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Abstract. We give a brief exposition of some steps in Lepowsky–
Wilson’s celebrated Z-algebraic proof of the Rogers–Ramanujan iden-
tities. Then, we survey some of the most recent advances (taking place
roughly in the last decade) related to this technique. At the end, we pro-
vide a brief compendium of some other vertex-algebraic approaches
to Rogers–Ramanujan-type identities.

§1. Lepowsky and Wilson’s work [32] proving Rogers–Ramanujan iden-
tities using the representation theory of affine Lie algebras has given
rise to a lush patch in Ramanujan’s garden [16] that has over the years
blossomed into a myriad of vibrant flowers. In this survey, we will first
provide a very short exposition of Lepowsky–Wilson’s Z-algebras and
then we will summarize some of the related advances that have taken
place in the last decade. At the very end, we will give a brief (and thus
necessarily incomplete!) set of pointers to some other ways in which
Rogers–Ramanujan-type identities are tied to affine Lie algebras and ver-
tex operator algebras (henceforth, VOAs). The important developments
that happened immediately after Lepowsky–Wilson’s work are summa-
rized in Lepowsky’s survey article [29]. Readers interested to learn more
about Rogers–Ramanujan identities are referred to Sills’ book [40].

§2. We shall think of each of the Rogers–Ramanujan identities as an
equality of three objects – an infinite q-series product, a generating func-
tion of a special class of partitions satisfying certain “difference conditions”,
and a q-hypergeometric series. In detail:

(qi , q5−i ; q5)−1∞ =
∑︁
n≥0

Ri (n)qn =
∑︁
n≥0

qn
2+(i−1)n

(q)n
(1)
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where Ri (n) (for i = 1, 2) is the number of partitions of n where consec-
utive parts differ by at least 2 and the smallest part is at least i.

§3. In [30], Lepowsky and Milne successfully related the product sides in
(1) to principally specialized characters of level 3 standard (i.e., integrable
and highest-weight) modules for the affine Lie algebra A(1)

1 . Specifically,
they showed that principally specialized characters of such modules equal
(q; q2)−1∞ (qi , q5−i ; q5)−1∞ . Here, the extra factor (q; q2)−1∞ depends solely
on the affine Lie algebra A(1)

1 and is independent of the module; see §5
below. For a general affine Lie algebra 𝔤 and a standard module L, we will
refer to the principally specialized character with this relevant factor deleted
as the principal character of L. In this article, we shall mainly concentrate
on the principal characters.

§4. Calculation of such product sides for the principal characters can be
performed on a computer instantly, [9]. The hard part was and still is
finding new (or interpreting known, if any) sum-sides or the generating
functions analogous to the middle expressions of (1) using representation
theory.

§5. In the next few paragraphs, we give a gist of how Lepowsky and
Wilson arrived at the generating functions in the middle of (1) . Firstly,
they interpreted the factor (q; q2)−1∞ as the character of the Fock space for
the principal Heisenberg subalgebra of A(1)

1 (and similarly for other affine
Lie algebras 𝔤). The products in (1) are then the principally specialized
characters of the space of highest weight vectors – inside level 3 standard
modules of A(1)

1 – with respect to this principal Heisenberg subalgebra.
This space is often referred to as the vacuum space. For convenience,
let us stick with the i = 1 case of (1) , which arises by considering the
vacuum space for the A(1)

1 module L(Λ0 + 2Λ1) (or also L(2Λ1 +Λ0), but
we choose the former one for concreteness). Let us denote this vacuum
space by Ω. Just to reiterate then, the character of Ω is the i = 1 case of
the infinite product in (1) .

§6. Given an affine Lie algebra 𝔤 and a level ℓ ∈ ℤ>0, Lepowsky and
Wilson devised certain operators (called Z operators), belonging to a suit-
able completion of the universal enveloping algebra of 𝔤. These operators
centralize (hence the letter Z) the action of the principal Heisenberg on
the level ℓ standard modules, and therefore act on their vacuum spaces.
In the case of A(1)

1 , at any fixed level ℓ ∈ ℤ>0, we have one family of Z
operators: {Zi | i ∈ ℤ}.
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§7. Recall the vaccum space Ω ⊂ L(Λ0 + 2Λ1) from §5. Let v be the
highest weight vector of L(Λ0 + 2Λ1). We have that v ∈ Ω. From general
principles,

Ω = Span{Zi1 · · ·Zikv | i1 , i2 , · · · , ik ∈ ℤ}, (2)

and the idea is to cut this highly redundant spanning set down to a basis
that is indexed by partitions with the “difference at least 2 condition” as
in §2. This reduction involves several broad steps.

First one shows that

Ω = Span{Zi1 · · ·Zikv | i1 ≤ i2 ≤ · · · ≤ ik < 0}. (3)

This step involves “straightening” the Z monomials so that their modes
are in a weakly increasing order. Immediately, monomials involving
non-negative modes can be omitted since Ziv = 0 for i > 0 and Z0v
is proportional to v. Note an important aspect of (3) – the space Ω is
naturally spanned by negative modes of Z operators acting on v. For
instance, a partition such as 5 + 3 + 2 is represented by the monomial
Z−5Z−3Z−2v.

In the second step, the “defective” monomials involving terms of the
form · · ·Z jZ j · · · or · · ·Z j−1Z j · · · are iteratively replaced with “better”
monomials.

These reductions show that:

Ω = Span{Zi1 · · ·Zikv | i1 ≤ i2 ≤ · · · ≤ ik < 0,
i j − i j+1 ≤ −2 (1 ≤ j ≤ k − 1)}. (4)

Finally, one shows that the “difference at least 2” monomials in the
previous equation form a basis of Ω.

§8. In order to achieve these reductions, Lepowsky and Wilson discov-
ered certain “vertex algebraic” relations satisfied by the Z operators (see
(7) and (8) below). Typically, each of these relations involves infinitely
many monomials of Z operators. However, acting on any specific vector
w ∈ Ω, these relations truncate. Depending on how “deep” w is, these
truncated relations can be arbitrarily long.

§9. In the next few paragraphs, we give a flavour of what is involved in
the reduction carried out in §7. Define ai , bi ∈ ℂ by:

(1 − x)2/3(1 + x)−2/3 =
∑︁
i≥0

aixi = 1 −
4
3
x + 8

9
x2 + · · · , (5)

(1 + x)1/3(1 − x)−1/3 =
∑︁
i≥0

bixi = 1 +
2
3
x + 2

9
x2 + · · · . (6)
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Then, as operators on Ω, we have for all m, n ∈ ℤ:∑︁
i≥0

aiZm−iZn+i −
∑︁
i≥0

aiZn−iZm+i − 𝛼m,n = 0, (7)∑︁
i≥0

biZm−iZn+i +
∑︁
i≥0

biZn−iZm+i − 𝛽m,nZm+n − 𝛾m,n = 0, (8)

where 𝛼m,n , 𝛽m,n , 𝛾m,n ∈ ℂ are for now unimportant. Relations (7) (resp.
(8) ) are called the generalized commutation (resp. anti-commutation)
relations.

§10. Using (7) one may first straighten out-of-order monomials as re-
quired in the first step of §7. For example, to straighten Z−2Z−5, use
m = −2 and n = −5 in (7) :(
Z−2Z−5 −

4
3
Z−3Z−4 + · · ·

)
−
(
Z−5Z−2 −

4
3
Z−6Z−1 + · · ·

)
= 𝛼−2,−5 , (9)

and here, every term other than Z−2Z−5 is “better” than Z−2Z−5. We may
therefore rewrite Z−2Z−5 using the other monomials in this relation. As
expected, all of this can be formalized by introducing an order on the
monomials, see [32].

After this straightening, we need to rewrite monomials that involve an
offending Z jZ j or Z j−1Z j ( j < 0). For the first case, we simply use (8) with
n = m = j:

2Z jZ j +
∑︁
i≥1

2biZ j−iZ j+i − 𝛽 j , jZ2 j − 𝛾 j , j = 0 (10)

to rewrite Z jZ j. For Z j−1Z j however, use (8) and (7) (with m = j − 1,
n = j). After slightly rearranging the terms, we get:

Z jZ j−1 +
5
3
Z j−1Z j + · · · = 0, (11)

−Z jZ j−1 +
7
3
Z j−1Z j + · · · = 0. (12)

In each of these, Z jZ j−1 is in fact worse than Z j−1Z j , but thankfully, after
adding these relations, Z jZ j−1 disappears and Z j−1Z j is left with a non-zero
coefficient – this relation is used to rewrite Z j−1Z j.

This rewriting procedure has been rigorously established by Lepowsky
and Wilson, see [32].

§11. At this point, we have established that the Z monomials corre-
sponding to partitions with difference at least 2 among consecutive parts
(see (1) ) span Ω. So,

(q , q4; q5)−1∞ ≤
∑︁
n≥0

R1(n)qn , (13)
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where ≤ is to be understood coefficient-wise. It remains to show that
these monomials are indeed linearly independent, which is equivalent to
showing that ≥ holds in (13) . At the moment, we shall skip the discussion
of how this is achieved.

§12. In summary, each reduction step in §7 “spends” one vertex-algebraic
relation involving Z operators. For more complicated partition condi-
tions, we need a variety of relations and a strategy to utilize these relations
to achieve the desired spanning sets.

§13. Going above level 3 of A(1)
1 , Lepowsky and Wilson [33] also related

the odd level standard modules of A(1)
1 with Andrews–Gordon identities

(see [3]) and the even level modules with Andrews–Bressoud identities.
Meurman and Primc [34] devised a variant of their methods and proved
all of these higher-level assertions.

§14. In this setup, Kožić and Primc [26] have also provided an interpre-
tation of the hypergeometric sum-side of i = 2 case of (1) using quasi
particles. Here, quasi-particles correspond to considering (coefficients of)
powers of relevant vertex operators.

§15. For a general affine Lie algebra 𝔤, there are many families of Z
operators each corresponding to a node in the affine Dynkin diagram of 𝔤.
It thus becomes quite hard to find enough relations between the families
of these Z operators and then to use these relations to ultimately achieve
the desired reductions to “small” spanning sets that have a chance of being
bases.

§16. As an example, consider the case of the affine Lie algebra A(2)
5 . It

has 4 nodes in the Dynkin diagram and so we have 3 distinct families of Z-
operators. It is known that as products, the principal characters of certain
level 2 modules are the same as the products in the Göllnitz–Gordon
identities:

(q2i−1 , q4 , q9−2i ; q8)−1∞ =
∑︁
n≥0

Gi (n)qn (14)

where i = 1, 2 and Gi (n) is the number of partitions of n in which the
smallest part is at least 2i − 1, adjacent parts differ by at least 2, and
consecutive even numbers do not both appear as parts. In [22], we found
and used enough relations satisfied by these 3 families of Z operators to
exhibit spanning sets enumerated by these difference conditions.
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§17. Capparelli [12] was the first one to discover new identities using
this general framework. In his 1988 PhD thesis, Capparelli analyzed level
3 standard modules of A(2)

2 using the Meurman–Primc variant [34] of
the Lepowsky–Wilson methodology. By now, Capparelli’s identities have
become iconic in this area. One of his two identities states that:

(−q2 , −q3 , −q4 , −q6; q6)∞ =
∑︁
n≥0

C1(n)qn =
∑︁
i , j≥0

q2i
2+6i j+6 j2

(q)i (q3; q3) j
, (15)

where C1(n) is the number of partitions of n where 1 does not appear as
a part, the difference of two consecutive parts is at least 2 and is exactly 2
or 3 only if their sum is a multiple of 3. Capparelli stated his identities
as conjectures, and they were subsequently proved in a variety of ways;
see e.g. [2], [1], [44], [13]. The manifestly positive sum-side expression
in the right-hand side of (15) is surprisingly recent – it was discovered
independently in [25] and [27].

§18. It took 26 years for the next set of new identities to be discovered,
and this was done by Nandi in his PhD thesis in 2014 [36]. These
identities are immensely more involved than anything that has appeared
before them. Nandi analyzed the structure of level 4 standard modules
for A(2)

2 , and gave “small” spanning sets for these modules which he
conjectured to be linearly independent. This led to three new (at that
point conjectural) identities. A partition 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆 s > 0 satisfies
difference condition [d1 , d2 , · · · , ds−1] if 𝜆 i−𝜆 i+1 = di for all 1 ≤ i ≤ s−1.
Now, one of the three Nandi identities says:

(q2 , q3 , q4 , q10 , q11 , q12; q14)−1∞ =
∑︁
n≥0

N1(n)qn (16)

where N1(n) is the number of partitions of n into parts different from 1
such that there is no contiguous sub-partition satisfying the difference
conditions [1], [0, 0], [0, 2], [2, 0] or [0, 3], and such that there is no
sub-partition with an odd sum of parts satisfying the difference conditions
[3, 0], [0, 4], [4, 0] or [3, 2∗, 3, 0] (where 2∗ indicates zero or more
occurrences of 2).

§19. In a stunning achievement, Takigiku and Tsuchioka [43] proved
Nandi’s identities (including (16) ) combinatorially. Their proof is truly
remarkable and uses many novel ideas, most notably, a generalization of
Andrews’ notion of partition ideals [3] and the theory of automata. In [7]
we found and proved certain quadruple-sum representations of Nandi’s
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identities, in particular:

(q2 , q3 , q4 , q10 , q11 , q12; q14)−1∞ =
∑︁
n≥0

N1(n)qn

=
∑︁

i , j ,k ,ℓ≥0

q4i
2+12i j+8ik+4iℓ+12 j2+16 jk+8 jℓ+6k2+6kℓ+2ℓ2

(q2; q2)i (q2; q2) j (q)k (q)ℓ
. (17)

§20. The complexity of Lepowsky–Wilson’s method increases very
rapidly as we increase the rank of the Lie algebra 𝔤 or the level of the mod-
ules. Thus, in 2014, along with Russell, we decided to take a different path
to discover new identities potentially related to principal characters [24].
Russell wrote a computer program to automatically generate classes of
partitions satisfying various difference conditions. Then, their generating
functions were formed up to the order q30. Thereafter, Euler’s algorithm
[3] was used to see if these generating functions would factor into periodic
infinite products. This way, we discovered many new identities. Three of
the identities we found had products equal to the principal characters of
level 3 standard modules for D(3)

4 .

§21. We say that a partition 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆 s > 0 has difference at
least d at distance k if 𝜆 i − 𝜆 i+k ≥ d for all 1 ≤ i ≤ s − k. With this, one of
our three conjectural identities related to D(3)

4 at level 3 reads [24]:

(q , q3 , q6 , q8; q9)−1∞
?
=
∑︁
n≥0

I1(n)qn (18)

where I1(n) is the number of partitions of n with difference at least 3 at
distance 2 such that if two consecutive parts differ by at most 1, then their
sum is divisible by 3.

In [28], Kurşungöz discovered a new combinatorial technique and in
particular produced explicit sum-sides such as:

(q , q3 , q6 , q8; q9)−1∞
?
=
∑︁
n≥0

I1(n)qn =
∑︁
i , j≥0

qi
2+3i j+3 j2

(q)i (q3; q3) j
. (19)

Very recently, Tsuchioka [46] has successfully analyzed all level 3
standard modules of D(3)

4 and showed that the related Z monomials enu-
merated by the appropriate partitions do indeed span the vacuum spaces.
In particular, Tsuchioka’s result now establishes that the coefficient-wise
inequality ≤ holds in (18) (and similarly for the other two identities which
we haven’t described here). Proving the reverse inequality is equivalent
to proving the independence of Tsuchioka’s spanning set. Crucially, this
remains open.
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§22. In [46], Tsuchioka has also studied level 3 standard modules for
A(2)
4 experimentally, and connected these to Andrews–van Ekeren–Heluani’s

identities [5]. We note that the setting of [5], while vertex-algebraic, is
very different. One of the identities from [5] states:

(q2 , q3 , q4 , q5 , q11 , q12 , q13 , q14; q16)−1∞ =
∑︁
n≥0

AVH (n)qn

=
∑︁
i , j≥0

qi
2+3i j+4 j2 (1 − q j + qi+ j)

(q)i (q) j
, (20)

where AVH (n) is the number of partitions of n that do not end with a 1,
5 + 4 + 2 + 2, or 9 + 8 + 6 + 4 + 2 + 2, and such that there is no contiguous
sub-partition of the form 𝜇1 + k ≥ 𝜇2 + k ≥ · · · ≥ 𝜇p + k where k ≥ 0 and
(𝜇1 , 𝜇2 , · · · , 𝜇p) is a list belonging to:

{(1, 1, 1) , (2, 1, 1) , (2, 2, 1) , (3, 2, 1) , (3, 3, 1) , (5, 3, 3) ,
(4, 4, 1, 1) , (5, 4, 1, 1) , (5, 4, 2, 1) , (5, 5, 2, 1) ,
(6, 5, 3, 1, 1) , (6, 6, 3, 1, 1) , (7, 6, 4, 2, 1)}.

There are two more natural companion identities, see [5] and [46]. The
products in these identities are also the principal characters of level 5
standard A(2)

2 modules, however, it remains to be seen if these same
partition conditions underlie those modules.

§23. A priori, there is no guarantee that the wide net cast as in [24]
would capture any new or interesting identities. Jointly with Russell [25],
we thus decided to focus on the specific algebra A(2)

9 at level 2. The
corresponding products appeared to us to be new yet reasonably tame.
Experimentally, we were quickly able to conjecture partition-theoretic
sum sides, and we also gave closed-form generating functions for these
partitions. For example, one of our three identities related to A(2)

9 is:

(q , q4 , q6 , q8 , q11; q12)−1∞
?
=
∑︁
n≥0

A1(n)qn

=
∑︁

i , j ,k≥0
(−1)k q

(i+2 j+3k) (i+2 j+3k−1)+3k2+i+6 j+6k

(q; q)i (q4; q4) j (q6; q6)k
(21)

where A1(n) is the number of partitions of n such that 2 + 2 does not
appear, consecutive numbers do not appear as parts, odd parts do not
repeat, even parts appear at most twice and finally, if a part 2 j appears
twice then 2 j ± 3, 2 j ± 2 are forbidden to appear as parts.
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These identities were proved (thus replacing ?
= by = in (21) ) combina-

torially by Bringmann–Jennings-Shaffer–Mahlburg [10]; their proof was
streamlined by Rosengren [38].

Ito [20] has now established the Z-algebraic spanning argument thereby

replacing ?
= with ≤ in (21) representation-theoretically. Combined with

the truth of the identities, Ito’s spanning sets are indeed bases for the
corresponding vacuum spaces.

§24. All of the identities discussed above involve “single colour” par-
titions. Generically, due to the presence of a multitude of Z operators
arising from the nodes in the Dynkin diagram (see §12 above), one ex-
pects “multi-colour” partition identities. Indeed, very recently, Tsuchioka
[45] has studied two of the three level 3 standard modules of A(1)

2 and
shown how they give rise to two-colour partition identities.

§25. A description of one of the two Tsuchioka identities [45] is as
follows. Consider partitions 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆 s > 0, where few (or none
or all) right-most occurrences of any part may be underlined and the rest
are left un-underlined. Underlined and non-underlined parts are said to
have different colours. LetT (n) be the number of two colour partitions
of n that satisfy:

(1) If consecutive parts have difference at most 1 then they add up to
a multiple of 3 and have different colours.

(2) If consecutive parts have difference exactly 2 and do not add up
to a multiple of 3, then the larger part is not underlined or the
smaller part is underlined.

(3) The following are forbidden to be sub-partitions: (3k , 3k , 3k − 2),
(3k + 2, 3k , 3k) and (3k + 2, 3k + 1, 3k − 1, 3k − 2).

(4) 1, 1, and 2 do not appear as parts.
Now, Tsuchioka uses Meurman–Primc’s [34] setup, builds spanning

sets for appropriate modules, and thus shows:

(q2 , q3 , q3 , q4; q6)−1∞ ≤
∑︁
n≥0

T (n)qn . (22)

Further, using a very different route relying on cylindric partitions and a
non-trivial amount of computer assistance, Tsuchioka in effect establishes
that ∑︁

n≥0
T (n)qn = (q)∞

∑︁
i , j≥0

qi
2−i j+ j2+i+ j (q3; q3)i+ j

(q)i+ j (q)i+ j+1(q3; q3)i (q3; q3) j
. (23)

As it happens, the equality of left-hand side of (22) and right-hand side
of (23) was already established by Andrews–Schilling–Warnaar in [4]
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(see also [23]). This establishes the equality in (22) and simultaneously
also proves that Tsuchioka’s spanning sets are linearly independent. In
conclusion, Tsuchioka has proved refreshingly new identities involving
two-colour partitions using the representation theory of A(1)

2 .

§26. So far, we have confined ourselves specifically to Lepowsky–Wilson’s
Z-algebras (and Meurman–Primc’s variant [34]) underlying the principal
characters. However, there exist many different ways to find and prove
identities related to affine Lie algebras and VOAs. In the following para-
graphs, we touch upon some some of these ways. Our intention is only
to provide a broad outline for the interested reader.

§27. Moving beyond the principally specialized setup, Lepowsky and
Primc [31] analyzed the Z-algebraic structure of integrable modules for
A(1)
1 in the so-called “homogenous” realization. The principal picture

that we have been discussing requires a certain “twisting” and in contrast,
the homogeneous realization is untwisted. Still working in this untwisted
setup but using different techniques, Meurman and Primc [35] built
bases of integrable modules for A(1)

1 . These bases are malleable in that
they can be used to deduce combinatorial identities involving various
specializations of the characters. Indeed, Section 11.3 of [35] details
many new multi-colour partition identities. These ideas are developed in
numerous further papers, especially, Siladić [39] applied these ideas to
the level one integrable modules of A(2)

2 and deduced new combinatorial
identities. Very recently, Capparelli, Meurman, Primc and Primc have
given beautiful and deep new conjectural identities concerning principally
specialized characters of C (1)

n [15].

§28. Feigin and Stoyanovsky [42] discovered a very different substruc-
ture of highest-weight modules for affine Lie algebras and they called this
“principal subspace” (despite the name, a-priori there is no relation to
principal characters). One of the motivations behind principal subspaces
is as follows. The idea is to realize a given standard module as an inductive
limit of affine Weyl group translates of the principal subspace. This way,
new formulas for the character of the integrable module may be deduced,
if the characters for the corresponding principal subspaces are known.
Feigin and Stoyanovky themselves realized this goal for A(1)

1 standard
modules in [42].

§29. Surprisingly, the principal subspaces of level 1 standard modules of
A(1)
1 also witness Rogers–Ramanujan identities (contrast this with the level

3 situation of principal characters above)! Feigin–Stoyanovsky themselves
calculated the character of this (and higher level) principal subspaces
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in two distinct ways thereby proving the Rogers–Ramanujan (and more
generally, Andrews–Gordon identities). Applying “intertwining operators”
in the theory of VOAs, [17] Capparelli, Lepowsky and Milas used the
principal subspaces of A(1)

1 standard modules to categorify the Rogers–
Selberg recursions underlying these identities.

§30. Among all affine Lie algebras, the case of A(1)
1 is very peculiar, in

that the principal subspaces of standard modules have a commutative
structure. For example, the principal subspace of the level 1 module
L(Λ0) (denotedWΛ0) has the following simple presentation [42], [14]:

WΛ0 = ℂ[e−1 , e−2 , · · · ]/I , (24)

where the ideal I is generated by the following elements for n ≥ 2:

rn =
∑︁

1≤i≤n−1
e−ie−n+i

= e−1e−n+1 + e−2e−n+2 + · · · + e−n+2e−2 + e−n+1e−1. (25)

Again, it is easy to see that inWΛ0 , monomials containing an offending
e−ne−n or an e−n−1e−n could be rewritten by using relations r2n and r2n+1,
respectively. Going further and using Gröbner bases (for instance), it is
then seen that polynomials whose leading terms correspond to partitions
satisfying difference at least 2 among consecutive parts form a basis for
WΛ0 (see [11] for explicit details). To demonstrate the product sides,
a resolution of this space is built and the character is calculated using
Euler–Poincaré principle. Details are given in [6] (see also [21]).

§31. One of the major drawbacks of principal subspaces is that there is
no known general character formula. This is in stark contrast with stan-
dard modules themselves, where we have the Weyl–Kac formula. Using
algebraic methods, this formula could be deduced from the Garland–
Lepowsky resolution of the standard modules [18] in terms of generalized
Verma modules. A general analogue of this construction for principal
subspaces of standard modules for an arbitrary affine Lie algebra 𝔤 is yet
to be found. Thus, as a general rule, product sides, or theta function
expressions, or more generally, alternating sum forms are usually absent
for their characters. Nonetheless, their study has flourished as they still
give rise to interesting combinatorial considerations.

§32. As the last point on the topic of affine Lie algebras, we mention
several important works such as [19], [37], etc. where Rogers–Ramanujan-
type identities are deduced for several families of characters by exploiting
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the theory of symmetric functions, especially the Hall–Littlewood poly-
nomials. Perhaps the first paper along these lines is [41]. This approach
is very different from building explicit bases for relevant modules.

§33. Moving beyond affine Lie algebras, and entering the world of
VOAs proper, we see that Rogers–Ramanujan identities appear yet again
as characters of the rational Virasoro minimal model VOA at parameters
p = 2, p′ = 5. From the combinatorial point of view, the rational VOAs
based on Virasoro minimal models have been now understood fairly well.
As a sample of relevant literature, see [8] and [47]; the latter is perhaps
the most comprehensive treatment. The VOA W3 naturally succeeds the
Virasoro VOA, and Rogers–Ramanujan identities appear at parameters
p = 3, p′ = 5. Recently, there has been a flurry of activity regarding the
combinatorics of this VOA. As an example, see [23], where the starting
point is the set of W3 identities found and proved by Andrews–Schilling–
Warnaar in [4].

§34. It has been over a hundred years since the passing of Ramanujan. In
this century of progress, Ramanujan’s (or perhaps Rogers, Ramanujan and
Schur’s) ever verdant garden has continued to produce dazzling displays
of splendour. Undoubtedly, many more fascinating discoveries await!
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