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Subtitle: How forcing helps solve some problems in combinatorics.
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Ramsey’s Theorems

Finite Ramsey Theorem. Given k ,m, r ≥ 1, there is an n ≥ m such
that given a coloring c : [n]k → r , there is an X ⊆ n of size m such that
c is constant on [X ]k .

(∀k ,m, r ≥ 1) (∃n ≥ m) n→ (m)kr

Infinite Ramsey’s Theorem. (finite dimensional) Given k , r ≥ 1 and a
coloring c : [ω]k → r , there is an infinite subset X ⊆ ω such that c is
constant on [X ]k .

(∀k , r ≥ 1) ω → (ω)kr

Graph Interpretation: k-hypergraphs.
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Infinite Dimensional Ramsey Theory

A subset X of the Baire space [ω]ω is Ramsey if for each X ∈ [ω]ω, there
is a Y ∈ [X ]ω such that either [Y ]ω ⊆ X or else [Y ]ω ∩ X = ∅.

Nash-Williams Theorem. (1965) Clopen sets are Ramsey.

Galvin-Prikry Theorem. (1973) Borel sets are Ramsey.

Silver Theorem. (1970) Analytic sets are Ramsey.

Ellentuck Theorem. (1974) Sets with the property of Baire in the
Ellentuck topology are Ramsey.

ω →∗ (ω)ω
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Fräıssé Classes and Their Limits

A collection K of finite structures forms a Fräıssé class if it satisfies the
Hereditary Property, the Joint Embedding Property, and the
Amalgamation Property.

The Fräıssé limit of a Fräıssé class K, denoted Flim(K) or K, is (up to
isomorphism) the ultrahomogeneous structure with Age(K) = K.

Examples. Finite linear orders LO; Flim(LO) = Q.

Finite graphs G; Flim(G) = Rado graph.
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Finite Structural Ramsey Theory

For structures A,B, write A ≤ B iff A embeds into B.

A Fräıssé class K has the Ramsey property if

(∀A ≤ B ∈ K) (∀r ≥ 1) Flim(K)→ (B)Ar

Some classes of finite structures with the Ramsey property:
Linear orders, complete graphs, Boolean algebras, vector spaces over a
finite field, ordered graphs, ordered hypergraphs, ordered graphs
omitting k-cliques, ordered metric spaces, and many others.

Small Ramsey degrees: Bounds but not one color.
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Example: Colorings of Subgraphs

An ordered graph A embeds into an ordered graph B if there is a
one-to-one mapping of the vertices of A into some of the vertices of B
such that each edge in A gets mapped to an edge in B, and each non-edge
in A gets mapped to a non-edge in B.

Figure: A

· · ·

Figure: A copy of A in B
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More copies of A into B

· · ·

· · ·

· · ·

Dobrinen Strong coding trees University of Denver 8 / 72



Infinite Structural Ramsey Theory (finite dimensional)

Let K be a Fräıssé class and K = Flim(K).

(KPT 2005) For A ∈ K, T (A,K) is the least number T , if it exists, such
that for each k ≥ 1 and any coloring of the copies of A in K, there is a
substructure K′ ≤ K, isomorphic to K, in which the copies of A have no
more than T colors.

(∀k ≥ 1) K→ (K)Ak,T (A,K)

K has finite big Ramsey degrees if T (A,K) is finite, for each A ∈ K.

Motivation. Problem 11.2 in (KPT 2005) and (Zucker 2019).
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Let K be a Fräıssé class and K = Flim(K).

(KPT 2005) For A ∈ K, T (A,K) is the least number T , if it exists, such
that for each k ≥ 1 and any coloring of the copies of A in K, there is a
substructure K′ ≤ K, isomorphic to K, in which the copies of A have no
more than T colors.

(∀k ≥ 1) K→ (K)Ak,T (A,K)

K has finite big Ramsey degrees if T (A,K) is finite, for each A ∈ K.

Motivation. Problem 11.2 in (KPT 2005) and (Zucker 2019).

Dobrinen Strong coding trees University of Denver 9 / 72



Infinite Structural Ramsey Theory (finite dimensional)
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Structures with finite big Ramsey degrees

• The infinite complete graph. (Ramsey 1929)

• The rationals. (Devlin 1979)

• The Rado graph, random tournament, and similar binary relational
structures. (Sauer 2006)

• The countable ultrametric Urysohn space. (Nguyen Van Thé 2008)

• Qn and the directed graphs S(2), S(3). (Laflamme, NVT, Sauer 2010)

• The random k-clique-free graphs. (Dobrinen 2017 and 2019)

• Several more universal structures, including some metric spaces with
finite distance sets. (Mašulović 2019)

• Profinite graphs. (Huber-Geschke-Kojman, and Zheng 2018)

• Profinite k-clique-free graphs. (Dobrinen, Wang 2019)
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Infinite Dimensional Structural Ramsey Theory

(KPT 2005) Given K = Flim(K) and some natural topology on IK :=
(K
K
)
,

K→∗ (K)K

means that all “definable” subsets of IK are Ramsey.

Motivation. Problem 11.2 in (KPT 2005).

Examples. The Baire space [ω]ω = Iω.

Any topological Ramsey space. But most known ones are not
ultrahomogeneous structures.

(Dobrinen) The rationals, the Rado graph, and (to be checked) the
Henson graphs.
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Bold Conjecture

Any Fräıssé class with small Ramsey degrees has Fräıssé limit with finite
big Ramsey degrees and an infinite dimensional Ramsey theorem.
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Several results on big Ramsey degrees use

(1) Trees to code structures.

(2) Milliken’s Ramsey theorem for strong trees, and variants.
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Using Trees to Code Binary Relational Structures

Rationals. (Q, <) can be coded by 2<ω.

Graphs. Let A be a graph with vertices 〈vn : n < N〉. A set of nodes
{tn : n < N} in 2<ω codes A if and only if for each pair m < n < N,

vn E vm ⇔ tn(|tm|) = 1.

The number tn(|tm|) is called the passing number of tn at tm.

t0

t1

t2

•

•

•

v0

v1

v2
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Strong Trees

For t ∈ 2<ω, the length of t is |t| = dom(t).

T ⊆ 2<ω is a tree if ∃L ⊆ ω such that T = {t � l : t ∈ T , l ∈ L}.

For t ∈ T , the height of t is htT (t) = o.t.{u ∈ T : u ⊂ t}.

T (n) = {t ∈ T : htT (t) = n}.

For t ∈ T , SuccT (t) = {u � (|t|+ 1) : u ∈ T and u ⊃ t}.

S ⊆ T is a strong subtree of T iff for some {mn : n < N} (N ≤ ω),

1 Each S(n) ⊆ T (mn), and

2 For each n < N, s ∈ S(n) and u ∈ SuccT (s),
there is exactly one s ′ ∈ S(n + 1) extending u.
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Example: A Strong Subtree T ⊆ 2<ω

The nodes in T are of lengths 0, 1, 3, 6, . . .
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Example: A Strong Subtree U ⊆ 2<ω

The nodes in U are of lengths 1, 4, 5, . . . .
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A Ramsey Theorem for Strong Trees

A k-strong tree is a finite strong tree with k levels.

Thm. (Milliken 1979) Let T ⊆ 2<ω be a strong tree with no terminal
nodes. Let k ≥ 1, r ≥ 2, and c be a coloring of all k-strong subtrees of
T into r colors. Then there is a strong subtree S ⊆ T such that all
k-strong subtrees of S have the same color.

The main tool for Milliken’s theorem is the Halpern-Läuchli Theorem
for colorings on products of trees.

Harrington devised a “forcing proof” of Halpern-Läuchli Theorem.
This is very important to our approach to Ramsey theory on Fräıssé
limits.
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Big Ramsey degrees of the Rado graph

• Vertices have big Ramsey degree 1. (Henson 1971)

• Edges have big Ramsey degree ≥ 2. (Erdős-Hajnal-Pósa 1975)

• Edges have big Ramsey degree exactly 2. (Pouzet-Sauer 1996)

• All finite graphs have finite big Ramsey degree. (Sauer 2006)

Idea: Since the Rado graph is bi-embeddable with the graph coded by
all nodes in 2<ω, use Milliken’s Theorem and later take out a copy of
the Rado graph to deduce upper bounds for its big Ramsey degrees.

• Actual big Ramsey degrees found structurally in
(Laflamme-Sauer-Vuksanovic 2006) and computed in (J. Larson 2008).
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Henson Graphs Hk : The k-Clique-Free Random Graph

Kk denotes a complete graph on k vertices, also called a k-clique.

The the k-clique-free Henson graph, Hk , is the Fräıssé limit of the Fräıssé
class of finite Kk -free graphs.

Thus, Hk is the ultrahomogenous Kk -free graph which is universal for all
k-clique-free graphs on countably many vertices.

Henson graphs were constructed by Henson in 1971.
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Henson Graphs: History of Results

• For each k ≥ 3, Hk is weakly indivisible. (Henson 1971)

• The Fräıssé class of finite ordered Kk -free graphs has the Ramsey
property. (Nešeťril-Rödl 1977/83)

• H3 is indivisible. (Komjáth-Rödl 1986)

• For all k ≥ 4, Hk is indivisible. (El-Zahar-Sauer 1989)

• Edges have big Ramsey degree 2 in H3. (Sauer 1998)

• For each k ≥ 3, Hk has finite big Ramsey degrees. (Dobrinen 2017 and
2019)
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New Methods

Problem for Henson graphs: no Milliken theorem, and no nicely definable
structure which is bi-embeddable with Hk .

Question. How do you make a tree that codes a Kk -free graph which
branches enough to carry some Ramsey theory?

Key Ideas in the proof that Henson graphs have finite big Ramsey
degrees include

(1) Trees with coding nodes.

(2) Use forcing mechanism to obtain (in ZFC) new Milliken-style
theorems for trees with coding nodes.
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Structure of Proof

I Develop strong Hk -coding trees which code Hk .

These are analogues of Milliken’s strong trees able to handle forbidden

k-cliques.

II Prove a Ramsey Theorem for strictly similar finite antichains.

This is an analogue of Milliken’s Theorem for strong trees. The proof uses

forcing for a ZFC result, building on ideas of Harrington for the

Halpern-Läuchli Theorem.

III Apply Ramsey Theorem for strictly similar antichains finitely many
times. Then take an antichain of coding nodes coding Hk .
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Halpern-Läuchli Theorem.

III Apply Ramsey Theorem for strictly similar antichains finitely many
times. Then take an antichain of coding nodes coding Hk .

Dobrinen Strong coding trees University of Denver 23 / 72



Trees with Coding Nodes

A tree with coding nodes is a structure 〈T ,N;⊆, <, c〉 in the language
L = {⊆, <, c} where ⊆, < are binary relation symbols and c is a unary
function symbol satisfying the following:

T ⊆ 2<ω and (T ,⊆) is a tree.

N ≤ ω and < is the standard linear order on N.

c : N → T is injective, and m < n < N −→ |c(m)| < |c(n)|.

c(n) is the n-th coding node in T , usually denoted cTn .
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Top-down approach to Strong Coding Trees

Let k ≥ 3 be fixed.

Order the vertices of Hk in order-type ω as 〈vn : n < ω〉.

Let the n-th coding node, cn, code the n-th vertex.
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Strong K3-Free Tree

c−1

c0

c1

c2
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c4
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•

•

v−1

v0

v1

v2

v3

v4

v5

Figure: A strong triangle-free tree S3 densely coding H3
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Strong K4-Free Tree

c−2
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v−2

v−1

v0
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v3

v4

Figure: A strong K4-free tree S4 densely coding H4
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Bottom-up Approach

Note: A collection of coding nodes {cni : i < k} in T codes a k-clique
iff i < j < k −→ cnj (|cni |) = 1.

A tree T with coding nodes 〈cn : n < N〉 satisfies the Kk -Free Branching
Criterion (k-FBC) if for each non-maximal node t ∈ T , t_0 ∈ T and

(∗) t_1 is in T iff adding t_1 as a coding node to T would not code
a k-clique with coding nodes in T of shorter length.
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Henson’s Criterion for building Hk

Henson gave a criterion for building Hk , interpreted to our setting here:

A tree with coding nodes satisfies (Ak)tree iff

(i) T satisfies the Kk -Free Criterion.

(ii) Let 〈Fi : i < ω〉 be any enumeration of finite subsets of ω such that
for each i < ω, max(Fi ) < i − 1, and each finite subset of ω appears
as Fi for infinitely many indices i . Given i < ω, if for each subset
J ⊆ Fi of size k − 1, {cj : j ∈ J} does not code a (k − 1)-clique, then
there is some n ≥ i such that for all j < i , cn(lj) = 1 iff j ∈ Fi .

Thm. (D.) Suppose T is a tree with no maximal nodes satisfying the
Kk -Free Branching Criterion, and the set of coding nodes dense in T .
Then T satisfies (Ak)tree, and hence codes Hk .
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Strong K4-Free Tree

c−2

c−1

c0

c1

c2

c3

c4

•
•
•
•
•
•
•

v−2

v−1

v0

v1

v2

v3

v4

Figure: A strong K4-free tree S4 densely coding H4

Dobrinen Strong coding trees University of Denver 31 / 72



Almost sufficient

We want to obtain a Ramsey theorem that says, “Given a coloring for a
finite antichain A of coding nodes inside a strong coding tree T , there is a
subtree S of T which is ‘isomorphic’ to T in which all ‘copies’ of A have
the same color.”

Problem: There is a bad coloring of coding nodes, which precludes
indivisibility on a subcopy of Hk coded by any ‘isomorphic’ subtree coding
Hk .

Solution: Skew the levels of interest.
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Strong H3-Coding Tree T3

d0 = c−1
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•
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Strong H4-Coding Tree, T4

d0 = c−1

d1

d2

d3 c0
d4
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v−1

v0
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Defining the Space of Strong Coding Trees

Let k ≥ 3 be fixed, and let a ∈ [3, k]. A level set X ⊆ Tk with nodes of
length `X , has a pre-a-clique if there are a− 2 coding nodes in Tk coding
an (a− 2)-clique, and each node in X has passing number 1 by each of
these coding nodes.

The Point. Pre-a-cliques for a ∈ [3, k] code entanglements that affect
how nodes in X can extend inside T.
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A level set U with a pre-3-clique

u0 u1

cn

The yellow node is a coding node in Tk not in U.
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A level set X with a pre-3-clique

x0 x1 x2

cn

The yellow node is a coding node in Tk not in X .
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A level set Y with a pre-4-clique

y0 y1

cm

cn

The yellow node is a coding node in Tk not in Y .
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A level set Z with a pre-4-clique

z0 z1 z2

cm

cn

The yellow node is a coding node in Tk not in Z .
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The Space of Strong Hk-Coding Trees Tk

Two subtrees S and T of Tk are strongly isomorphic iff there is a strong
similarity map f : S → T which preserves maximal new pre-cliques in each
interval.

Such a map f is a strong isomorphism.

Idea: Strong isomorphisms preserve

1 the structure of the trees with respect to tree and lexicographic orders

2 placement of coding nodes

3 passing numbers at levels of coding nodes

4 whether or not an interval has new pre-cliques.

Tk = all subtrees of Tk which are strongly isomorphic to Tk .

The members of Tk are called strong Hk -coding trees.
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Subtrees and Extension Lemmas

Provide guarantees for when a finite subtree of a strong coding tree T can
be extended within T to a desired configuration:

A level set X ⊆ T is called free in T if taking leftmost extensions in T
does not add new pre-cliques.

A subtree A ⊆ T is valid if all pre-cliques in A are witnessed by coding
nodes in A and max(A) is free in T .

It turns out that T ∈ Tk iff T is strongly similar to Tk and is valid.

A series of “Extension Lemmas” guarantee when level sets can be
extended as wished to new configurations within a given T ∈ Tk .
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Part II: Ramsey Theorem for Strictly Similar Finite Antichains

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of
level sets.

This builds on ideas from Harrington’s ‘forcing proof’ of
the Halpern-Läuchli Theorem.
There are three forcings we need. The third one is not intuitive, but
necessary.

(b) Weave together to obtain an analogue of Milliken’s Theorem for
“Strictly Witnessed” finite trees.

(c) New notion of envelope to move from Strictly Witnesses finite trees
to any finite antichain of coding nodes.
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(a) Use forcing to find Halpern-Läuchli style theorems for colorings of
level sets. This builds on ideas from Harrington’s ‘forcing proof’ of
the Halpern-Läuchli Theorem.
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Ramsey Theorem for Strictly Similar Antichains

Thm. (D.) Let Z be a finite antichain of coding nodes in a strong
Hk -coding tree T ∈ Tk , and suppose h colors of all subsets of T which
are strictly similar to Z into finitely many colors. Then there is an
strong Hk -coding tree S ≤ T such that all subsets of S strictly similar
to Z have the same h color.
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Some Examples of Strict Similarity Types for k = 3

Let G be the graph with three vertices and no edges.

We show some distinct strict similarity types of trees coding G .
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G a graph with three vertices and no edges

A tree A coding G
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G a graph with three vertices and no edges

B codes G and is strictly similar to A.

〈〉
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The tree C codes G

C is not strictly similar to A.
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The tree D codes G

D is not strictly similar to either A or C .
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The tree E codes G and is not strictly similar to A - D
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The tree F codes G and is strictly similar to E
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Envelopes and Witnessing Coding Nodes

Envelopes add some neutral coding nodes to a finite tree so that all new
pre-cliques are witnessed by a coding node.

Envelopes for an antichain A in a strong coding tree T do not always exist
in T .

Instead, given T where the Ramsey theorem has been applied to the strict
similarity type of a prototype envelope of A, we take S ≤ T and a set of
witnessing coding nodes W ⊆ T so that each antichain in S has an
envelope in T , using coding nodes from W .

We now give some examples of envelopes.
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H codes a non-edge

H is its own envelope.

Dobrinen Strong coding trees University of Denver 52 / 72



I codes a non-edge

I is not its own envelope.
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An Envelope E(I )

w

An envelope of I .
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The antichain E from before
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An envelope E(E )

w0

w1

w3

w2

The coding nodes w0, . . . ,w3 make an envelope of E .
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The tree F from before is strictly similar to E
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E(F ) is strictly similar to E(E )

w0

w1

w2

w3

The coding nodes w0, . . . ,w3 make an envelope of F .
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Some upper bounds for big Ramsey degrees in Hk

T (K2,H3) = 2

T (K2,H4) ≤ 6

T (K2,H5) ≤ 88

T (K̄2,H3) ≤ 7

T (K̄2,H4) ≤ 58

Conjecture: The number of incremental strict similarity types of
antichains coding a finite graph G ∈ Kk is the big Ramsey degree
T (G ,Hk).
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Although trees with coding nodes were invented to handle forbidden
cliques, it turns out they are good a coding relational structures with or
without forbidden substructures.
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Infinite Dimensional Ramsey Theory of the Rado Graph

Say X ⊆ [ω]ω is completely Ramsey (CR) if for each nonempty [s,A],
there is a B ∈ [s,A] such that [s,B] ⊆ X or [s,B] ∩ X = ∅.

Thm. (Galvin-Prikry 1973) Every Borel subset of the Baire space is
completely Ramsey.

Thm. (Ellentuck 1974) Each set with the property of Baire in the
Ellentuck topology is completely Ramsey

Question. (KPT 2005) Which Fräıssé structures have infinite
dimensional Ramsey theory for definable subsets?
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Infinite Dimensional Ramsey Theory for Q

We approach this using trees with coding nodes.

By Devlin’s theorem, one must fix a strong similarity type coding the
rationals into 2<ω, and restrict to all subtrees with the same strong
similarity type.

Thm. (D.) Let TQ ⊆ 2<ω be a fixed tree with coding nodes coding a
copy of the rationals in order type ω, with no terminal nodes. Let TQ
be the collection of all strongly similar subtrees of TQ. Then TQ is a
topological Ramsey space, hence has an analogue of Ellentuck’s
theorem.

This should also hold (modulo checking) for antichains in 2<ω coding
the rationals. If true, this will recover Devlin’s result.
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Infinite Dimensional Ramsey Theory for the Rado Graph

By Laflamme, Sauer and Vuksanovic’s theorem, one must fix a strong
similarity type coding the Rado graph into 2<ω, and restrict to all subtrees
with the same strong similarity type.

Let TR be 2<ω with coding nodes which are dense in 2<ω.

TR consists of all trees with coding nodes (T , ω;⊆, <, cT ), where

1 T is a strong subtree of 2<ω; and

2 The strong tree isomorphism ϕ : TR → T has the property that for
each n < ω, ϕ(c(n)) = cT (n).

The members of TR are called strong Rado coding trees.
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A Strong Rado Coding Tree TR
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A Strong Rado Coding Tree T ∈ TR
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Give TR the topology inherited as a subspace of the Cantor space.

Thm. (D.) Every Borel subset of TR has the Ramsey property.

So there is a topological space of Rado graphs which has infinite
dimensional Ramsey theory.
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Current Directions and Future Goals

1 Extend methods to other ultrahomogeneous structures with forbidden
configurations.
In-progress: Ultrahomogeneous partial order, metric spaces,
bowtie-free graph, etc.

2 Tie up loose ends: Full infinite dimensional theorems for rationals,
Rado graph, Henson graphs.

3 Lower bounds.

4 (KPT) What is the correspondence between infinite dimensional
Ramsey theory and topological dynamics?
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Musings

In Banff 2018, Sauer suggested to me that I should work on moving these
proofs to the structures themselves, rather than trees.

In hindsight, actually that is what I did: Each node in a strong coding tree
represents a realizable 1-type over the finite structure coded so far.

Expand this method to simply working with “trees” of 1-types over
structures; adapt to any arity of relations.

Claim: If a Fräıssé class has “flexible amalgamation” (no forbidden
configurations) and its ordered version has the Ramsey property, then
its Fräıssé limit has finite big Ramsey degrees. This is work in progress.
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Thank you for your kind attention!
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Erdős-Rado, A partition calculus in set theory, Bull. AMS (1956).

Galvin-Prikry, Borel sets and Ramsey’s Theorem, JSL (1973).
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