by the third rule defining X,

(x(i+ n− 1, i− j))(3)− (x(i− 1, i− j))(3) =

i+n−1
∑

k=i

(x(k, i− j))(2)− (x(k, i− j))(1) =

i+n−1
∑

k=i

(x(k, i− j))(2)−
i+n−1
∑

k=i

(x(k, i− j))(1) =

j+n−1
∑

ℓ=j

(b(x))(ℓ)−
i+n−1
∑

k=i

(a(x))(k) = #(w′, 1)−#(w, 1).
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Since x(i+ n− 1, i− j))(3) and (x(i− 1, i− j))(3) are either 0 or 1,
their difference is −1, 0, or 1, and so a(x) and b(x) are jointly balanced.

⇐=: Suppose that a and b are jointly balanced. Then, define x ∈
({0, 1}2 × {−1, 0, 1})Z

2

as follows. The first two coordinates are given
by (x(i, j))(1) = a(i) and (x(i, j))(2) = b(j − i) for every (i, j) ∈ Z2.
The third coordinate is defined piecewise. Firstly, (x(0, j))(3) = 0 for
all j ∈ Z. For i > 0, (x(i, j))(3) = #(b([1− j, i− j]), 1)−#(a([1, i]), 1).
Finally, for i < 0, (x(i, j))(3) = −#(b([i−j,−j]), 1)+#(a([i, 0]), 1). By
joint balancedness, the third coordinate clearly takes only the values
−1, 0, and −1. The reader may check that x satisfies the rules (the
three from the bulleted list given at the beginning of the proof) defining
X, however it may not be a point of X since its third coordinate may
take the value−1. However, it is not possible for the third coordinate of
any row of x to contain 1 and −1; if (x(i, j))(3) = 1, (x(i′, j))(3) = −1,
and i > i′, then (x(i, j))(3) − (x(i′, j))(3) = #(b([i′ − j, i − j]), 1) −
#(a([i′, i]), 1) = 2, a contradiction to joint balancedness of a and b.
(The case i < i′ is trivially similar.) Therefore, for any j at which the
jth row of x contains −1, that row can only contain −1 and 0, and
so we simply add 1 to the third coordinate of that entire row. This
new point, call it x′ ∈ ({0, 1}3)Z

2

, is a point of X with a(x′) = a and
b(x′) = b, completing the proof.

�

We will now classify the jointly balanced pairs (a, b).

Claim C2: All jointly balanced pairs (a, b) fall into at least one of the
following four categories:

(1) α /∈ Q and a and b are 1-balanced sequences with slope α
(2) α ∈ Q and a and b are 1-balanced sequences with slope α
(3) a is 2-balanced, jointly balanced with xα, and b ∈ O(xα)
(4) b is 2-balanced, jointly balanced with xα, and a ∈ O(xα).

Proof. Firstly, if (a, b) are jointly balanced, then clearly both a and
b are 2-balanced; any two n-letter subwords of a have number of 1s
within 1 of some n-letter subword of b, and so their numbers of 1s may
differ by at most 2. This implies by Lemma 2.14 that a and b both
have some uniform frequency of 1s (or slope), which must be the same
since a, b are jointly balanced.
Next, suppose that a is 2-balanced, but not 1-balanced. Then, there

exist n and two n-letter subwords v, v′ of a with #(v, 1) and #(v′, 1)
differing by 2, say that they are k and k + 2 respectively. But then,
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since a and b are jointly balanced, every n-letter subword of b must
have exactly k + 1 1s. This implies that b is periodic with period n
(this is not necessarily the least period of b though). We claim that b
must be 1-balanced as well.
Assume for a contradiction that a, b are both 2-balanced but not

1-balanced. Then there are m,n (which we take to be minimal), two
n-letter subwords v, v′ of a with |#(v, 1) − #(v′, 1)| = 2, and two m-
letter subwords w,w′ of b with with |#(w, 1)−#(w′, 1)| = 2. Without
loss of generality, assume n ≤ m. As above, every n-letter subword of
b has the same number of 1s, and so we can remove the first n letters
of w,w′ to yield shorter words with the same property. However, this
contradicts minimality of m. Therefore, our assumption was wrong,
and if a is 2-balanced but not 1-balanced, then b is 1-balanced. Then,
by Lemma 2.19, since b is periodic, it must be in the orbit O(xα) of
the lower characteristic sequence xα.
We conclude several things from this: if (a, b) is jointly balanced and

a is not 1-balanced, then a is 2-balanced, b is periodic, both have the
same rational slope α, and b ∈ O(xα). Similarly, if b is not 1-balanced,
then b is 2-balanced, a is periodic, both have the same rational slope
α, and a ∈ O(xα). These correspond to categories (3) and (4).
This means that if a and b have irrational slope α, then they must

both be 1-balanced; this corresponds to category (1). The only remain-
ing case is that a and b have rational slope α and both are 1-balanced;
this corresponds to category (2) and completes the proof.

�

We briefly note that by Corollary 2.16, any two 1-balanced sequences
with irrational slope α are jointly balanced, and so all (a, b) in category
(1) are jointly balanced. By description, all (a, b) in categories (3)
and (4) are clearly jointly balanced, but (a, b) in category (2) need
not be jointly balanced; for instance, a = . . . 0101001010 . . . and b =
. . . 1010110101 . . . are both 1-balanced sequences with slope α = 1

2
, but

a contains 00 and b contains 11, and so a and b are not jointly balanced.
For any α ∈ [0, 1], we writeXα = {x ∈ X : a(x), b(x) have slope α};

clearly X =
⊔

Xα and so by (1) of Theorem 3.5, f(X) =
⊔

f(Xα). By
(2) of Theorem 3.5, f(X) is a Z2-SFT. We will show that f(X) has
ZTCPE but not TCPE, for which we need to prove several properties
about the subshifts f(Xα).

Claim C3: For every α /∈ Q, f(Xα) has TCPE.

Proof. Choose any α /∈ Q. We will show that Xα satisfies (3a) and (3b)
from Theorem 3.5, which will imply that f(Xα) has TCPE. Choose any
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pattern w ∈ L[−n,n]2(Xα), and define x ∈ Xα for which x([−n, n]2) = w.
Then a(x) and b(x) are balanced sequences with irrational slope α, and
therefore Sturmian with slope α. We break into two cases.
If a(x) 6= σib(x) for all i ∈ [−n, n], then there exists N so that

all rows of w′ := x([−N,N ] × [−n, n]) have unequal first and second
coordinates, and therefore the first two coordinates of w′ force the
third. Then, define the words u = (a(x))([−N − n,N + n]) and v =
(b(x))([−N − n,N + n]); by the rules defining X, for y ∈ X, if the
first two coordinates of y([−N − n,N + n] × {0}) are u and v, then
the first two coordinates of y([−N,N ] × [−n, n]) match those of w′ =
x([−N,N ]× [−n, n]), and since the first and second coordinates of w′

force the third, y([−N,N ] × [−n, n]) = w′ and y([−n, n]2) = w. We
say that u and v force an occurrence of w in any point of X.
If a(x) = σib(x) for some i ∈ [−n, n], then we wish to slightly change

one of a(x) and b(x) to another Sturmian sequence with the same
slope α so that they are no longer shifts of one another, but without
changing x([−n, n])2. Since a(x) and b(x) are not periodic, for all j 6= i,
a(x) 6= σjb(x). Then we can extend w to w′ := x([−N,N ] × [−n, n])
for which every row has unequal first and second coordinates, except
for the ith row, which must have equal first and second coordinates
since a(x) = σib(x). Recall that a(x) = σib(x) is Sturmian, and so
can be written as a version of a lower/upper characteristic sequences
with a constant added inside the floor/ceiling function. Choose another
Sturmian sequence a′ with slope α which is not equal to a(x), but with
a′([−N−n,N+n]) = a([−N−n,N+n]); this can be accomplished by
adding a tiny constant inside the floor/ceiling function defining a(x).
Then define k to be the minimal positive integer for which (a(x))(k) 6=
a′(k), and j to be the maximal such negative integer. Then it cannot be
the case that (a(x))(j) = (a(x))(k) = 0; if so, then a′(j) = a′(k) = 1,
and |#((a(x))([j, k]), 1) − #(a′([j, k]), 1)| = 2, contradicting the fact
that any two Sturmian sequences with slope α are jointly balanced.
Similarly, (a(x))(j) = (a(x))(k) = 1 is impossible. Therefore, either
(a(x))(j) = 0, (a(x))(k) = 1, a′(j) = 1, and a′(k) = 0, or all of these
values are the opposite. We assume the former, as the proof of the
latter is almost exactly the same. We use Claim C1 to define x′ ∈ Xα

with a(x′) = a′ and b(x′) = b(x). Then since a′([−N − n,N + n]) =
a([−N − n,N + n]), the first two coordinates of x′([−N,N ]× [−n, n])
and w′ = x([−N,N ] × [−n, n]) are equal, and therefore they have the
same third coordinates as well, except possibly in the ith row. In
the ith row of x′, the first and second coordinates are a(x′) = a′ and
σib(x′) = σib(x) = a(x) respectively. Then x′(i, j) has first and second
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coordinates a′(j) = 1 and (a(x))(j) = 0 respectively, implying that
the third coordinate of x′(i, j) is 0. Since a′ and a(x) agree on (j, k),
the third coordinate of the ith row of x′ is 0 on that entire interval,
including [−N,N ]. If the third coordinate of w′ is 0 on the entire ith
row, then we have constructed x′ with x′([−N,N ]× [n, n]) = w′, and so
x′([−n, n]2) = w. If the third coordinate of w′ was instead 1 on the ith
row, then the reader may check that if we define x′ instead by a(x′) =
a(x) and b(x′) = σ−ia′, then x′ would have third coordinate 1 on the
ith row and again x′([−n, n]2) = w. In either case, x′([−n, n]2) = w
and a(x′) 6= σib(x′) for all i ∈ [−n, n], and so the argument of the
last paragraph yields a finite pair of words u and v which force an
occurrence of w in any point of X.
Now, since Sturmian subshifts satisfy (3a) from Theorem 3.5, there

exist points au and bv which contain occurrences of u and v respectively,
beginning at sets of indices A,B with positive density in Z (in fact every
point has this property). By Claim C1, define x′′ with a(x′′) = au and
b(x′′) = bv. Then, for every pair (i, j) with i ∈ A and i+ j ∈ B, x′′(i, j)
begins occurrences of u and v on its first two coordinates, yielding an
occurrence of w. The set of such (i, j) has positive density in Z2 since
A,B had positive density in Z, and so we have proved that Xα satisfies
(3a) from the hypotheses of Theorem 3.5.
Now, consider any two patterns w,w′ ∈ L[−n,n]2(Xα). As above, we

can find words u, v, u′, v′ on {0, 1}2 so that a location containing u, v on
its first two coordinates forces an occurrence of w, and u′, v′ similarly
force w′. Since Sturmian subshifts are minimal, there exists Sturmian a
with slope α containing both u and u′; say a(i) begins an occurrence of
u and a(j) begins an occurrence of u′. Similarly, there exists Sturmian
b with slope α containing both v and v′; say b(k) begins an occurrence
of v and b(ℓ) begins an occurrence of v′. By Claim C1, we may define
x ∈ Xα with a(x) = a and b(x) = b. Then, x(i, i−k) begins occurrences
of u and v in the first two coordinates (forcing an occurrence of w), and
x(j, j − ℓ) begins occurrences of u′ and v′ in the first two coordinates
(forcing an occurrence of w′). Therefore, x contains both w and w′,
verifying (3b) from the hypotheses of Theorem 3.5. We then know that
f(Xα) has TCPE.

�

We now move to the more difficult case of rational α. By Claim C2,
we know that Xα can be written as the union of three subshifts, defined
as follows:
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• Xα,1 consists of x ∈ Xα for which a(x) and b(x) are both 1-balanced
with slope α
• Xα,2 consists of x ∈ Xα for which a(x) is 2-balanced and jointly
balanced with xα, and b(x) ∈ O(xα)
• Xα,3 consists of x ∈ Xα for which b(x) is 2-balanced and jointly bal-
anced with xα, and a(x) ∈ O(xα).

We also define a useful subshift of Xα,1:

• Xα,0 ⊂ Xα,1 consists of x ∈ Xα for which a(x), b(x) ∈ O(xα).

Every point x ∈ Xα,0 has a strange property: since a(x) and b(x) are
in the same periodic orbit, there are infinitely many rows for which
the first and second coordinates are the same, and so in each of those
rows the third coordinate can be chosen to be all 0s or all 1s, each
independently of every other such row. This in fact means that many
points in Xα,0 are in fact not limits of points of Xαn

for irrational αn, in
contrast to the proof of Theorem 1.1. We instead use the following fact.

Claim C4: For every α ∈ Q, f(Xα,0) has TCPE.

Proof. Choose any α ∈ Q, and any pattern w in L[−n,n]2(Xα,0). For
each row, we extend w on the left and right to make the first and sec-
ond coordinates different if possible, arriving at a new pattern w′ ∈
L[−N,N ]×[−n,n](Xα0

) with the following property: for each row where
the first and second coordinates of w′ match, any point x ∈ Xα,0 with
x([−N,N ]×[−n, n]) = w′ must have equal first and second coordinates
in that entire row. Define by w′′ the pattern given by the first two coor-
dinates of w′. Choose an arbitrary point x ∈ Xα,0; w

′′ clearly appears
with positive frequency (in fact along a subgroup of finite index of Z2)
in x since the first and second coordinates of x come from the single pe-
riodic orbit O(xα). At each occurrence of w′′ in x, the third coordinate
is forced to match that of w′ except possibly in some rows where the
first and second coordinates are equal. Recall though that this forces
that entire row of x to have equal first and second coordinates, and so
the third coordinates of any such rows in x can be judiciously changed
to create a point x′ ∈ Xα,0 in which w′ itself (and therefore w as well)
appears with positive frequency, proving (3a) from Theorem 3.5.
Now choose any v, w ∈ L[−n,n]2(Xα,0). As above, v and w can be

extended to v′, w′ ∈ L[−N,N ]×[−n,n](Xα,0) such that any rows with equal
first and second coordinates within v′ (or w′) force equal first and sec-
ond coordinates throughout the corresponding entire biinfinite row of
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any point of Xα,0 containing v
′ (or w′). Then, if we denote by v′′ and w′′

the patterns given by the first two coordinates of v′ and w′ respectively,
and choose any x ∈ Xα,0, then again v′′ and w′′ appear with positive
frequency in x. Therefore, it’s possible to choose occurrences of v′′ and
w′′ within x which share no row. Then as above, for any rows in which
v′′ and w′′ have equal first and second coordinates, the corresponding
rows of x have equal first and second coordinates. The third coordinate
on those rows can then be changed (if necessary) to create a new point
x′ in which v′ and w′ (and therefore v and w) both appear, verifying
(3b) and implying that f(Xα,0) has TCPE via Theorem 3.5.

�

Now, similarly to the proof of Theorem 1.1, we wish to deal with
points of f(Xα,1) \ f(Xα,0) by representing them as limits of points
from the simpler irrational case.

Claim C5: Every c ∈ f(Xα,1) \ f(Xα,0) can be written as the limit of
a sequence cn ∈ f(Xαn

) for some sequence of irrational αn converging
to α.

Proof. Choose any c ∈ f(Xα,1) \ f(Xα,0), which is induced by some
x ∈ Xα,1 \ Xα,0. We will show that x can be written as a limit of
xn ∈ Xαn

as claimed; then clearly we can create cn ∈ f(Xαn
) converging

to c by simply copying the “ribbon structure” of c.
Since x ∈ Xα,1 \ Xα,0, at least one of a(x) and b(x) is not periodic

(though in fact both must be eventually periodic). We break into two
cases depending on whether or not a(x) and b(x) are shifts of each other.

Case 1. Suppose that a(x) and b(x) are not shifts of each other.
Then for every n, there exists N so that all rows of x([−N,N ]×[−n, n])
have unequal first and second coordinates, and thereby the third co-
ordinate of x([−N,N ] × [−n, n]) is forced by the first two coordi-
nates on that pattern. Write un := (a(x))([−N − n,N + n]) and
vn := (b(x))([−N − n,N + n]). Since the first and second coordi-
nates of all rows of x are balanced sequences, un and vn are balanced
words and so by Lemma 2.20 there exist Sturmian sequences an and bn
for which an([−N − n,N + n]) = un and bn([−N − n,N + n]) = vn.
We in fact wish to choose an and bn with the same slope, which re-

quires a more detailed examination of the proof of Lemma 2.20 from [5].
In that proof, it is shown that in fact a balanced word w is a subword
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of any Sturmian sequence with irrational slope strictly between

α′(w) := max
v

(

#(v, 1)− 1

|v|

)

and α′′(w) := min
v

(

#(v, 1) + 1

|v|

)

,

where v ranges over all subwords of w. We then need to show that
(α′(un), α

′′(un)) ∩ (α′(vn), α
′′(vn)) 6= ∅. First, note that since un and

vn are subwords of balanced sequences with slope α, by Corollary 2.15
α′(un), α

′(vn) ≤ α ≤ α′′(un), α
′′(vn). The only case in which we are not

done is if either α′(un) = α = α′′(vn) or α′(vn) = α = α′′(un). For a
contradiction, we assume the former; the other case is trivially similar.
Since α′(un) = α, un has a subword s with #(s, 1) = |s|α+1. If we write
α = i

j
in lowest terms, then |s| must be a multiple of j since #(s, 1)

is an integer. But then we may partition s into j-letter subwords, and
one of them, call it s′, must have #(s′, 1) = i + 1. However, a similar
argument shows that since α′′(vn) = α, vn contains a j-letter subword
t′ with #(t′, 1) = i−1, which violates the fact that un and vn are jointly
balanced. Therefore, (α′(un), α

′′(un))∩ (α′(vn), α
′′(vn)) 6= ∅, and so we

may choose an and bn to have the same irrational slope αn.
Then an and bn are jointly balanced, so by Claim C1 we may define

xn ∈ Xαn
with a(xn) = an and b(xn) = bn. Then xn([−N,N ]× [−n, n])

has first two coordinates agreeing with those of x([−N,N ] × [−n, n]),
and we argued above that their third coordinates must agree as well,
meaning that xn([−N,N ]×[−n, n]) = x([−N,N ]×[−n, n]). Therefore,
x is the limit of the sequence xn ∈ Xαn

for a sequence of irrational αn

converging to α.

Case 2. Suppose that a(x) and b(x) are shifts of each other, say
a(x) = σkb(x). Then both a(x) and b(x) are not periodic (since x /∈
Xα,0), and so for m 6= k, a(x) 6= σmb(x). Therefore, for every n > |k|,
we can choose N so that all rows of x([−N,N ] × [−n, n]) except the
kth have unequal first and second coordinates, and thereby the third
coordinate of x([−n, n]× [−N,N ]) is forced by the first two coordinates
on each row except the kth. Then, again by Lemma 2.20, there exists
a Sturmian sequence bn, with irrational slope αn, for which bn([−N −
n,N+n]) = (b(x))([−N−n,N+n]). By Claim C1, we define xn ∈ Xαn

with a(xn) = σkbn and b(xn) = bn. Then xn([−N,N ] × [−n, n])
has first two coordinates agreeing with those of x([−N,N ] × [−n, n]),
and by the above argument, the third coordinates are forced to agree
as well, except possibly on the kth row. However, the kth row of
xn has equal first and second coordinates, and so the third coordi-
nate can be chosen to be either all 0s or all 1s, whichever matches
the third coordinate of the kth row of x([−N,N ] × [−n, n]). Then
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xn([−N,N ] × [−n, n]) = x([−N,N ] × [−n, n]), and so again x is the
limit of the sequence xn ∈ Xαn

for a sequence of irrational αn converg-
ing to α.

Then, the sequence xn induces a sequence cn ∈ f(Xαn
) with the

same “ribbon structure” as that of c, and clearly cn → c, completing
the proof.

�

Finally we must treat the subshifts Xα,2 and Xα,3. We first treat the
special cases α = 0 and α = 1.

Claim C6: For α ∈ {0, 1}, Xα,2 ∪Xα,3 ⊆ Xα,1.

Proof. We treat only α = 0, as α = 1 is trivially similar. Note that
xα = 0∞ = . . . 000 . . ., and the only sequences jointly balanced with
xα are xα itself and the orbit of 0∞10∞ = . . . 0001000 . . .. All of these
sequences are, however, also 1-balanced. Therefore, X0,2∪X0,3 ⊆ X0,1,
and similarly X1,2 ∪X1,3 ⊆ X1,1.

�

A key technique used in the proof of Theorem 1.1 was to show that
any point of Bα could be written as the limit of a sequence of points
from Bαn

for some irrational αn → α. However, the analogous fact
here is not true; the set of 1-balanced sequences is closed, so no point
in Xα,2 ∪ Xα,3 (where one of a(x) or b(x) is not 1-balanced) can be
written as the limit of a sequence from Xαn

for irrational αn (for which
both a(x) and b(x) are 1-balanced). Instead, we will prove the follow-
ing.

Claim C7: For α ∈ Q \ {0, 1}, f(Xα,2 ∪Xα,3) has TCPE.

Proof. We need only show that Xα,2∪Xα,3 satisfies (3a) and (3b) from
the hypotheses of Theorem 3.5. For the first part, consider any w ∈
L[−n,n]2(Xα,2). As in the proof of Claim C4, we may extend w to
w′ ∈ L[−N,N ]×[−n,n](Xα,2) with the following property: for each row
of w′ with equal first and second coordinates, the first and second
coordinates of the entire corresponding row are forced to agree for any
x ∈ Xα,2 with x([−N,N ]× [−n, n]) = w′. Choose such an x ∈ Xα,2. By
definition, b(x) ∈ O(xα) and a(x) is jointly balanced with xα. Define
u = (a(x))([−N − n,N + n]) and v = (b(x))([−N − n,N + n]); by the
rules defining X, any x′ ∈ Xα,2 with (a(x′))([−N − n,N + n]) = u and
(b(x′))([−N − n,N + n]) = v must have first and second coordinates
on [−N,N ] × [−n, n] matching those of w′. We now wish to show
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that there exists x′ ∈ Xα,2 for which the pair a(x′), b(x′) sees the pair
u, v with positive frequency. We begin by proving that we can find a
periodic sequence a which is jointly balanced with xα and for which
a(−N − n,N + n) = u. Recall that u is contained in a(x), which is
jointly balanced with xα. Let’s write α = i

j
in lowest terms; then by

definition, xα is periodic with period j and every j-letter subword of
xα contains exactly i 1s.
We break into two cases. First, assume that there exists some sub-

word t of a(x) which contains u, has length mj, and contains exactly
mi 1s. We then claim that t∞ is jointly balanced with xα. To see

this, consider any subword y of t∞; clearly y can be written as stkp for
some p a prefix of t and s a suffix of t. If |p| + |s| ≤ |t|, then t can be
written as szp, and then #(y, 1) = #(stkp, 1) = (k + 1)mi − #(z, 1).
But

∣

∣#(z, 1) − |z|α
∣

∣ ≤ 1 by Corollary 2.15, so #(y, 1) is within 1 of
(k + 1)mi− zα = ((k + 1)mj − |z|)α = |y|α. If instead |p| + |s| > |t|,
then we can write s = zs′ and t = ps′. Then #(y, 1) = #(stkp, 1) =
(k + 1)mi + #(z, 1). Again

∣

∣#(z, 1) − |z|α
∣

∣ ≤ 1, so #(y, 1) is within
1 of (k + 1)mi + zα = ((k + 1)mj + |z|)α = |y|α. Either way, we
have shown that every subword of t∞ has number of 1s within 1 of α
times its length, and so a := t∞ is jointly balanced with xα. Also, since
a(−N − n,N + n) was unchanged from a(x), it is equal to u.
The remaining case is that every subword t of a(x) with length a

multiple of j (say mj) which contains u does not have mi 1s. By the
fact that a(x) is jointly balanced with xα, the only possibilities are
that such subwords have either mi− 1 or mi + 1 1s. If both numbers
occurred, then there would have to be an intermediate subword with
length mj containing exactly mi 1s, a contradiction. Therefore, either
#(t, 1) = mi − 1 for every mj-letter subword t of a(x) containing u,
or #(t, 1) = mi + 1 for all such t; we treat only the former case, as
the latter is trivially similar. Consider an mj-letter subword t of a(x)
ending with a 0 (such a word must exist since α 6= 1). Then t is jointly
balanced with xα, and we claim that if we change the final letter of
t to a 1, yielding a new word t′, then t′ is jointly balanced with xα
as well. To see this, we need only show that every subword of t′ has
number of 1s within 1 of α times its length. Since we changed only
the last letter of t, it suffices to show this for suffixes of t′. For this
purpose, choose any suffix s′ of t′, and denote by s the suffix of t of
the same length. Take y to be any subword of a(x) ending with t with
length a multiple of j, say mj. Then by assumption, #(y, 1) = mi− 1.
We write y = zs, and by Corollary 2.15, #(z, 1) ≥ |z|α − 1. So,
#(s, 1) ≤ (mi − 1) − (|z|α − 1) = (mj − |z|)α = |s|α. Then, again
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using Corollary 2.15, #(s, 1) ∈ [|s|α− 1, |s|α], implying that #(s′, 1) ∈
[|s′|α, |s′|α + 1], since it is exactly one greater. But then we’ve shown
that t′ is jointly balanced with xα, and it is a word with lengthmj which
contains u and has exactly mi 1s, and so by the previous paragraph,
a := (t′)∞ is jointly balanced with xα and has a(−N − n,N + n) = u.
In both cases, we have found a which is periodic, jointly balanced

with xα, with a(−N − n,N + n) = u. By Claim C1, define x′ ∈
Xα,2 with a(x′) = a and b(x′) = b(x). Then b(x′) is periodic and
(b(x′)([−N − n,N + n]) = v, meaning that the pair u, v appears along
a(x′), b(x′) periodically with period the product of those of a(x′), b(x′).
Since b(x′) is periodic with period j and the first coordinate of x′ is
constant vertically, every jth row of x′ in fact also contains u, v in its
first two coordinates with positive frequency. As explained above, each
occurrence of u, v forces a pattern with shape [−N,N ]× [−n, n] which
has the same first two coordinates as w′, and for all rows where those
coordinates are unequal, the third coordinate is forced and must match
that of w′ as well. If any rows have equal first and second coordinates,
then as argued above, the entire associated biinfinite rows of x′ must
have equal first and second coordinates as well, and then the third co-
ordinate can be changed (if necessary) in each row to match that of
w′ in the relevant row. This yields a point x′′ ∈ X which contains a
positive frequency of occurrences of w′, and therefore w. The proof for
patterns in L(Xα,3) is trivially similar, and so we have shown (3a) from
Theorem 3.5 for Xα,2 ∪Xα,3.

Now we must prove (3b). Again, choose any w ∈ L[−n,n]2(Xα,2),
extend to w′ ∈ L[−N,N ]×[−n,n](Xα,2) as above, choose x ∈ Xα,2 con-
taining w′, and define u and v subwords of a(x) and b(x) with the
same properties as above. Consider the sequence a(x). It must con-
tain a subword of length j with exactly i 1s somewhere to the right
of u; if not, then as above, every such word would have to have ex-
actly i − 1 1s or every such word would have exactly i + 1 1s, each of
which contradicts the fact that a(x) has slope α = i

j
. Similar reason-

ing shows that a(x) also contains a subword of length j with exactly
i 1s somewhere to the left of u. We then can write the subword of
a(x) between these two j-letter words (inclusive) as ptuvq, where p
and q are length j and #(p, 1) = #(q, 1) = i. Since ptuvq was a
subword of a(x), it is jointly balanced with xα. We now claim that
a := p∞tuvq∞ is also jointly balanced with xα. To see this, choose any

subword s of a. We need to show that
∣

∣#(s, 1) − |s|α
∣

∣ ≤ 1. We can

clearly write s as s = pkzqℓ for some k, ℓ ≥ 0, where z is a subword
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of ptuvq. Then, by Corollary 2.15, since ptuvq is jointly balanced with
xα,

∣

∣#(z, 1)−|z|α
∣

∣ ≤ 1. Then #(s, 1) = ik+ iℓ+#(z, 1), and therefore
within 1 of ik+ iℓ+ |z|α = (jk+jℓ+ |z|)α = |s|α. We have then shown
that a = p∞tuvq∞ is jointly balanced with xα. We note that since a is
jointly balanced with xα, the biinfinite sequences p∞ and q∞ must be
as well. We then claim that these sequences are in fact (1-)balanced.
For any length m which is not a multiple of j, Lemma 2.16 implies
that every m-letter subword of p∞ or q∞ has either ⌊mα⌋ or ⌈mα⌉ 1s.
For any m a multiple of j, since p∞ is periodic with period j, every
m-letter subword of p∞ or q∞ has the same number of 1s (namely mα).
Therefore, p∞ and q∞ are in fact balanced, and by Lemma 2.19, must
be in O(xα) themselves.
By Claim C1, define x′ ∈ Xα,2 with a(x′) = a and b(x′) = b(x).

Clearly (a(x′))([−N −n,N +n]) is unchanged from a(x) and so equals
u, and (b(x′))([−N−n,N+n]) = v. As argued before, these occurrences
of u, v force the first two coordinates of x′([−N,N ]× [−n, n]) to match
those of w′, and the third coordinate on any rows of x′ with equal first
and second coordinates can be changed to yield x′′ containing w′ (and
thereby w). Since a(x′′) and b(x′′) both terminate with a shift of xα,
due to the periodicity of the first and second coordinates of x′′, there
must be a subpattern of x′′ of shape [−n, n]2, call it w′′, whose first
and second coordinates on every row are just subwords of xα. Call
the set of such patterns Sn. We have then shown that any pattern in
L[−n,n]2(Xα,2) coexists in a point of Xα,2 with a pattern from the set Sn,
and similarly one can prove that any pattern in L[−n,n]2(Xα,3) coexists
in a point of Xα,3 with a pattern from Sn.
Finally, we claim that any two patterns s, t ∈ Sn coexist in some

point of Xα,0 ⊂ Xα,2∪Xα,3. We may without loss of generality assume
that n > j. Define s′ and t′ to be the patterns given by the first two
coordinates of s and t respectively, and use Claim C1 to define x ∈ Xα,0

with a(x) = b(x) = xα. Then all possible “phase shifts” of the first
and second coordinates appear in infinitely many rows, and so s′ and t′

appear infinitely many times in x; in particular, there are occurrences
of them which share no row. Since n > j, in any rows where the
first and second coordinates of those occurrences of s′ or t′ agree, the
corresponding entire rows of x have equal first and second coordinates.
Then, in any such rows, the third coordinate of x can be changed (if
necessary) to yield x′ ∈ Xα,0 containing s and t.
We have then proved (3b) from Theorem 3.5 (with N = 3) for Xα,2∪

Xα,3; for any two patterns w,w′ in L[−n,n]2(Xα,2 ∪Xα,3), each coexists
with a pattern from Sn in some point of Xα,2 ∪Xα,3, and then the two
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patterns from Sn coexist in some point of Xα,0 ⊂ Xα,2 ∪Xα,3. Finally,
we apply Theorem 3.5 to see that f(Xα,2 ∪Xα,3) has TCPE.

�

We are finally prepared to prove that (f(X), σv) has ZTCPE but not
TCPE.

Claim C8: (f(X), σv) does not have TCPE.

Proof. As in the corresponding proof from Theorem 1.1, we define a
surjective factor map from (f(X), σv) to the nontrivial zero entropy
system ([0, 1], id). The map π is defined as follows: for every c ∈ f(X),
π(c) is defined to be the unique α so that c ∈ f(Xα). The arguments
that π is shift-invariant and surjective are the same as before. It re-
mains only to show that π is continuous, but this is simple; if cn ∈ f(X)
approaches c, then cn is induced by bn approaching b, and in partic-
ular a(bn) approaches a(b). But then a(bn) and a(b) are 2-balanced
sequences, and the proof that the slopes of a(bn) approach the slope
of a(b) is the same as in the one from Theorem 1.1. This implies that
π(cn) → π(c), and that π is continuous, meaning that (f(X), σv) does
not have TCPE.

�

Claim C9: (f(X), σv) has ZTCPE.

Proof. Again we proceed by showing that every factor map on (f(X), σv)
factors through π. Consider any surjective factor map ψ : (f(X), σ) →
(Y, Sv) where h(Y, Sv) = 0 and Y is a zero-dimensional topological
space. We must show that |Y | = 1.
For every α, ψ(f(Xα)) ⊂ Y , and so clearly h(ψ(f(Xα)), Sv) = 0.

Therefore, by Claim C3 above, for α /∈ Q, ψ(f(Xα)) is a single point,
which we denote by g(α).
Similarly, for any α ∈ Q, by Claim C4, ψ(f(Xα,0)) consists of a

single point, which we denote by g(α). For α ∈ Q \ {0, 1}, Claim
C7 implies that ψ(f(Xα,2) ∪ f(Xα,3)) consists of a single point. Since
f(Xα,0) ⊂ f(Xα,2) ∪ f(Xα,3), this point must also be g(α).
We have now defined g on all of [0, 1], and claim that it is continuous.

This is done similarly as in the corresponding proof from Theorem 1.1,
but the third coordinate causes some technical difficulties. Consider
any sequence αn which approaches a limit α from above. Then, by
Claim C1, define xn ∈ Xαn

by taking a(xn) and b(xn) to both be the
lower characteristic sequence xαn

; note that if αn ∈ Q, then in addition
xn ∈ Xαn,0. For any row where the third coordinate is not forced
by the first two (including the 0th row), label the third coordinate
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by all 1s if it is a nonnegatively indexed row, and by all 0s if it is a
negatively indexed row. From Lemma 2.18, the first two coordinates
of xn clearly approach a limit, and any point x with those first two
coordinates would have a(x) = b(x) = xα. It remains to show that the
third coordinates of xn actually converge. To see this, choose any row,
say the kth, and let’s examine what happens to the third coordinates
of xn along that row as n increases. If σkxα 6= xα, then there is a place
in the kth row where the first and second coordinates are unequal for
large enough n, meaning that the third coordinate is forced by the first
two for large n and therefore must approach a limit since the first two
do. If σkxα = xα, then kα ∈ Z and α ∈ Q. Since αn > α, if we denote
by in, jn the negative and positive indices at which xαn

and xα first

differ, then xαn
(in) = xαn

(jn) = 1 and xα(in) = xα(jn) = 0. Choose

n large enough that |in|, |jn| > k. If k > 0, then the first and second
coordinates of the kth row of xn agree from in+k+1 to jn−1, and at jn
the first coordinate has a 1 and the second has a 0. This forces the third
coordinate at jn−1 to be a 1, and since the first and second coordinates
agree from in+k+1 to jn−1, the third coordinate is 1 throughout that
range. As n → ∞, |in|, |jn| → ∞, and so the third coordinate on the
kth row approaches all 1s. Similarly, for k < 0, the third coordinate will
approach all 0s. Therefore, xn does in fact approach a limit x, where
all non-negatively indexed rows with nonforced third coordinate have
that coordinate labeled with all 1s, and all similar negatively indexed
rows have third coordinate all 0s. This point x is in Xα by definition,
and in Xα,0 if α ∈ Q. We may create yn ∈ f(Xαn

) induced by xn and
y ∈ f(Xα) (or f(Xα,0)) induced by x for which yn → y; just use the
same “ribbon structure” for all of the points. Then, by continuity of ψ,
ψ(yn) → ψ(y). However, ψ(yn) = g(αn) and ψ(y) = g(α), and so we’ve
shown that g(αn) → g(α), and therefore that g is continuous from the
right. A similar argument using upper characteristic sequences and
third coordinate 0 in the upper half-plane and 1 in the lower-half plane
shows that g is continuous from the left, and therefore continuous.
The only points of f(X) which have not yet been considered are those

in f(Xα,1)\f(Xα,0). (It may look as if we’ve ignored f(Xα,2)∪f(Xα,3)
for α ∈ {0, 1}, but by Claim C6 such points are already contained in
Xα,1.) By Claim C5 above, every point y ∈ f(Xα,1) \ f(Xα,0) can be
written as a limit from points of f(Xαn

) for some sequence of irrationals
αn → α. But then ψ(y) is the limit of g(αn), and by continuity of g,
this implies that ψ(y) = g(α). We have then shown that for every α,
ψ(f(Xα)) = g(α).
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Since g is continuous on [0, 1], g([0, 1]) = Y must be connected (as the
continuous image of a connected set), and the only connected subsets
of Y are singletons. We have therefore shown that g is constant, and
so |Y | = 1. Since ψ was arbitrary, (X, σv) has ZTCPE.

�

We’ve shown that the Z2-SFT (f(X), σv) has ZTCPE but not TCPE,
completing the proof of Theorem 1.5.

�

We end by briefly remarking on a comment made in the introduction;
by Theorems 1.3 and 1.4, for X as in Theorem 1.5, any two patterns
in L[−n,n]2(f(X)) must be chain exchangeable, but the maximum num-
ber of required exchanges between two such patterns must increase as
n → ∞. This can be seen informally without reference to TCPE or
ZTCPE as follows. As shown in the proof of Theorem 3.5, two pat-
terns v, w ∈ L[−n,n]2(f(X)) induced by v′, w′ ∈ L(X) are exchangeable
only if v′ and w′ appear in the same point of X. Such v′ and w′ are
essentially determined by pairs of jointly balanced words. A balanced
word of length n generally determines the slope of a balanced sequence
containing it within a tolerance which approaches 0 as n → ∞. So,
two pairs of jointly balanced words of length n may appear in the same
pair of jointly balanced sequences only if their frequencies of 1s are
close enough. Therefore, if v′, w′ have frequencies of 1s quite far apart,
then the number of exchanges required to get from v to w will increase
with n.
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