Strong coding trees
and
Ramsey theory on infinite structures

Natasha Dobrinen
University of Denver

UCLA Logic Colloquium
February 7, 2020

Research supported by DMS-1600781 and DMS-1901753
Subtitle: How forcing helps solve some problems in combinatorics.
Ramsey’s Theorems

Finite Ramsey Theorem. Given $k, m, r \geq 1$, there is an $n \geq m$ such that given a coloring $c : [n]^k \to r$, there is an $X \subseteq n$ of size m such that c is constant on $[X]^k$.

$$(\forall k, m, r \geq 1) \ (\exists n \geq m) \ n \to (m)^k_r$$

Infinite Ramsey’s Theorem. (finite dimensional) Given $k, r \geq 1$ and a coloring $c : [\omega]^k \to r$, there is an infinite subset $X \subseteq \omega$ such that c is constant on $[X]^k$.

$$(\forall k, r \geq 1) \ \omega \to (\omega)^k_r$$

Graph Interpretation: k-hypergraphs.
A subset \mathcal{X} of the Baire space $[\omega]^\omega$ is **Ramsey** if for each $X \in [\omega]^\omega$, there is a $Y \in [X]^\omega$ such that either $[Y]^\omega \subseteq \mathcal{X}$ or else $[Y]^\omega \cap \mathcal{X} = \emptyset$.

Nash-Williams Theorem. (1965) Clopen sets are Ramsey.

Galvin-Prikry Theorem. (1973) Borel sets are Ramsey.

Silver Theorem. (1970) Analytic sets are Ramsey.

Ellentuck Theorem. (1974) Sets with the property of Baire in the Ellentuck topology are Ramsey.

$$\omega \rightarrow^* (\omega)^\omega$$
Fraïssé Classes and Their Limits

A collection \mathcal{K} of finite structures forms a Fraïssé class if it satisfies the Hereditary Property, the Joint Embedding Property, and the Amalgamation Property.
Fraïssé Classes and Their Limits

A collection \mathcal{K} of finite structures forms a **Fraïssé class** if it satisfies the Hereditary Property, the Joint Embedding Property, and the Amalgamation Property.

The **Fraïssé limit** of a Fraïssé class \mathcal{K}, denoted $\mathrm{Flim}(\mathcal{K})$ or \mathcal{K}, is (up to isomorphism) the ultrahomogeneous structure with $\mathrm{Age}(\mathcal{K}) = \mathcal{K}$.

Examples.
- Finite linear orders \mathcal{LO}; $\mathrm{Flim}(\mathcal{LO}) = \mathbb{Q}$.
- Finite graphs \mathcal{G}; $\mathrm{Flim}(\mathcal{G}) = \text{Rado graph}$.
Fraïssé Classes and Their Limits

A collection \mathcal{K} of finite structures forms a **Fraïssé class** if it satisfies the Hereditary Property, the Joint Embedding Property, and the Amalgamation Property.

The **Fraïssé limit** of a Fraïssé class \mathcal{K}, denoted $\text{Flim}(\mathcal{K})$ or \mathbb{K}, is (up to isomorphism) the ultrahomogeneous structure with $\text{Age}(\mathbb{K}) = \mathcal{K}$.

Examples. Finite linear orders \mathcal{LO}; $\text{Flim}(\mathcal{LO}) = \mathbb{Q}$.

Fraïssé Classes and Their Limits

A collection \mathcal{K} of finite structures forms a Fraïssé class if it satisfies the Hereditary Property, the Joint Embedding Property, and the Amalgamation Property.

The Fraïssé limit of a Fraïssé class \mathcal{K}, denoted $\text{Flim}(\mathcal{K})$ or \mathbb{K}, is (up to isomorphism) the ultrahomogeneous structure with $\text{Age}(\mathbb{K}) = \mathcal{K}$.

Examples. Finite linear orders \mathcal{LO}; $\text{Flim}(\mathcal{LO}) = \mathbb{Q}$.

Finite graphs \mathcal{G}; $\text{Flim}(\mathcal{G}) = \text{Rado graph}$.
For structures A, B, write $A \leq B$ iff A embeds into B.

A Fra"{i}ss"{e} class K has the Ramsey property if $(\forall A \leq B \in K) (\forall r \geq 1) \text{Flim}(K) \rightarrow (B^r)$

Some classes of finite structures with the Ramsey property: linear orders, complete graphs, Boolean algebras, vector spaces over a finite field, ordered graphs, ordered hypergraphs, ordered graphs omitting k-cliques, ordered metric spaces, and many others.
Finite Structural Ramsey Theory

For structures A, B, write $A \leq B$ iff A embeds into B.

A Fraïssé class \mathcal{K} has the **Ramsey property** if

$$(\forall A \leq B \in \mathcal{K}) \ (\forall r \geq 1) \ \text{Flim}(\mathcal{K}) \rightarrow (B)_r^A$$

Some classes of finite structures with the Ramsey property:
- Linear orders,
- Complete graphs,
- Boolean algebras,
- Vector spaces over a finite field,
- Ordered graphs,
- Ordered hypergraphs,
- Ordered graphs omitting k-cliques,
- Ordered metric spaces,
- and many others.

Small Ramsey degrees:
- Bounds but not one color.
Finite Structural Ramsey Theory

For structures A, B, write $A \leq B$ iff A embeds into B.

A Fraïssé class \mathcal{K} has the **Ramsey property** if

$$(\forall A \leq B \in \mathcal{K}) \ (\forall r \geq 1) \ \text{Flim}(\mathcal{K}) \to (B)^A_r$$

Some classes of finite structures with the Ramsey property:
Linear orders, complete graphs, Boolean algebras, vector spaces over a finite field, ordered graphs, ordered hypergraphs, ordered graphs omitting k-cliques, ordered metric spaces, and many others.
Finite Structural Ramsey Theory

For structures A, B, write $A \leq B$ iff A embeds into B.

A Fraïssé class \mathcal{K} has the **Ramsey property** if

$$(\forall A \leq B \in \mathcal{K}) \ (\forall r \geq 1) \ \text{Flim}(\mathcal{K}) \to (B)^{A}_r$$

Some classes of finite structures with the Ramsey property:
Linear orders, complete graphs, Boolean algebras, vector spaces over a finite field, ordered graphs, ordered hypergraphs, ordered graphs omitting k-cliques, ordered metric spaces, and many others.

Small Ramsey degrees: Bounds but not one color.
Example: Colorings of Subgraphs

An ordered graph A embeds into an ordered graph B if there is a one-to-one mapping of the vertices of A into some of the vertices of B such that each edge in A gets mapped to an edge in B, and each non-edge in A gets mapped to a non-edge in B.
Example: Colorings of Subgraphs

An ordered graph A embeds into an ordered graph B if there is a one-to-one mapping of the vertices of A into some of the vertices of B such that each edge in A gets mapped to an edge in B, and each non-edge in A gets mapped to a non-edge in B.

Figure: A
Example: Colorings of Subgraphs

An ordered graph A embeds into an ordered graph B if there is a one-to-one mapping of the vertices of A into some of the vertices of B such that each edge in A gets mapped to an edge in B, and each non-edge in A gets mapped to a non-edge in B.

Figure: A

Figure: A copy of A in B
More copies of A into B
Let \mathcal{K} be a Fraïssé class and $\mathbb{K} = \text{Flim}(\mathcal{K})$.
Infinite Structural Ramsey Theory (finite dimensional)

Let \mathcal{K} be a Fraïssé class and $\mathbb{K} = \text{Flim}(\mathcal{K})$.

(KPT 2005) For $A \in \mathcal{K}$, $T(A, \mathcal{K})$ is the least number T, if it exists, such that for each $k \geq 1$ and any coloring of the copies of A in \mathbb{K}, there is a substructure $\mathbb{K}' \leq \mathbb{K}$, isomorphic to \mathbb{K}, in which the copies of A have no more than T colors.
Infinite Structural Ramsey Theory (finite dimensional)

Let \mathcal{K} be a Fraïssé class and $\mathbb{K} = \text{Flim}(\mathcal{K})$.

(KPT 2005) For $A \in \mathcal{K}$, $T(A, \mathcal{K})$ is the least number T, if it exists, such that for each $k \geq 1$ and any coloring of the copies of A in \mathbb{K}, there is a substructure $\mathbb{K}' \leq \mathbb{K}$, isomorphic to \mathbb{K}, in which the copies of A have no more than T colors.

\[
(\forall k \geq 1) \quad \mathbb{K} \rightarrow (\mathbb{K})^A_{k, T(A, \mathcal{K})}
\]
Infinite Structural Ramsey Theory (finite dimensional)

Let \mathcal{K} be a Fraïssé class and $\mathbb{K} = \text{Flim}(\mathcal{K})$.

(KPT 2005) For $A \in \mathcal{K}$, $T(A, \mathcal{K})$ is the least number T, if it exists, such that for each $k \geq 1$ and any coloring of the copies of A in \mathbb{K}, there is a substructure $\mathbb{K}' \leq \mathbb{K}$, isomorphic to \mathbb{K}, in which the copies of A have no more than T colors.

$$(\forall k \geq 1) \quad \mathbb{K} \rightarrow (\mathbb{K})^A_{k, T(A, \mathcal{K})}$$

\mathbb{K} has finite big Ramsey degrees if $T(A, \mathcal{K})$ is finite, for each $A \in \mathcal{K}$.

Motivation.

Problem 11.2 in (KPT 2005) and (Zucker 2019).
Infinite Structural Ramsey Theory (finite dimensional)

Let \mathcal{K} be a Fraïssé class and $\mathbb{K} = \text{Flim}(\mathcal{K})$.

(KPT 2005) For $A \in \mathcal{K}$, $T(A, \mathcal{K})$ is the least number T, if it exists, such that for each $k \geq 1$ and any coloring of the copies of A in \mathbb{K}, there is a substructure $\mathbb{K}' \leq \mathbb{K}$, isomorphic to \mathbb{K}, in which the copies of A have no more than T colors.

$$(\forall k \geq 1) \quad \mathbb{K} \rightarrow (\mathbb{K})^A_{k, T(A, \mathcal{K})}$$

\mathbb{K} has finite big Ramsey degrees if $T(A, \mathcal{K})$ is finite, for each $A \in \mathcal{K}$.

Motivation. Problem 11.2 in (KPT 2005) and (Zucker 2019).
Structures with finite big Ramsey degrees

- The infinite complete graph. (Ramsey 1929)
- The rationals. (Devlin 1979)
- The Rado graph, random tournament, and similar binary relational structures. (Sauer 2006)
- The countable ultrametric Urysohn space. (Nguyen Van Thé 2008)
- \(\mathbb{Q}_n \) and the directed graphs \(S(2), S(3) \). (Laflamme, NVT, Sauer 2010)
- The random \(k \)-clique-free graphs. (Dobrinen 2017 and 2019)
- Several more universal structures, including some metric spaces with finite distance sets. (Mašulović 2019)
- Profinite graphs. (Huber-Geschke-Kojman, and Zheng 2018)
- Profinite \(k \)-clique-free graphs. (Dobrinen, Wang 2019)
(KPT 2005) Given $\mathcal{K} = \text{Flim}(\mathcal{K})$ and some natural topology on $\mathbb{I}_\mathcal{K} := \binom{\mathcal{K}}{\mathcal{K}}$, $\mathcal{K} \rightarrow^* (\mathcal{K})^\mathcal{K}$ means that all “definable” subsets of $\mathbb{I}_\mathcal{K}$ are Ramsey.
(KPT 2005) Given $\mathcal{K} = \text{Flim}(\mathcal{K})$ and some natural topology on $\mathbb{I}_\mathcal{K} := \binom{\mathcal{K}}{\mathcal{K}}$,

$$\mathcal{K} \rightarrow^* (\mathcal{K})^\mathcal{K}$$

means that all “definable” subsets of $\mathbb{I}_\mathcal{K}$ are Ramsey.

Motivation. Problem 11.2 in (KPT 2005).
Infinite Dimensional Structural Ramsey Theory

(KPT 2005) Given $\mathbb{K} = \text{Flim}(\mathcal{K})$ and some natural topology on $\mathbb{I}_K := \binom{K}{K}$, $K \to^* (K)^K$ means that all “definable” subsets of \mathbb{I}_K are Ramsey.

Motivation. Problem 11.2 in (KPT 2005).

Examples. The Baire space $[\omega]^\omega = \mathbb{I}_\omega$.

Any topological Ramsey space. But most known ones are not ultrahomogeneous structures.

(Dobrinen) The rationals, the Rado graph, and (to be checked) the Henson graphs.
Any Fraïssé class with small Ramsey degrees has Fraïssé limit with finite big Ramsey degrees and an infinite dimensional Ramsey theorem.
Several results on big Ramsey degrees use
Several results on big Ramsey degrees use

(1) Trees to code structures.
Several results on big Ramsey degrees use

(1) Trees to code structures.

(2) Milliken’s Ramsey theorem for strong trees, and variants.
Rationals. \((\mathbb{Q}, <)\) can be coded by \(2^{<\omega}\).
Using Trees to Code Binary Relational Structures

Rationals. $(\mathbb{Q}, <)$ can be coded by $2^{<\omega}$.

Graphs. Let A be a graph with vertices $\langle v_n : n < N \rangle$. A set of nodes $\{t_n : n < N\}$ in $2^{<\omega}$ codes A if and only if for each pair $m < n < N$,

$$v_n E v_m \iff t_n(|t_m|) = 1.$$

The number $t_n(|t_m|)$ is called the **passing number** of t_n at t_m.
For $t \in 2^{<\omega}$, the length of t is $|t| = \text{dom}(t)$.
For $t \in 2^{<\omega}$, the length of t is $|t| = \text{dom}(t)$.

$T \subseteq 2^{<\omega}$ is a tree if $\exists L \subseteq \omega$ such that $T = \{ t \upharpoonright l : t \in T, \ l \in L \}$.
For $t \in 2^{<\omega}$, the length of t is $|t| = \text{dom}(t)$.

$T \subseteq 2^{<\omega}$ is a tree if $\exists L \subseteq \omega$ such that $T = \{ t \upharpoonright l : t \in T, \ l \in L \}$.

For $t \in T$, the height of t is $\text{ht}_T(t) = \text{o.t.}\{ u \in T : u \subseteq t \}$.
For $t \in 2^{<\omega}$, the length of t is $|t| = \text{dom}(t)$.

$T \subseteq 2^{<\omega}$ is a tree if $\exists L \subseteq \omega$ such that $T = \{t \upharpoonright l : t \in T, \ l \in L\}$.

For $t \in T$, the height of t is $\text{ht}_T(t) = \text{o.t.}\{u \in T : u \subseteq t\}$.

$T(n) = \{t \in T : \text{ht}_T(t) = n\}$.
Strong Trees

For \(t \in 2^{< \omega} \), the length of \(t \) is \(|t| = \text{dom}(t)\).

\(T \subseteq 2^{< \omega} \) is a tree if \(\exists L \subseteq \omega \) such that \(T = \{ t \restriction l : t \in T, \ l \in L \} \).

For \(t \in T \), the height of \(t \) is \(\text{ht}_T(t) = \text{o.t.}\{ u \in T : u \subseteq t \} \).

\(T(n) = \{ t \in T : \text{ht}_T(t) = n \} \).

For \(t \in T \), \(\text{Succ}_T(t) = \{ u \restriction (|t| + 1) : u \in T \text{ and } u \supseteq t \} \).
For $t \in 2^{<\omega}$, the length of t is $|t| = \text{dom}(t)$.

$T \subseteq 2^{<\omega}$ is a tree if $\exists L \subseteq \omega$ such that $T = \{ t \upharpoonright l : t \in T, \ l \in L \}$.

For $t \in T$, the height of t is $\text{ht}_T(t) = \text{o.t.}\{u \in T : u \subseteq t\}$.

$T(n) = \{ t \in T : \text{ht}_T(t) = n \}$.

For $t \in T$, $\text{Succ}_T(t) = \{ u \upharpoonright (|t| + 1) : u \in T \text{ and } u \supseteq t \}$.

$S \subseteq T$ is a strong subtree of T iff for some $\{m_n : n < N\}$ ($N \leq \omega$),

1. Each $S(n) \subseteq T(m_n)$, and
2. For each $n < N$, $s \in S(n)$ and $u \in \text{Succ}_T(s)$, there is exactly one $s' \in S(n + 1)$ extending u.

Strong Trees
Example: A Strong Subtree $T \subseteq 2^{<\omega}$

The nodes in T are of lengths 0, 1, 3, 6, \ldots
Example: A Strong Subtree $U \subseteq 2^{<\omega}$

The nodes in U are of lengths 1, 4, 5, \ldots.
A Ramsey Theorem for Strong Trees

A \(k \)-strong tree is a finite strong tree with \(k \) levels.
A Ramsey Theorem for Strong Trees

A k-strong tree is a finite strong tree with k levels.

Thm. (Milliken 1979) Let $T \subseteq 2^{<\omega}$ be a strong tree with no terminal nodes. Let $k \geq 1$, $r \geq 2$, and c be a coloring of all k-strong subtrees of T into r colors. Then there is a strong subtree $S \subseteq T$ such that all k-strong subtrees of S have the same color.
A Ramsey Theorem for Strong Trees

A k-strong tree is a finite strong tree with k levels.

Thm. (Milliken 1979) Let $T \subseteq 2^{<\omega}$ be a strong tree with no terminal nodes. Let $k \geq 1$, $r \geq 2$, and c be a coloring of all k-strong subtrees of T into r colors. Then there is a strong subtree $S \subseteq T$ such that all k-strong subtrees of S have the same color.

The main tool for Milliken’s theorem is the Halpern-Läuchli Theorem for colorings on products of trees.

Harrington devised a “forcing proof” of Halpern-Läuchli Theorem. This is very important to our approach to Ramsey theory on Fraïssé limits.
Big Ramsey degrees of the Rado graph

- Vertices have big Ramsey degree 1. (Henson 1971)
- Edges have big Ramsey degree ≥ 2. (Erdős-Hajnal-Pósa 1975)
- Edges have big Ramsey degree exactly 2. (Pouzet-Sauer 1996)
Big Ramsey degrees of the Rado graph

- Vertices have big Ramsey degree 1. (Henson 1971)
- Edges have big Ramsey degree \(\geq 2 \). (Erdős-Hajnal-Pósa 1975)
- Edges have big Ramsey degree exactly 2. (Pouzet-Sauer 1996)
- All finite graphs have finite big Ramsey degree. (Sauer 2006)
Big Ramsey degrees of the Rado graph

- Vertices have big Ramsey degree 1. (Henson 1971)
- Edges have big Ramsey degree ≥ 2. (Erdős-Hajnal-Pósa 1975)
- Edges have big Ramsey degree exactly 2. (Pouzet-Sauer 1996)
- All finite graphs have finite big Ramsey degree. (Sauer 2006)

Idea: Since the Rado graph is bi-embeddable with the graph coded by all nodes in $2^{<\omega}$, use Milliken’s Theorem and later take out a copy of the Rado graph to deduce upper bounds for its big Ramsey degrees.
Big Ramsey degrees of the Rado graph

- Vertices have big Ramsey degree 1. (Henson 1971)
- Edges have big Ramsey degree ≥ 2. (Erdős-Hajnal-Pósa 1975)
- Edges have big Ramsey degree exactly 2. (Pouzet-Sauer 1996)
- All finite graphs have finite big Ramsey degree. (Sauer 2006)

Idea: Since the Rado graph is bi-embeddable with the graph coded by all nodes in $2^{<\omega}$, use Milliken’s Theorem and later take out a copy of the Rado graph to deduce upper bounds for its big Ramsey degrees.

- Actual big Ramsey degrees found structurally in (Laflamme-Sauer-Vuksanovic 2006) and computed in (J. Larson 2008).
K_k denotes a complete graph on k vertices, also called a k-clique.

The k-clique-free Henson graph, \mathcal{H}_k, is the Fraïssé limit of the Fraïssé class of finite K_k-free graphs.

Thus, \mathcal{H}_k is the ultrahomogenous K_k-free graph which is universal for all k-clique-free graphs on countably many vertices.

Henson graphs were constructed by Henson in 1971.
Henson Graphs: History of Results

• For each \(k \geq 3 \), \(\mathcal{H}_k \) is weakly indivisible. (Henson 1971)

• The Fraïssé class of finite ordered \(K_k \)-free graphs has the Ramsey property. (Nešetřil-Rödl 1977/83)

• \(\mathcal{H}_3 \) is indivisible. (Komjáth-Rödl 1986)

• For all \(k \geq 4 \), \(\mathcal{H}_k \) is indivisible. (El-Zahar-Sauer 1989)

• Edges have big Ramsey degree 2 in \(\mathcal{H}_3 \). (Sauer 1998)

• For each \(k \geq 3 \), \(\mathcal{H}_k \) has finite big Ramsey degrees. (Dobrinen 2017 and 2019)
Problem for Henson graphs: no Milliken theorem, and no nicely definable structure which is bi-embeddable with \mathcal{H}_k.

Question. How do you make a tree that codes a K_k-free graph which branches enough to carry some Ramsey theory?
New Methods

Problem for Henson graphs: no Milliken theorem, and no nicely definable structure which is bi-embeddable with H_k.

Question. How do you make a tree that codes a K_k-free graph which branches enough to carry some Ramsey theory?

Key Ideas in the proof that Henson graphs have finite big Ramsey degrees include

1. Trees with coding nodes.
2. Use forcing mechanism to obtain (in ZFC) new Milliken-style theorems for trees with coding nodes.
Develop strong \mathcal{H}_k-coding trees which code \mathcal{H}_k.
Structure of Proof

1. Develop strong \mathcal{H}_k-coding trees which code \mathcal{H}_k.

 These are analogues of Milliken’s strong trees able to handle forbidden k-cliques.
Structure of Proof

I Develop strong \mathcal{H}_k-coding trees which code \mathcal{H}_k.
These are analogues of Milliken’s strong trees able to handle forbidden
k-cliques.

II Prove a Ramsey Theorem for strictly similar finite antichains.
Structure of Proof

I Develop strong \mathcal{H}_k-coding trees which code \mathcal{H}_k.

These are analogues of Milliken’s strong trees able to handle forbidden k-cliques.

II Prove a Ramsey Theorem for strictly similar finite antichains.

This is an analogue of Milliken’s Theorem for strong trees. The proof uses forcing for a ZFC result, building on ideas of Harrington for the Halpern-Läuchli Theorem.
I Develop strong \mathcal{H}_k-coding trees which code \mathcal{H}_k. These are analogues of Milliken’s strong trees able to handle forbidden k-cliques.

II Prove a Ramsey Theorem for strictly similar finite antichains. This is an analogue of Milliken’s Theorem for strong trees. The proof uses forcing for a ZFC result, building on ideas of Harrington for the Halpern-Läuchli Theorem.

III Apply Ramsey Theorem for strictly similar antichains finitely many times. Then take an antichain of coding nodes coding \mathcal{H}_k.
A tree with coding nodes is a structure $\langle T, N; \subseteq, <, c \rangle$ in the language $\mathcal{L} = \{\subseteq, <, c\}$ where $\subseteq, <$ are binary relation symbols and c is a unary function symbol satisfying the following:

$T \subseteq 2^{<\omega}$ and (T, \subseteq) is a tree.

$N \leq \omega$ and $<$ is the standard linear order on N.

$c : N \to T$ is injective, and $m < n < N \implies |c(m)| < |c(n)|$.

$c(n)$ is the n-th coding node in T, usually denoted c_n^T.
Let $k \geq 3$ be fixed.

Order the vertices of \mathcal{H}_k in order-type ω as $\langle v_n : n < \omega \rangle$.

Let the n-th coding node, c_n, code the n-th vertex.
Strong K_3-Free Tree

Figure: A strong triangle-free tree S_3 densely coding \mathcal{H}_3
Strong K_4-Free Tree

Figure: A strong K_4-free tree S_4 densely coding H_4
Note: A collection of coding nodes \(\{c_{n_i} : i < k\} \) in \(T \) codes a \(k \)-clique iff \(i < j < k \implies c_{n_j}(|c_{n_i}|) = 1 \).
Bottom-up Approach

Note: A collection of coding nodes \(\{c_{n_i} : i < k \} \) in \(T \) codes a \(k \)-clique iff \(i < j < k \rightarrow c_{n_j}(|c_{n_i}|) = 1 \).

A tree \(T \) with coding nodes \(\langle c_n : n < N \rangle \) satisfies the \(K_k \)-Free Branching Criterion (\(k \)-FBC) if for each non-maximal node \(t \in T \), \(t^\prec 0 \in T \) and

\[(*) \quad t^\prec 1 \text{ is in } T \text{ iff adding } t^\prec 1 \text{ as a coding node to } T \text{ would not code a } k \text{-clique with coding nodes in } T \text{ of shorter length}. \]
Henson’s Criterion for building \mathcal{H}_k

Henson gave a criterion for building \mathcal{H}_k, interpreted to our setting here:

A tree with coding nodes satisfies (A)\(k \)iff

(i) T satisfies the K_k-Free Criterion.

(ii) Let $\langle F_i : i < \omega \rangle$ be any enumeration of finite subsets of ω such that for each $i < \omega$, $\max(F_i) < i - 1$, and each finite subset of ω appears as F_i for infinitely many indices i. Given $i < \omega$, if for each subset $J \subseteq F_i$ of size $k - 1$, $\{ c_j : j \in J \}$ does not code a $(k - 1)$-clique, then there is some $n \geq i$ such that for all $j < i$, $c_n(l_j) = 1$ iff $j \in F_i$.

Thm. (D.) Suppose T is a tree with no maximal nodes satisfying the K_k-Free Branching Criterion, and the set of coding nodes dense in T. Then T satisfies (A)\(k \) tree, and hence codes \mathcal{H}_k.
Henson’s Criterion for building \mathcal{H}_k

Henson gave a criterion for building \mathcal{H}_k, interpreted to our setting here:

A tree with coding nodes satisfies $(A_k)^{\text{tree}}$ iff

(i) T satisfies the K_k-Free Criterion.

(ii) Let $\langle F_i : i < \omega \rangle$ be any enumeration of finite subsets of ω such that for each $i < \omega$, $\max(F_i) < i - 1$, and each finite subset of ω appears as F_i for infinitely many indices i. Given $i < \omega$, if for each subset $J \subseteq F_i$ of size $k - 1$, $\{c_j : j \in J\}$ does not code a $(k - 1)$-clique, then there is some $n \geq i$ such that for all $j < i$, $c_n(l_j) = 1$ iff $j \in F_i$.

Thm. (D.) Suppose T is a tree with no maximal nodes satisfying the K_k-Free Branching Criterion, and the set of coding nodes dense in T. Then T satisfies $(A_k)^{\text{tree}}$, and hence codes \mathcal{H}_k.
Henson’s Criterion for building \mathcal{H}_k

Henson gave a criterion for building \mathcal{H}_k, interpreted to our setting here:

A tree with coding nodes satisfies $(A_k)^{\text{tree}}$ iff

(i) T satisfies the K_k-Free Criterion.

(ii) Let $\langle F_i : i < \omega \rangle$ be any enumeration of finite subsets of ω such that for each $i < \omega$, $\max(F_i) < i - 1$, and each finite subset of ω appears as F_i for infinitely many indices i. Given $i < \omega$, if for each subset $J \subseteq F_i$ of size $k - 1$, $\{c_j : j \in J\}$ does not code a $(k - 1)$-clique, then there is some $n \geq i$ such that for all $j < i$, $c_n(l_j) = 1$ iff $j \in F_i$.

Thm. (D.) Suppose T is a tree with no maximal nodes satisfying the K_k-Free Branching Criterion, and the set of coding nodes dense in T. Then T satisfies $(A_k)^{\text{tree}}$, and hence codes \mathcal{H}_k.
Figure: A strong triangle-free tree S_3 densely coding H_3
Figure: A strong K_4-free tree S_4 densely coding H_4
We want to obtain a Ramsey theorem that says, “Given a coloring for a finite antichain A of coding nodes inside a strong coding tree T, there is a subtree S of T which is ‘isomorphic’ to T in which all ‘copies’ of A have the same color.”
Almost sufficient

We want to obtain a Ramsey theorem that says, “Given a coloring for a finite antichain \(A \) of coding nodes inside a strong coding tree \(T \), there is a subtree \(S \) of \(T \) which is ‘isomorphic’ to \(T \) in which all ‘copies’ of \(A \) have the same color.”

Problem: There is a bad coloring of coding nodes, which precludes indivisibility on a subcopy of \(\mathcal{H}_k \) coded by any ‘isomorphic’ subtree coding \(\mathcal{H}_k \).
Almost sufficient

We want to obtain a Ramsey theorem that says, “Given a coloring for a finite antichain \(A \) of coding nodes inside a strong coding tree \(T \), there is a subtree \(S \) of \(T \) which is ‘isomorphic’ to \(T \) in which all ‘copies’ of \(A \) have the same color.”

Problem: There is a bad coloring of coding nodes, which precludes indivisibility on a subcopy of \(\mathcal{H}_k \) coded by any ‘isomorphic’ subtree coding \(\mathcal{H}_k \).

Solution: Skew the levels of interest.
Strong \mathcal{H}_3-Coding Tree \mathbb{T}_3
Strong \mathcal{H}_4-Coding Tree, \mathbb{T}_4
Defining the Space of Strong Coding Trees

Let \(k \geq 3 \) be fixed, and let \(a \in [3, k] \). A level set \(X \subseteq T_k \) with nodes of length \(\ell_X \), has a pre-\(a \)-clique if there are \(a - 2 \) coding nodes in \(T_k \) coding an \((a - 2) \)-clique, and each node in \(X \) has passing number 1 by each of these coding nodes.
Let $k \geq 3$ be fixed, and let $a \in [3, k]$. A level set $X \subseteq T_k$ with nodes of length ℓ_X, has a pre-a-clique if there are $a - 2$ coding nodes in T_k coding an $(a - 2)$-clique, and each node in X has passing number 1 by each of these coding nodes.

The Point. Pre-a-cliques for $a \in [3, k]$ code entanglements that affect how nodes in X can extend inside T.
A level set U with a pre-3-clique

The yellow node is a coding node in T_k not in U.
A level set X with a pre-3-clique

The yellow node is a coding node in \mathbb{T}_k not in X.
A level set Y with a pre-4-clique

The yellow node is a coding node in T_k not in Y.
A level set Z with a pre-4-clique

The yellow node is a coding node in \mathbb{T}_k not in Z.
Two subtrees S and T of \mathbb{T}_k are strongly isomorphic iff there is a strong similarity map $f : S \rightarrow T$ which preserves maximal new pre-cliques in each interval.
The Space of Strong \mathcal{H}_k-Coding Trees \mathcal{T}_k

Two subtrees S and T of \mathbb{T}_k are strongly isomorphic iff there is a strong similarity map $f : S \rightarrow T$ which preserves maximal new pre-cliques in each interval. Such a map f is a strong isomorphism.
The Space of Strong \mathcal{H}_k-Coding Trees \mathcal{T}_k

Two subtrees S and T of \mathcal{T}_k are strongly isomorphic iff there is a strong similarity map $f : S \rightarrow T$ which preserves maximal new pre-cliques in each interval. Such a map f is a strong isomorphism.

Idea: Strong isomorphisms preserve

1. the structure of the trees with respect to tree and lexicographic orders
2. placement of coding nodes
3. passing numbers at levels of coding nodes
4. whether or not an interval has new pre-cliques.
Two subtrees S and T of \mathbb{T}_k are strongly isomorphic iff there is a strong similarity map $f : S \to T$ which preserves maximal new pre-cliques in each interval. Such a map f is a strong isomorphism.

Idea: Strong isomorphisms preserve

1. the structure of the trees with respect to tree and lexicographic orders
2. placement of coding nodes
3. passing numbers at levels of coding nodes
4. whether or not an interval has new pre-cliques.

$\mathcal{T}_k = \text{all subtrees of } \mathbb{T}_k \text{ which are strongly isomorphic to } \mathbb{T}_k$.
The Space of Strong \mathcal{H}_k-Coding Trees \mathcal{T}_k

Two subtrees S and T of \mathbb{T}_k are strongly isomorphic iff there is a strong similarity map $f : S \rightarrow T$ which preserves maximal new pre-cliques in each interval. Such a map f is a strong isomorphism.

Idea: Strong isomorphisms preserve

1. the structure of the trees with respect to tree and lexicographic orders
2. placement of coding nodes
3. passing numbers at levels of coding nodes
4. whether or not an interval has new pre-cliques.

$\mathcal{T}_k = \text{all subtrees of } \mathbb{T}_k \text{ which are strongly isomorphic to } \mathbb{T}_k$.

The members of \mathcal{T}_k are called strong \mathcal{H}_k-coding trees.
Subtrees and Extension Lemmas

Provide guarantees for when a finite subtree of a strong coding tree T can be extended within T to a desired configuration:
Subtrees and Extension Lemmas

Provide guarantees for when a finite subtree of a strong coding tree T can be extended within T to a desired configuration:

A level set $X \subseteq T$ is called **free** in T if taking leftmost extensions in T does not add new pre-cliques.

A subtree $A \subseteq T$ is **valid** if all pre-cliques in A are witnessed by coding nodes in A and $\max(A)$ is free in T.
Subtrees and Extension Lemmas

Provide guarantees for when a finite subtree of a strong coding tree T can be extended within T to a desired configuration:

A level set $X \subseteq T$ is called free in T if taking leftmost extensions in T does not add new pre-cliques.

A subtree $A \subseteq T$ is valid if all pre-cliques in A are witnessed by coding nodes in A and $\text{max}(A)$ is free in T.

It turns out that $T \in \mathcal{T}_k$ iff T is strongly similar to \mathbb{T}_k and is valid.
Subtrees and Extension Lemmas

Provide guarantees for when a finite subtree of a strong coding tree T can be extended within T to a desired configuration:

A level set $X \subseteq T$ is called free in T if taking leftmost extensions in T does not add new pre-cliques.

A subtree $A \subseteq T$ is valid if all pre-cliques in A are witnessed by coding nodes in A and $\text{max}(A)$ is free in T.

It turns out that $T \in \mathcal{T}_k$ iff T is strongly similar to \mathbb{T}_k and is valid.

A series of “Extension Lemmas” guarantee when level sets can be extended as wished to new configurations within a given $T \in \mathcal{T}_k$.
Part II: Ramsey Theorem for Strictly Similar Finite Antichains

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of level sets.
Part II: Ramsey Theorem for Strictly Similar Finite Antichains

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of level sets. This builds on ideas from Harrington’s ‘forcing proof’ of the Halpern-Läuchli Theorem.
Part II: Ramsey Theorem for Strictly Similar Finite Antichains

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of level sets. This builds on ideas from Harrington’s ‘forcing proof’ of the Halpern-Läuchli Theorem. There are three forcings we need. The third one is not intuitive, but necessary.

(b) Weave together to obtain an analogue of Milliken’s Theorem for “Strictly Witnessed” finite trees.
Part II: Ramsey Theorem for Strictly Similar Finite Antichains

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of level sets. This builds on ideas from Harrington’s ‘forcing proof’ of the Halpern-Läuchli Theorem. There are three forcings we need. The third one is not intuitive, but necessary.

(b) Weave together to obtain an analogue of Milliken’s Theorem for “Strictly Witnessed” finite trees.

(c) New notion of envelope to move from Strictly Witnesses finite trees to any finite antichain of coding nodes.
Ramsey Theorem for Strictly Similar Antichains

Thm. (D.) Let Z be a finite antichain of coding nodes in a strong \mathcal{H}_k-coding tree $T \in \mathcal{T}_k$, and suppose h colors of all subsets of T which are strictly similar to Z into finitely many colors. Then there is an strong \mathcal{H}_k-coding tree $S \leq T$ such that all subsets of S strictly similar to Z have the same h color.
Some Examples of Strict Similarity Types for \(k = 3 \)

Let \(G \) be the graph with three vertices and no edges.

We show some distinct strict similarity types of trees coding \(G \).
G a graph with three vertices and no edges

A tree A coding G
G a graph with three vertices and no edges

B codes G and is strictly similar to A.
The tree C codes G

C is not strictly similar to A.
The tree D codes G

D is not strictly similar to either A or C.
The tree E codes G and is not strictly similar to $A - D$
The tree F codes G and is strictly similar to E.
Envelopes and Witnessing Coding Nodes

Envelopes add some neutral coding nodes to a finite tree so that all new pre-cliques are witnessed by a coding node.
Envelopes and Witnessing Coding Nodes

Envelopes add some neutral coding nodes to a finite tree so that all new pre-cliques are witnessed by a coding node.

Envelopes for an antichain A in a strong coding tree T do not always exist in T.
Envelopes add some neutral coding nodes to a finite tree so that all new pre-cliques are witnessed by a coding node.

Envelopes for an antichain A in a strong coding tree T do not always exist in T.

Instead, given T where the Ramsey theorem has been applied to the strict similarity type of a prototype envelope of A, we take $S \subseteq T$ and a set of witnessing coding nodes $W \subseteq T$ so that each antichain in S has an envelope in T, using coding nodes from W.
Envelopes add some neutral coding nodes to a finite tree so that all new pre-cliques are witnessed by a coding node.

Envelopes for an antichain \(A \) in a strong coding tree \(T \) do not always exist in \(T \).

Instead, given \(T \) where the Ramsey theorem has been applied to the strict similarity type of a prototype envelope of \(A \), we take \(S \leq T \) and a set of witnessing coding nodes \(W \subseteq T \) so that each antichain in \(S \) has an envelope in \(T \), using coding nodes from \(W \).

We now give some examples of envelopes.
H codes a non-edge

H is its own envelope.
I codes a non-edge

I is not its own envelope.
An envelope $E(I)$

An envelope of I.
The antichain E from before
The coding nodes w_0, \ldots, w_3 make an envelope of E.
The tree F from before is strictly similar to E
$E(F)$ is strictly similar to $E(E)$

The **coding nodes** w_0, \ldots, w_3 make an envelope of F.
Some upper bounds for big Ramsey degrees in \mathcal{H}_k

\[
T(K_2, \mathcal{H}_3) = 2
\]
\[
T(K_2, \mathcal{H}_4) \leq 6
\]
\[
T(K_2, \mathcal{H}_5) \leq 88
\]
\[
T(\bar{K}_2, \mathcal{H}_3) \leq 7
\]
\[
T(\bar{K}_2, \mathcal{H}_4) \leq 58
\]

Conjecture: The number of incremental strict similarity types of antichains coding a finite graph $G \in \mathcal{K}_k$ is the big Ramsey degree $T(G, \mathcal{H}_k)$.
Although trees with coding nodes were invented to handle forbidden cliques, it turns out they are good at coding relational structures with or without forbidden substructures.
Say $\mathcal{X} \subseteq [\omega]^{\omega}$ is **completely Ramsey (CR)** if for each nonempty $[s, A]$, there is a $B \in [s, A]$ such that $[s, B] \subseteq \mathcal{X}$ or $[s, B] \cap \mathcal{X} = \emptyset$.
Say $\mathcal{X} \subseteq [\omega]^{\omega}$ is **completely Ramsey (CR)** if for each nonempty $[s, A]$, there is a $B \in [s, A]$ such that $[s, B] \subseteq \mathcal{X}$ or $[s, B] \cap \mathcal{X} = \emptyset$.

Thm. (Galvin-Prikry 1973) Every Borel subset of the Baire space is completely Ramsey.

Thm. (Ellentuck 1974) Each set with the property of Baire in the Ellentuck topology is completely Ramsey.
Say $\mathcal{X} \subseteq [\omega]^{\omega}$ is completely Ramsey (CR) if for each nonempty $[s, A]$, there is a $B \in [s, A]$ such that $[s, B] \subseteq \mathcal{X}$ or $[s, B] \cap \mathcal{X} = \emptyset$.

Thm. (Galvin-Prikry 1973) Every Borel subset of the Baire space is completely Ramsey.

Thm. (Ellentuck 1974) Each set with the property of Baire in the Ellentuck topology is completely Ramsey.

Question. (KPT 2005) Which Fraïssé structures have infinite dimensional Ramsey theory for definable subsets?
We approach this using trees with coding nodes.

By Devlin’s theorem, one must fix a strong similarity type coding the rationals into $2^{<\omega}$, and restrict to all subtrees with the same strong similarity type.
We approach this using trees with coding nodes.

By Devlin’s theorem, one must fix a strong similarity type coding the rationals into $2^{<\omega}$, and restrict to all subtrees with the same strong similarity type.

Thm. (D.) Let $T_Q \subseteq 2^{<\omega}$ be a fixed tree with coding nodes coding a copy of the rationals in order type ω, with no terminal nodes. Let T_Q be the collection of all strongly similar subtrees of T_Q. Then T_Q is a topological Ramsey space, hence has an analogue of Ellentuck’s theorem.
Infinite Dimensional Ramsey Theory for \(\mathbb{Q} \)

We approach this using trees with coding nodes.

By Devlin’s theorem, one must fix a strong similarity type coding the rationals into \(2^{<\omega} \), and restrict to all subtrees with the same strong similarity type.

Thm. (D.) Let \(T_\mathbb{Q} \subseteq 2^{<\omega} \) be a fixed tree with coding nodes coding a copy of the rationals in order type \(\omega \), with no terminal nodes. Let \(T_\mathbb{Q} \) be the collection of all strongly similar subtrees of \(T_\mathbb{Q} \). Then \(T_\mathbb{Q} \) is a topological Ramsey space, hence has an analogue of Ellentuck’s theorem.

This should also hold (modulo checking) for antichains in \(2^{<\omega} \) coding the rationals. If true, this will recover Devlin’s result.
Infinite Dimensional Ramsey Theory for the Rado Graph

By Laflamme, Sauer and Vuksanovic’s theorem, one must fix a strong similarity type coding the Rado graph into $2^{<\omega}$, and restrict to all subtrees with the same strong similarity type.
By Laflamme, Sauer and Vuksanovic’s theorem, one must fix a strong similarity type coding the Rado graph into $2^{<\omega}$, and restrict to all subtrees with the same strong similarity type.

Let \mathbb{T}_R be $2^{<\omega}$ with coding nodes which are dense in $2^{<\omega}$.
By Laflamme, Sauer and Vuksanovic’s theorem, one must fix a strong similarity type coding the Rado graph into $2^{<\omega}$, and restrict to all subtrees with the same strong similarity type.

Let \mathbb{T}_R be $2^{<\omega}$ with coding nodes which are dense in $2^{<\omega}$.

\mathcal{T}_R consists of all trees with coding nodes $(T, \omega; \subseteq, <, c^T)$, where

1. T is a strong subtree of $2^{<\omega}$; and
2. The strong tree isomorphism $\varphi : \mathbb{T}_R \rightarrow T$ has the property that for each $n < \omega$, $\varphi(c(n)) = c^T(n)$.

By Laflamme, Sauer and Vuksanovic’s theorem, one must fix a strong similarity type coding the Rado graph into \(2^{<\omega} \), and restrict to all subtrees with the same strong similarity type.

Let \(\mathbb{T}_R \) be \(2^{<\omega} \) with coding nodes which are dense in \(2^{<\omega} \).

\(\mathcal{T}_R \) consists of all trees with coding nodes \((T, \omega; \subseteq, <, c^T)\), where

1. \(T \) is a strong subtree of \(2^{<\omega} \); and
2. The strong tree isomorphism \(\varphi : \mathbb{T}_R \rightarrow T \) has the property that for each \(n < \omega \), \(\varphi(c(n)) = c^T(n) \).

The members of \(\mathcal{T}_R \) are called strong Rado coding trees.
A Strong Rado Coding Tree \mathcal{T}_R
A Strong Rado Coding Tree $T \in T_{\mathcal{R}}$
Give $\mathcal{T}_\mathcal{R}$ the topology inherited as a subspace of the Cantor space.

Thm. (D.) Every Borel subset of $\mathcal{T}_\mathcal{R}$ has the Ramsey property.
Give \mathcal{T}_R the topology inherited as a subspace of the Cantor space.

Thm. (D.) Every Borel subset of \mathcal{T}_R has the Ramsey property.

So there is a topological space of Rado graphs which has infinite dimensional Ramsey theory.
Current Directions and Future Goals

1. Extend methods to other ultrahomogeneous structures with forbidden configurations.
 In-progress: Ultrahomogeneous partial order, metric spaces, bowtie-free graph, etc.
Current Directions and Future Goals

1. Extend methods to other ultrahomogeneous structures with forbidden configurations.
 In-progress: Ultrahomogeneous partial order, metric spaces, bowtie-free graph, etc.

2. Tie up loose ends: Full infinite dimensional theorems for rationals, Rado graph, Henson graphs.
Current Directions and Future Goals

1. Extend methods to other ultrahomogeneous structures with forbidden configurations.
 In-progress: Ultrahomogeneous partial order, metric spaces, bowtie-free graph, etc.

2. Tie up loose ends: Full infinite dimensional theorems for rationals, Rado graph, Henson graphs.

3. Lower bounds.
Current Directions and Future Goals

1. Extend methods to other ultrahomogeneous structures with forbidden configurations.
 In-progress: Ultrahomogeneous partial order, metric spaces, bowtie-free graph, etc.

2. Tie up loose ends: Full infinite dimensional theorems for rationals, Rado graph, Henson graphs.

3. Lower bounds.

4. (KPT) What is the correspondence between infinite dimensional Ramsey theory and topological dynamics?
In Banff 2018, Sauer suggested to me that I should work on moving these proofs to the structures themselves, rather than trees.
Musings

In Banff 2018, Sauer suggested to me that I should work on moving these proofs to the structures themselves, rather than trees.

In hindsight, actually that is what I did: Each node in a strong coding tree represents a realizable 1-type over the finite structure coded so far.

Claim:
If a Fra¨ıss´e class has “flexible amalgamation” (no forbidden configurations) and its ordered version has the Ramsey property, then its Fra¨ıss´e limit has finite big Ramsey degrees. This is work in progress.
In Banff 2018, Sauer suggested to me that I should work on moving these proofs to the structures themselves, rather than trees.

In hindsight, actually that is what I did: Each node in a strong coding tree represents a realizable 1-type over the finite structure coded so far.

Expand this method to simply working with “trees” of 1-types over structures; adapt to any arity of relations.
Musings

In Banff 2018, Sauer suggested to me that I should work on moving these proofs to the structures themselves, rather than trees.

In hindsight, actually that is what I did: Each node in a strong coding tree represents a realizable 1-type over the finite structure coded so far.

Expand this method to simply working with “trees” of 1-types over structures; adapt to any arity of relations.

Claim: If a Fraïssé class has “flexible amalgamation” (no forbidden configurations) and its ordered version has the Ramsey property, then its Fraïssé limit has finite big Ramsey degrees. This is work in progress.
In Banff 2018, Sauer suggested to me that I should work on moving these proofs to the structures themselves, rather than trees.

In hindsight, actually that is what I did: Each node in a strong coding tree represents a realizable 1-type over the finite structure coded so far.

Expand this method to simply working with “trees” of 1-types over structures; adapt to any arity of relations.

Claim: If a Fraïssé class has “flexible amalgamation” (no forbidden configurations) and its ordered version has the Ramsey property, then its Fraïssé limit has finite big Ramsey degrees. This is work in progress.
Thank you for your kind attention!
References

References

