
Understanding bash
Prof. Chris GauthierDickey

COMP 2400, Fall 2008

How does bash start?
• It begins by reading your configuration files:

• If it’s an interactive login-shell, first /etc/profile is
executed, then it looks for:

• .bash_profile, .bash_login and ~/.profile

• If it’s a just an interactive shell, /etc/bash.bashrc is
executed, followed by:

• ~/.bashrc

• Usually, people put login stuff in .profile and interactive
stuff in .bashrc and do a source ~/.bashrc from
your .profile or other login script

2

I/O Redirection
• Sometimes you want to use a Unix utility, but

it doesn’t take standard input

• Try adding a ‘-’ at the end

• If you want to save output to a file

• Use ‘>’ which sends standard output to filename

• Use ‘>>’ to append the standard output to filename

• If you want to take input from a file

• Use ‘< filename’ which reads standard input from
filename

3

Piping

• We use the pipe command ‘|’ to take the
standard output from one command and send
it to the standard input of another command

• cat file | more

4

Background Jobs

• We can execute any command automatically
in the background by adding a & At the end

• If a program is running, hit CTRL-Z and then type ‘bg’

• To move a job to the foreground, type ‘fg’

• To list your jobs, type ‘jobs’

5

Saving Typing

• Bash keeps a history of all the commands you
execute

• Enter a command, then hit the up-arrow key

• Type ‘history’

• The variable HISTSIZE sets the size of your history

6

More History
• List the history: notice the numbers?

• history 20 will show the last 20

• !num, where num is one of those numbers will repeat
that command

• !! repeats the last command

• !: will let you enter a command...remember sed?

• !:s/xy/yx

• !foo will repeat the last command starting with foo

7

History cont.
• ^^ is for substitution

• cat myflie

• ^li^il will sub the last command as ‘cat myfile’

• !$ will return the last argument of the last
command

• cat myfile

• ‘rm $!’ will be substituted with ‘rm myfile’

• !:n* will return the nth (0-9) command to the
end

8

• !?foo? repeats the last command with foo
anywhere in it

• !! & adds an & to the last command

• !* is shorthand for all but the command
name of the last command

9

• Remember back at the start of class when we
discussed ls -l?

• _rwxrwxrwx lists the permissions

• Use the command ‘chmod’ to change permissions

• Each triplet is represented by an octal number:

• 4=r, 2=w, 1=x

• chmod 754 = rwxr_xr__

10

File Permissions

Shell Scripting

• Shell scripting provides an easy way to
combine commands using bash

• Begin your file with #!/usr/bin/bash

11

Variables
• Variables are assigned to by =

• foo=1

• Variables are read from by using $ in front

• ‘echo $foo’ will print 1 on the screen

• Arguments to the script are in variables $0 to
$n

• $* contains a list of all the args

• $# returns the number of arguments

12

More on Variables
• $name is actually a shortcut for ${name}

• ${10} for example, is necessary to access argument 10

• ${varname:-word} returns varname or returns word if
varname doesn’t exist or is null

• ${foo:-10} returns $foo or 10 if $foo doesn’t exist

• ${varname:=word} does the same as -, but sets the
variable to the default value in the process

• ${varname:?message} prints message if varname
doesn’t exist or returns varname

13

• ${varname:+word} if varname exists and isn’t
null, word is returned

• ${varname:offset:len} returns the offset
through len characters of the string (counting
from 0)

14

• The if/else command lets
us do conditional
branching

• Truth in Unix is typically
0, for a non-error exit
state

• False is anything else

• The last command
executed is the exit status
by default

15

If/else
if condition
then
statements

elif condition
then
statements

else
statements

fi

Conditions
• Commands return their status

• We can combine with && and ||

• if statement1 && statement2

• if statement1 || statement2

• For bracketed conditions:

• [condition1] && [condition2]

• [condition1] || [condition2]

16

Using []
• [] perform various non-exit-status tests

• [str1 = str2]

• [str1 != str2]

• [str1 \< str2]

• [str1 \> str2]

• We must escape < and > in the [] construct

• [-n str1] : str1 is not null (0 length)

• [-z str1] : str1 is null (has 0 length)

17

• -a file or -e file: file exists

• -d file: file exists and is a directory

• -f file: file exists and is a regular file

• -r file: you can read the file

• -s file: file exists and is non-empty

• -w file: you can write to the file

• -x file: you can execute the file

18

• -N file: file was modified since it was last read

• -O file: you own the file

• -G file: file belongs to one of your groups

• file1 -nt file2: file1 is newer than file2

• file1 -ot file2: file1 is older than file2

19

• [[]] is an alternative to []

• It can use && and || within it, for example

• It will not do globbing (expanding wildcards), but will
substitute variables and do command substitution

• if [[$1 < $2]]; then ...

• Notice that we don’t have to escape < this time (in fact,
it’s an error if we do)

• It takes the same kinds of arguments as []

20

[[]] as an alternative

Returns

• We can exit by a return or exit statement:

• return, return 0, return 1, etc...

• return without an argument returns the
value of the last command run

• exit statements exit the entire script, returns
can return from functions (later)

21

