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Subtitle: How forcing helps solve some problems in combinatorics.
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Ramsey’s Theorems

Finite Ramsey Theorem. Given k ,m, r ≥ 1, there is an n ≥ m such
that given a coloring c : [n]k → r , there is an X ⊆ n of size m such that
c is constant on [X ]k .

(∀k ,m, r ≥ 1) (∃n ≥ m) n→ (m)kr

Infinite Ramsey’s Theorem. (finite dimensional) Given k , r ≥ 1 and a
coloring c : [ω]k → r , there is an infinite subset X ⊆ ω such that c is
constant on [X ]k .

(∀k , r ≥ 1) ω → (ω)kr

Graph Interpretation: k-hypergraphs.
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Infinite Dimensional Ramsey Theory

A subset X of the Baire space [ω]ω is Ramsey if for each X ∈ [ω]ω, there
is a Y ∈ [X ]ω such that either [Y ]ω ⊆ X or else [Y ]ω ∩ X = ∅.

Nash-Williams Theorem. (1965) Clopen sets are Ramsey.

Galvin-Prikry Theorem. (1973) Borel sets are Ramsey.

Silver Theorem. (1970) Analytic sets are Ramsey.

Ellentuck Theorem. (1974) Sets with the property of Baire in the
Ellentuck topology are Ramsey.

ω →∗ (ω)ω
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Fräıssé Classes and Their Limits

A collection K of finite structures forms a Fräıssé class if it satisfies the
Hereditary Property, the Joint Embedding Property, and the
Amalgamation Property.

The Fräıssé limit of a Fräıssé class K, denoted Flim(K) or K, is (up to
isomorphism) the ultrahomogeneous structure with Age(K) = K.

Examples. Finite linear orders LO; Flim(LO) = Q.

Finite graphs G; Flim(G) = Rado graph.
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Finite Structural Ramsey Theory

For structures A,B, write A ≤ B iff A embeds into B.

A Fräıssé class K has the Ramsey property if

(∀A ≤ B ∈ K) (∀r ≥ 1) Flim(K)→ (B)Ar

Some classes of finite structures with the Ramsey property:
Linear orders, complete graphs, Boolean algebras, vector spaces over a
finite field, ordered graphs, ordered hypergraphs, ordered graphs
omitting k-cliques, ordered metric spaces, and many others.

Small Ramsey degrees: Bounds but not one color.
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Example: Colorings of Subgraphs

An ordered graph A embeds into an ordered graph B if there is a
one-to-one mapping of the vertices of A into some of the vertices of B
such that each edge in A gets mapped to an edge in B, and each non-edge
in A gets mapped to a non-edge in B.

Figure: A

· · ·

Figure: A copy of A in B
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More copies of A into B

· · ·

· · ·

· · ·
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Infinite Structural Ramsey Theory (finite dimensional)

Let K be a Fräıssé class and K = Flim(K).

(KPT 2005) For A ∈ K, T (A,K) is the least number T , if it exists, such
that for each k ≥ 1 and any coloring of the copies of A in K, there is a
substructure K′ ≤ K, isomorphic to K, in which the copies of A have no
more than T colors.

(∀k ≥ 1) K→ (K)Ak,T (A,K)

K has finite big Ramsey degrees if T (A,K) is finite, for each A ∈ K.

Motivation. Problem 11.2 in (KPT 2005) and (Zucker 2019).
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Structures with finite big Ramsey degrees

• The infinite complete graph. (Ramsey 1929)

• The rationals. (Devlin 1979)

• The Rado graph, random tournament, and similar binary relational
structures. (Sauer 2006)

• The countable ultrametric Urysohn space. (Nguyen Van Thé 2008)

• Qn and the directed graphs S(2), S(3). (Laflamme, NVT, Sauer 2010)

• The random k-clique-free graphs. (Dobrinen 2017 and 2019)

• Several more universal structures, including some metric spaces with
finite distance sets. (Mašulović 2019)

• Profinite graphs. (Huber-Geschke-Kojman, and Zheng 2018)

• Profinite k-clique-free graphs. (Dobrinen, Wang 2019)

• Structures without forbidden configurations. (Dobrinen - in progress)
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Infinite Dimensional Structural Ramsey Theory

(KPT 2005) Given K = Flim(K) and some natural topology on IK :=
(K
K
)
,

K→∗ (K)K

means that all “definable” subsets of IK are Ramsey.

Motivation. Problem 11.2 in (KPT 2005).

Examples. The Baire space [ω]ω = Iω.

Any topological Ramsey space. But most known ones are not
ultrahomogeneous structures.

(Dobrinen) The rationals, the Rado graph, and (to be checked) the
Henson graphs.
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Bold Conjecture

Any Fräıssé class with small Ramsey degrees has Fräıssé limit with finite
big Ramsey degrees and an infinite dimensional Ramsey theorem.
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Several results on big Ramsey degrees use

(1) Trees to code structures.

(2) Milliken’s Ramsey theorem for strong trees, and variants.
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Using Trees to Code Binary Relational Structures

Rationals. (Q, <) can be coded by 2<ω.

Graphs. Let A be a graph with vertices 〈vn : n < N〉. A set of nodes
{tn : n < N} in 2<ω codes A if and only if for each pair m < n < N,

vn E vm ⇔ tn(|tm|) = 1.

The number tn(|tm|) is called the passing number of tn at tm.

t0

t1

t2

•

•

•

v0

v1

v2
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Example: A Strong Subtree T ⊆ 2<ω

The nodes in T are of lengths 0, 1, 3, 6, . . .
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Example: A Strong Subtree U ⊆ 2<ω

The nodes in U are of lengths 1, 4, 5, . . . .
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A Ramsey Theorem for Strong Trees

A k-strong tree is a finite strong tree with k levels.

Thm. (Milliken 1979) Let T ⊆ 2<ω be a strong tree with no terminal
nodes. Let k ≥ 1, r ≥ 2, and c be a coloring of all k-strong subtrees of
T into r colors. Then there is a strong subtree S ⊆ T such that all
k-strong subtrees of S have the same color.

The main tool for Milliken’s theorem is the Halpern-Läuchli Theorem
for colorings on products of trees.

Harrington devised a “forcing proof” of Halpern-Läuchli Theorem.
This is very important to our approach to Ramsey theory on Fräıssé
limits.

Dobrinen Ramsey properties on Fräıssé structures University of Denver 17 / 60



Halpern-Läuchli Theorem - strong tree version

Notation:
⊗
i<d

Ti :=
⋃
n<ω

∏
i<d

Ti (n)

Theorem. (Halpern-Läuchli, 1966) Let Ti ⊆ ω<ω, i < d , be finitely
branching trees with no terminal nodes and let r ≥ 2. Given a coloring
c :
⊗

i<d Ti → r , there are strong subtrees Si ≤ Ti with nodes of the
same lengths such that c is constant on

⊗
i<d Si .

This was discovered as a key lemma in the proof that the Boolean
Prime Ideal Theorem is strictly weaker than the Axiom of Choice over
ZF. (Halpern-Lévy, 1971) It is also the crux of Milliken’s Theorem.
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We now give some examples of colorings of level products of two trees
T0 = T1 = 2<ω, and show visually what the Halpern-Läuchli Theorem
does.
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Coloring Products of Level Sets: T0(0)× T1(0)
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HL gives Strong Subtrees with 1 color for level products

S0 S1
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Application to Products of Rationals

Thm. (Laver, 1984) Given d < ω and a coloring of Qd into finitely
many colors, there are Xi ⊆ Q, i < d , isomorphic to Q such that
X0 × · · · × Xd−1 takes at most d ! many colors.
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Harrington’s ‘Forcing’ Proof of Halpern-Läuchli Theorem

Harrington devised a proof of the Halpern-Läuchli Theorem that uses
forcing methods, but never goes to a generic extension.

Fix d ≥ 2 and let Ti = 2<ω (i < d) be finitely branching trees with no
terminal nodes. Fix a coloring c :

⊗
i<d Ti → 2.

Thm. (Erdős-Rado, 1956) For r < ω and µ an infinite cardinal,

ir (µ)+ → (µ+)r+1
µ

Let κ = i2d . Then κ→ (ℵ1)2d
ℵ0

.
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Harrington’s ‘Forcing’ Proof: The Forcing

The Forcing: P is the set of functions p of the form

p : d × ~δp →
⋃
i<d

Ti � lp

where ~δp ∈ [κ]<ω, lp < ω, and ∀i < d , {p(i , δ) : δ ∈ ~δp} ⊆ Ti � lp.

q ≤ p iff lq ≥ lp, ~δq ⊇ ~δp, and ∀(i , δ) ∈ d × ~δp, q(i , δ) ⊇ p(i , δ).

P adds κ branches through each tree Ti , i < d .

P is Cohen forcing adding κ new branches to each tree.
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Harrington’s ‘Forcing’ Proof: Set-up for the Ctbl Coloring

For i < d , α < κ, let ḃi ,α denote the α-th generic branch in Ti :

ḃi ,α = {〈p(i , α), p〉 : p ∈ P, and (i , α) ∈ dom(p)}.

Note: If (i , α) ∈ dom(p), then p  ḃi ,α � lp = p(i , α).

Let U̇ be a P-name for a non-principal ultrafilter on ω.

For ~α = 〈α0, . . . , αd−1〉 ∈ [κ]d , let ḃ~α := 〈ḃ0,α0 , . . . , ḃd−1,αd−1
〉.

• For ~α ∈ [κ]d , take some p~α ∈ P with ~α ⊆ ~δp~α such that

1 p~α decides an ε~α ∈ 2 such that p~α  “c(ḃ~α � l) = ε~α for U̇ many l”;

2 c({p~α(i , αi ) : i < d}) = ε~α.
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Harrington’s ‘Forcing’ Proof: The Countable Coloring

Let I be the collection of functions ι : 2d → 2d such that

{ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d − 2), ι(2d − 1)}.

For ~θ ∈ [κ]2d , ι ∈ I determines two sequences of ordinals in [κ]d :

ιe(~θ ) := (θι(0), θι(2), . . . , θι(2d−2))) and ιo(~θ ) := (θι(1), θι(3), . . . , θι(2d−1)).

For ~θ ∈ [κ]2d and ι ∈ I, define

f (ι, ~θ ) = 〈ι, ε~α, k~α, 〈〈p~α(i , δ~α(j)) : j < k~α〉 : i < d〉,
〈〈i , j〉 : i < d , j < k~α, δ~α(j) = αi 〉,
〈〈j , k〉 : j < k~α, k < k~β, δ~α(j) = δ~β(k)〉〉, (1)

where ~α = ιe(~θ ), ~β = ιo(~θ ), k~α = |~δp~α |, and 〈δ~α(j) : j < k~α〉 enumerates
~δp~α in increasing order. For ~θ ∈ [κ]2d , define f (~θ ) = 〈f (ι, ~θ ) : ι ∈ I〉.
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Harrington’s ‘Forcing’ Proof: f gives fixed ranges and color

Note: dom(f ) = [κ]2d and ran(f ) is a countable set.

Since κ→ (ℵ1)2d
ℵ0

, take K ∈ [κ]ℵ1 homogeneous for f .

Take Ki ∈ [K ]ℵ0 so that K0 < · · · < Kd−1 and K ′ :=
⋃

i<d Ki thin in K .

Lem 1. There are ε∗ ∈ 2, k∗ ∈ ω, and 〈〈ti ,j : j < k∗〉 : i < d〉, such that
for all ~α ∈

∏
i<d Ki ,

ε~α = ε∗, k~α = k∗, and (∀i < d) 〈p~α(i , δ~α(j)) : j < k~α〉 = 〈ti ,j : j < k∗〉.

Pf. Let ι ∈ I be the identity function on 2d . For any ~α, ~β ∈
∏

i<d Ki ,

there are ~θ, ~θ′ ∈ [K ]2d such that ~α = ιe(~θ ) and ~β = ιe(~θ′ ). Then
f (ι, ~θ ) = f (ι, ~θ′ ) implies the conclusion. �
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Harrington’s ‘Forcing’ Proof: Same ordinals, same position

Lem 2. For ~α, ~β ∈
∏

i<d Ki , if j , j ′ < k∗ and δ~α(j) = δ~β(j ′), then j = j ′.

Pf Idea. (sliding argument) Suppose δ~α(j) = δ~β(j ′).

Let ρi ∈ {<,=, >} be the relation such that αi ρi βi , (i < d).

Take ι ∈ I so that for any ~ζ ∈ [K ]2d and i < d , ζι(2i) ρi ζι(2i+1).

Fix ~θ ∈ [K ′]2d such that ιe(~θ) = ~α and ιo(~θ) = ~β.

Take ~γ ∈ [K ]d such that (∀i < d) αi ρi γi and γi ρi βi .

Take ~µ, ~ν ∈ [K ]2d with ιe(~µ) = ~α, ιo(~µ) = ιe(~ν) = ~γ, and ιo(~ν) = ~β.

δ~α(j) = δ~β(j ′) implies 〈j , j ′〉 is in the last sequence in f (ι, ~θ).

f (ι, ~µ) = f (ι, ~ν) = f (ι, ~θ) implies δ~γ(j) = δ~β(j ′) = δ~α(j) = δ~γ(j ′),

which implies j = j ′. �
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Harrington’s ‘Forcing’ Proof: Set of compatible conditions

Main Lemma. {p~α : ~α ∈
∏

i<d Ki} is compatible.

Pf. Suppose TAC ∃~α, ~β ∈
∏

i<d Ki with p~α⊥ p~β.

By Lem 1, for each i < d and j < k∗, p~α(i , δ~α(j)) = p~β(i , δ~β(j)).

So p~α⊥ p~β implies ∃i < d and j , j ′ < k∗ with δ~α(j) = δ~β(j ′) but

p~α(i , δ~α(j)) 6= p~β(i , δ~β(j ′)).

Note that p~α(i , δ~α(j)) = ti ,j and p~β(i , δ~β(j ′)) = ti ,j ′ imply j 6= j ′.

But by Lem 2, j 6= j ′ implies δ~α(j) 6= δ~β(j ′). →← �

By homogeneity of f , there is a strictly increasing sequence
〈ji : i < d〉 ∈ [k∗]d such that for each ~α ∈

∏
i<d Ki , δ~α(ji ) = αi .

Then for each ~α ∈
∏

i<d Ki ,

p~α(i , αi ) = p~α(i , δ~α(ji )) = ti ,ji =: t∗i .
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Harrington’s ‘Forcing’ Proof: The Construction

Build strong subtrees Si ⊆ Ti homogeneous for c : Let stem(Si ) = t∗i .

Induction Assumption: m ≥ 1, and we have constructed m-strong
subtrees

⋃
j<m Si (j) of Ti such that c takes color ε∗ on

⋃
j<m

∏
i<d Si (j).

Let Xi be the set of immediate extensions in Ti of the nodes in

Si (m − 1). Let Ji ⊆ [Ki ]
|Xi |. Label the nodes in Xi as {q(i , δ) : δ ∈ Ji}.

Let ~J =
∏

i<d Ji . For each ~α ∈ ~J and i < d , q(i , αi ) ⊇ t∗i = p~α(i , αi ).

Let ~δq =
⋃
{~δ~α : ~α ∈ ~J}. For each pair (i , γ) with γ ∈ ~δq \ Ji , ∃~α ∈ ~J

and ∃j ′ < k∗ such that δ~α(j ′) = γ. By Main Lemma, ~β ∈ ~J and γ ∈ ~δ~β
imply that p~β(i , γ) = p~α(i , γ) = t∗i ,j ′ . Let q(i , γ) be the leftmost

extension of t∗i ,j ′ in T . This defines q. Check that q ∈ P.

Note that q ≤ p~α, for all ~α ∈ ~J.
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Harrington’s ‘Forcing’ Proof of Halpern-Läuchli Theorem

To construct Si (m), take r ≤ q for which r  “∀~α ∈ ~J, c(ḃ~α � lr ) = ε∗”.

Then it is simply true in the ground model that

c({r(i , αi ) : i < d}) = ε∗, for each ~α ∈ ~J.

For each i < d , we define Si (m) = {r(i , δ) : δ ∈ Ji}. This set extends Xi .

Then c takes value ε∗ on
∏

i<d Si (m).

Set Si =
⋃

m<ω Si (m). c is monochromatic on
⊗

i<d Si . � HL

Dobrinen Ramsey properties on Fräıssé structures University of Denver 31 / 60



The Halpern-Läuchli Theorem forms the seed of the Milliken Theorem.

Big Ramsey degrees for the Rado graph and for the rationals only need
Milliken’s Theorem.

However, for infinite structures with some forbidden configurations,
Milliken’s Theorem does not suffice.

But, we can instigate a new approach using trees with coding nodes and
prove new Milliken-style theorems using forcing to find bounds for big
Ramsey degrees.
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Theme for Ramsey Theory on Infinite Structures

1 Given an infinite relational structure F (a Fräıssé limit), enumerate its
universe in order-type ω as v0, v1, v2, . . . .

2 Form an associated tree T with special nodes which code the universe
of F; the n-th level of T has one node cn which codes vn.

3 The n-th level of the tree T consists of all realizable finite partial
1-types over the initial segment of the structure F � {vi : i < n}.

4 Take T to be the collection of all subtrees of T which are isomorphic
(in some strong sense) to T. Each tree T ∈ T codes a copy of F in
the same way that T does.

5 Develop forcing arguments to prove Ramsey theorems for antichains
of coding nodes within members of T .

6 Use these Ramsey theorems on the trees to deduce finite big Ramsey
degrees for the structures, and infinite dimensional Ramsey theory.
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This theme was developed to prove finite big Ramsey degrees for Henson
graphs.

In hindsight it proved useful for infinite dimensional Ramsey theory on the
rationals and the Rado graph, as well as the Henson graphs.

It also is proving fruitful for big Ramsey degrees on structures without
forbidden configurations - a work in progress.
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Henson Graphs Hk : The k-Clique-Free Random Graph

The the k-clique-free Henson graph, Hk , is the Fräıssé limit of the Fräıssé
class of finite Kk -free graphs.

Thus, Hk is the ultrahomogenous Kk -free graph which is universal for all
k-clique-free graphs on countably many vertices.

• H3 is indivisible. (Komjáth-Rödl 1986)

• For all k ≥ 4, Hk is indivisible. (El-Zahar-Sauer 1989)

• Edges have big Ramsey degree 2 in H3. (Sauer 1998)

• For all k ≥ 3, Hk has finite big Ramsey degrees. (Dobrinen 2017, 2019)
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Trees with Coding Nodes

A tree with coding nodes is a structure 〈T ,N;⊆, <, c〉 in the language
L = {⊆, <, c} where ⊆, < are binary relation symbols and c is a unary
function symbol satisfying the following:

T ⊆ 2<ω and (T ,⊆) is a tree.

N ≤ ω and < is the standard linear order on N.

c : N → T is injective, and m < n < N −→ |c(m)| < |c(n)|.

c(n) is the n-th coding node in T , usually denoted cTn .
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Top-down approach to Strong Coding Trees

Let k ≥ 3 be fixed.

Order the vertices of Hk in order-type ω as 〈vn : n < ω〉.

Let the n-th coding node, cn, code the n-th vertex.
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Strong K3-Free Tree

c−1

c0

c1

c2

c3

c4

c5

•

•

•

•

•

•

•

v−1

v0

v1

v2

v3

v4

v5

Figure: A strong triangle-free tree S3 densely coding H3
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Strong K4-Free Tree

c−2

c−1

c0

c1

c2

c3

c4

•
•
•
•
•
•
•

v−2

v−1

v0

v1

v2

v3

v4

Figure: A strong K4-free tree S4 densely coding H4
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Bottom-up Approach

Henson gave an Extension Property for building Hk , which we can
interpret in terms of trees with coding nodes, call it (Ak)tree.

A tree T with coding nodes 〈cn : n < N〉 satisfies the Kk -Free Branching
Criterion (k-FBC) if for each non-maximal node t ∈ T , t_0 ∈ T and

(∗) t_1 is in T iff adding t_1 as a coding node to T would not code
a k-clique with coding nodes in T of shorter length.

Thm. (D.) Suppose T is a tree with no maximal nodes satisfying the
Kk -Free Branching Criterion, and the set of coding nodes dense in T .
Then T satisfies (Ak)tree, and hence codes Hk .
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Strong K3-Free Tree

c−1

c0

c1

c2

c3

c4

c5

•

•

•

•

•

•

•

v−1

v0

v1

v2

v3

v4

v5

Figure: A strong triangle-free tree S3 densely coding H3
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Strong K4-Free Tree

c−2

c−1

c0

c1

c2

c3

c4

•
•
•
•
•
•
•

v−2

v−1

v0

v1

v2

v3

v4

Figure: A strong K4-free tree S4 densely coding H4
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Almost sufficient

Problem: There is a bad coloring of coding nodes, which precludes
indivisibility on a subcopy of Hk coded by any ‘isomorphic’ subtree coding
Hk .

Solution: Skew the levels of interest.
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Strong H3-Coding Tree T3

d0 = c−1

c0

c1

c2

c3

•

•

•

•

•

v−1

v0

v1

v2

v3
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Strong H4-Coding Tree, T4

d0 = c−1

d1

d2

d3 c0

d4

d5

d6

d7 c1

d8

d9

d10

d11

d12

d13

c2

•

•

•

•

v−1

v0

v1

v2
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Defining the Space of Strong Coding Trees

Fix k ≥ 3.

For a ∈ [3, k], a level set X ⊆ Tk with nodes of length `X , has a
pre-a-clique if there are a− 2 coding nodes in Tk coding an (a− 2)-clique,
and each node in X has passing number 1 by each of these coding nodes.

Say that a subtree T ⊆ Tk has the Witnessing Property if each new
pre-a-clique in T is witnessed by some coding node in T .
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The Space of Strong Hk-Coding Trees Tk

Two subtrees S and T of Tk are strongly isomorphic iff there is a strong
similarity map f : S → T which preserves maximal new pre-cliques in each
interval. Such a map f is a strong isomorphism.

Idea: Strong isomorphisms preserve

1 the structure of the trees with respect to tree and lexicographic orders

2 placement of coding nodes

3 passing numbers at levels of coding nodes

4 whether or not an interval has new pre-cliques.

Tk = all subtrees of Tk which are strongly isomorphic to Tk .

The members of Tk are called strong Hk -coding trees.
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Although trees with coding nodes were invented to handle forbidden
cliques, it turns out they are good a coding relational structures with or
without forbidden substructures.
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Infinite Dimensional Ramsey Theory of the Rado Graph

Say X ⊆ [ω]ω is completely Ramsey (CR) if for each nonempty [s,A],
there is a B ∈ [s,A] such that [s,B] ⊆ X or [s,B] ∩ X = ∅.

Thm. (Galvin-Prikry 1973) Every Borel subset of the Baire space is
completely Ramsey.

Thm. (Ellentuck 1974) Each set with the property of Baire in the
Ellentuck topology is completely Ramsey

Question. (KPT 2005) Which Fräıssé structures have infinite
dimensional Ramsey theory for definable subsets?
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Infinite Dimensional Ramsey Theory for Q

We approach this using trees with coding nodes.

By Devlin’s theorem, one must fix a strong similarity type coding the
rationals into 2<ω, and restrict to all subtrees with the same strong
similarity type.

Thm. (D.) Let TQ ⊆ 2<ω be a fixed tree with coding nodes coding a
copy of the rationals in order type ω, with no terminal nodes. Let TQ
be the collection of all strongly similar subtrees of TQ. Then TQ is a
topological Ramsey space, hence has an analogue of Ellentuck’s
theorem.

This should also hold (modulo checking) for antichains in 2<ω coding
the rationals. If true, this will recover Devlin’s result.
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A Strong Rational Coding Tree TQ
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A Strong Rational Coding Subtree
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A Strong Rado Coding Tree TR

Dobrinen Ramsey properties on Fräıssé structures University of Denver 53 / 60



A Strong Rado Coding Subtree T ∈ TR
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Give TR the topology inherited as a subspace of the Cantor space.

Thm. (D.) Every Borel subset of TR has the Ramsey property.

So there is a topological space of Rado graphs which has infinite
dimensional Ramsey theory.
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Fräıssé Classes Without Forbidden Configurations

It turns out that trees with coding nodes are helping determine Ramsey
theory for relational structures with finitely many relations and “no
forbidden configurations”.

Work In Preparation: All Fräıssé classes with finitely many finitary
relations satisfying a particular kind of amalgamation property have
finite big Ramsey degrees.

These include structures such as hypergraphs and graphs with more
than one type of edge.

Dobrinen Ramsey properties on Fräıssé structures University of Denver 56 / 60



Theme for Ramsey Theory on Infinite Structures

1 Given an infinite relational structure F (a Fräıssé limit), enumerate its
universe in order-type ω as v0, v1, v2, . . . .

2 Form an associated tree T with special nodes which code the universe
of F; the n-th level of T has one node cn which codes vn.

3 The n-th level of the tree T consists of all realizable finite partial
1-types over the initial segment of the structure F � {vi : i < n}.

4 Take T to be the collection of all subtrees of T which are isomorphic
(in some strong sense) to T. Each tree T ∈ T codes a copy of F in
the same way that T does.

5 Develop forcing arguments to prove Ramsey theorems for antichains
of coding nodes within members of T .

6 Use these Ramsey theorems on the trees to deduce finite big Ramsey
degrees for the structures, and infinite dimensional Ramsey theory.
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