bash, part 2

Prof. Chris GavthierDickey
COMP 2400 - Unix Tools

DENVER

Quoting and Strings

® hash will interpret variables on their own

(P4

® We can also surround them by quotes: “ or
o “°fo0’ is the literal string %foo, without interpretation

* “¢to0” will becowme the string that contains the value of
*f00. The following prints 42:

® {0042 echo “¢fo0”

)

DENVER

Integer comparisons in
conditions

® Bash can distinguish between strings and
integers, but we use special comparison
operators

8 ¢ > 1= = are for strings
* -|t -gt -eq, -ge, -ne, -le are for numbers
® fo0=5:if [¢foo -1t 6 1; then echo “less than 6™ fi

)

DENVER

bash loops

® The first type of for-loop o
can only iterate fhl’OUQh Cfigr name [in 1ist]

list elements statements using $name

e e e _ done
If “in list’ isn't specified,
bash will iterate through
the arquwments to the

script or function TFo -

. for p in S$SPATH
By default, lists are 46

separated by a blank echo $p
space done

.] UNIVERSITY

DENVER

A word about lists

® Lists are separated by a
blank space, as noted

bash uses the first
character of
environment variable IFS
to determine what
separates lists

We can set it
temporarily as long as it
isn't needed by something
else

.] UNIVERSITY OF

DENVER

this at the start of
a script will print
out the arguments

separated by a comma
note that $@ isn’t

affected by IFS

OLD IFS=SIFS

I1FS=,
echo S$*

IFS=SOLD IFS

Constructing a list

® Llists arereally just mylist=25
strings separated by mylist="30 Smylist”
sowme element: typicallya mylist="35 Smylist”
space

the following will

print 35 30 25

® We construet thewm using echo Smylist

quoting

.] UNIVERSITY OF

DENVER

More on lists

® We've seen how to add,

but how do we remove
fromalis'l'? # this at the start of

stack="S1 S${stack:—-eos' '}
® What’s that first line
doing? # we can remove from a
list using pattern
matching as follows:

. :
Note the space in the Stacke${stack#* }

second line after *

& Whyis that needed?

.] UNIVERSITY OF

DENVER

Patterns Matching

* #var#pattern)

® if pattern matches beginning, delete the shortest
match and return the rest

® Try p=4pwd); echo ¥p#/*/}
® var##pattern)

® if pattern matches beginning, delete the longest
match, and return the rest

Try p=4pwd); echo ¥p==/* /)

)

DENVER

* ¥varZpattern)

® Matches the shortest part at the end of var,
deletes it and returns it

* p=¢(pwd): echo «p%/*}

o HvarZZpattern)

® Matches the longest part at the end of var,
deletes it and returns it

p=¢(pwd); echo ApZ%/*}
)

DENVER

* var/pattern/str}

® The longest match to pattern in var is replaced
by str

e p=4(pwd); echo %p/home/myhome}

* var/pattern/str)

® Replaces all oceurrences of pattern in var with
str

p=¢(pwd); echo ¥p/\//:}
)

DENVER

A word on bash
patterns

® hash patterns are NOT reqular expressions:
7 matches zero or one characters
* matches any character

[lis a set (as with regexes), so [a-f] matches a
through £

[a-f]1 matches anything that is not a to f.

{1.4) expandsto 1 23 4
try echo glem,ift,0odie}s

)

DENVER

More bash patterns

® You can expand the bash patterns by using:
shopt -s extglob, which gives you a bit more power
+(pattern) matches one or more copies of pattern
(patllpat2) matches patl or pat2
Apattern) gives you 0 or 1 of the pattern
*(pattern) gives you 0 or more of the pattern
@(pattern) gives exactly 1 match of the pattern

l{pattern) matches anything NOT the pattern

)

DENVER

12

bash Arrays

® bash also has arrays with the following
syntax:

fool01="hello” fool 13="world”

too=(hello world)

foo=(L11=world L01=hello)

foo=(hello L51-world)

echo “¥fool51)"

We can also use “{fool@l}” and “#{fool*1}"

)

DENVER

More on Arrays

* Wonder what indices are used?

& ¢cho “!foolel)”

* How can we iterate through the array?

e foriin “*foolel}"* do echo %: done

o {#tool9]) returns the length of element 9
“(#fool @]} returns now many elements are in foo

)

DENVER

hash functions

* We define a bash function | |
uﬁngfhe?unvﬁoﬁ' function printargs
keyword {

echo “printargs: $*”
echo “S$0: $1 $2 S$3 $47
echo “S$S# arguments”

J

Arguwments to functions
are accessed just like
script arguwments: ¢1 to
%n, where n is an integer

.] UNIVERSITY OF

DENVER

functions...

® New variables in a
seript, outside a function
are global to the script

® New variablesina
function are global to
the script

& Wecan add ‘local’
before the declaration
to keep thewm in
function scope

.] UNIVERSITY OF

DENVER

function printargs

{

local varl=“hello”

echo “printargs: S$*”
echo “S$0: $1 $2 $3 $47”7
echo “S$# arguments”
echo “Svarl”

J

echo “\Svarl is S${varl:-null}”

functions...

® We call functions just by

using their name function foo

{

for 1 in “$S@”; do
echo “foo: S1”

done

® When we source them,
they becowme global, like
they‘ve been exported }

& We can use recursion if foo bar{l..5)
we'd like

.] UNIVERSITY OF

DENVER

The bash case

function casecheck

{
for 1 in “$@”; do
case Si in
o ‘case’ is like switceh in hello)
other languages, but does echo “hi!” ;;
pattern matching on the world)
arguments echo “goodbye!”
a | b | c)
patterns can be echo “x y z!” ;;
separated by the pipe T *)
echo “default”
esacC

done

.] UNIVERSITY OF

DENVER

while/until

® pash also has the two
comwon loop construets:
while and until

while may or may not
execute, depending on the
command or condition

until always executes at
least once

.] UNIVERSITY OF

DENVER

while condition
do

statements
done

until condition
do

statements
done

hash math

® Arithwmetic can be done # the following
in bash using 4()), which # echos a 4
signifies an arithmetic v=$((1+ 6/ 2))
expression echo $v

Old-school: expr was used

We don’t have to escape if [$(((5+6)/11)) = 1 1
special characters or then

even use ¢ in front of echo “1”

variables (though it’s not £1

a bug to do so)

.] UNIVERSITY OF

DENVER

math...

® pash arithmetic can also
use logicals: &€&, I, but
the truth valueis 1, not
zero!
the following creates

We can declare a # x and assigns 6 to it
variable as an integer let x=5+1; echo $x
using declare -i var

We can declare and
assign using let as shown

.] UNIVERSITY OF

DENVER

math operators

++; increment by 1 ® 7:rewmainder

--: decrement by 1 **: exponentiation

+: plus

<< bit-shift left

-: minvs »: bit-shift right

*: mwultiplication &: bitwise and

/: divide |: bitwise or

DENVER

": bitwise not

l: logical not

": bitwise exclusive or
,: sequential evalvation
¢: less than

>: greater than

.] UNIVERSITY OF

DENVER

¢=: less than or equal

»=: greater than or equal
==: equal

l=: not equal

&¢: logical and

II: logical or

loop arithmetic

* Wecanusell) for
arithwetic in our loops, ~ * for iooP |
or test conditions with or ((init ; end ; update))

] [H d
thew in while and until Osta foment s

loops done

.] UNIVERSITY OF

DENVER

