Understanding bash

Prof. Chris GavthierDickey
COMP 2400, Fall 2008

DENVER

How does bash start?

® |{ begins by reading your confiquration files:

® |fit’s aninteractive login-shell, first /ete/profile is
executed, then it looks for:

® _bash_profile, .bash_login and /profile

® |fit’sajustaninteractive shell, Z2te/bash.bashre is
executed, followed by:

& “/bashre

Usually, people put login stuff in .profile and interactive
stuffin.bashre and do a source /bashre from
your .profile or other login script

)

DENVER

/0 Redirection

® Sowmetimes you want to use a Unix utility, but
it doesnt take standard input

® Tryadding a < at the end
® |f you want to save output to a file

® Use ">’ which sends standard output to filename

® Use>> to append the standard output to filename

* |f you want to take input from a file

o Use ‘< filename’ which reads standard input from
filename

DENVER

® We use the pipe command T to take the

standard output from one command and send
it fo the standard input of another command

® cat file | more

DENVER

Background Jobs

® We can execute any command avtomatically
in the background by adding a & At the end

® |faprogram is running, hit CTRl-Z and then type ‘bg’
® To move a job fo the foreground, type fg’
® Tolist your jobs, type ‘jobs’

DENVER

Saving Typing

® Bash keeps a history of all the commands you
execute

® Enter a command, then hit the up-arrow key
® Type ‘history’
® Thevariable HISTSIZE sets the size of your history

)

DENVER

More History

® List the history: notice the numbers?
® history 20 will show the last 20

lhuw, where nuw is one of those numbers will repeat
that command

I repeats the last command
I: will let you enter a command...remewmber sed?
l:3/xy/yX

Ifoo will repeat the last command starting with foo

)

DENVER

History cont.

® s for substitution
® caf myflie

® Ii"il will sub the last command as cat myfile’

o 5 will return the last argument of the last
command

® caf myfie

® rm ¢ will be substituted with Tm myfile’

& I:'n* will return the nth (0-9) command to the

)

DENVER

17f007? repeats the last command with foo
anywhere in it

Il & adds an & to the last command

I* is shorthand for all but the command
name of the last command

DENVER

File Perwissions

® Rewmewber back at the start of class when we
discussed Is -1?

® rwxrwxrwk lists the perwmissions

® Use the command ‘chmod’ to change permissions

® Each triplet is represented by an octal number:
* 4=r 2=w, 1=x

® chmod 794 = rwxr xr__

)

DENVER

Shell Seripting

® Shell scripting provides an easy way to
combine commands using bash

® Begin your file with #!/usr/bin/bash

DENVER

Variables

® Variables are assigned fo by =
® foo0-1

® Variables are read from by using ¢ in front

® ‘echo #foo” will print 1 on the screen

Arquments to the script are in variables ¢0 to
]

#* contains a list of all the args
returns the number of arguments

DENVER |2

More on Variables

® ‘pame is actually a shorteut for “{name)

o ¢{10) for example, is necessary to access argument 10

o {yvarname:-word)} returns varname or returns word if
varname doesn’t exist or is null

® ¥{t00:-10) returns ¢foo or 10 if ¢foo doesnt exist

%{varnawme:=word} does the same as - but sets the
variable to the defaulf value in the process

*varname:?message} prints message if varname
doesnt exist or returns varname

.] UNIVERSITY

DENVER

o ${varnawme:*word)} if varname exists and isnt
null, word is returned

® %yarname:offset:len} returns the offset

through len characters of the string (counting
from 0)

)

DENVER

If/else

The if/else command lets
us do conditional
branching

Truth in Unix is typically
0, for a non-error exit
state

False is anything else

The last command
executed is the exit status
by default

DENVER

if condition
then
statements
elif condition
then
statements
else
statements

fi

Conditions

® GCommands return their status

® We can combine with && and |l
® if statement] && statement2
® if statement! Il statement2

® For bracketed conditions:

® [conditionl 14& L condition2]
[conditionl 11l L condition2]

)

DENVER

Using L]

® [1perform various non-exit-status tests
[strl =str21]
[strl l=str2]
[strl \¢<str21]
[strl \»>str2]

* We wust escape < and > in the L 1 construet
L -nstrl 1:strl is not null (0 length)
[-z strl 1:strl is null (has 0 length)

)

DENVER

-a file or -e file: file exists
-d file: file exists and is a directory
-t file: file exists and is a reqular file

-t file: you can read the file

-g file: file exists and is non-empty

-w file: you can write to the file

-x file: you can execute the file

DENVER

-N file: file was wmodified since it was last read

-(file: you own the file

-G file: file belongs to one of your groups

filel -nt file2: filel is newer than file2

filel -ot file2: filel is older than file2

DENVER

[l 11 as an alternative

e [[11isanalternativetol]

® [tcanuse &¢ and Il within it, for example

® [t will not do globbing (expanding wildeards), but will
substitute variables and do command substitution

o ifl[41<¢4%211: then..

® Notice that we don’t have to escape < this time (in fact,
it’s an error if we do)

® [t takes the same kinds of arquments as []
)

DENVER

Returns

® We can exit by a return or exit statement:

® return return 0, return 1 ete...

8 return without an argument returns the
value of the last command run

® exit statements exit the entire seript, returns
can return from functions (later)

DENVER

