
bash, part 2
Prof. Chris GauthierDickey
COMP 2400 - Unix Tools

Quoting and Strings

• bash will interpret variables on their own

• We can also surround them by quotes: ‘’ or “”

• ‘$foo’ is the literal string $foo, without interpretation

• “$foo” will become the string that contains the value of
$foo. The following prints 42:

• foo=42; echo “$foo”

2

Integer comparisons in
conditions

• Bash can distinguish between strings and
integers, but we use special comparison
operators

• <, >, !=, =, are for strings

• -lt, -gt, -eq, -ge, -ne, -le are for numbers

• foo=5; if [$foo -lt 6]; then echo “less than 6”; fi

3

bash loops
• The first type of for-loop

can only iterate through
list elements

• If ‘in list’ isn’t specified,
bash will iterate through
the arguments to the
script or function

• By default, lists are
separated by a blank
space

4

IFS=:
for p in $PATH
do
echo $p

done

for name [in list]
do
statements using $name

done

A word about lists
• Lists are separated by a

blank space, as noted

• bash uses the first
character of
environment variable IFS
to determine what
separates lists

• We can set it
temporarily as long as it
isn’t needed by something
else

5

this at the start of
a script will print
out the arguments
separated by a comma
note that $@ isn’t
affected by IFS
OLD_IFS=$IFS

IFS=,

echo $*

IFS=$OLD_IFS

Constructing a list

• Lists are really just
strings separated by
some element: typically a
space

• We construct them using
quoting

6

mylist=25
mylist=”30 $mylist”
mylist=”35 $mylist”

the following will
print 35 30 25
echo $mylist

More on lists

• We’ve seen how to add,
but how do we remove
from a list?

• What’s that first line
doing?

• Note the space in the
second line after *

• Why is that needed?

7

this at the start of
stack=“$1 ${stack:-eos‘ ’}

we can remove from a
list using pattern
matching as follows:
stack=${stack#* }

Patterns Matching
• ${var#pattern}

• if pattern matches beginning, delete the shortest
match and return the rest

• Try p=$(pwd); echo ${p#/*/}

• ${var##pattern}

• if pattern matches beginning, delete the longest
match, and return the rest

• Try p=$(pwd); echo ${p##/* /}

8

• ${var%pattern}

• Matches the shortest part at the end of var,
deletes it and returns it

• p=$(pwd); echo ${p%/*}

• ${var%%pattern}

• Matches the longest part at the end of var,
deletes it and returns it

• p=$(pwd); echo $(p%%/*}

9

• ${var/pattern/str}

• The longest match to pattern in var is replaced
by str

• p=$(pwd); echo ${p/home/myhome}

• ${var//pattern/str}

• Replaces all occurrences of pattern in var with
str

• p=$(pwd); echo ${p//\//:}

10

• bash patterns are NOT regular expressions:

• ? matches zero or one characters

• * matches any character

• [] is a set (as with regexes), so [a-f] matches a
through f

• [!a-f] matches anything that is not a to f.

• {1..4} expands to 1 2 3 4

• try echo g{em,ift,oodie}s

11

A word on bash
patterns

More bash patterns
• You can expand the bash patterns by using:

• shopt -s extglob, which gives you a bit more power

• +(pattern) matches one or more copies of pattern

• (pat1|pat2) matches pat1 or pat2

• ?(pattern) gives you 0 or 1 of the pattern

• *(pattern) gives you 0 or more of the pattern

• @(pattern) gives exactly 1 match of the pattern

• !(pattern) matches anything NOT the pattern

12

bash Arrays
• bash also has arrays with the following

syntax:

• foo[0]=“hello”; foo[1]=”world”

• foo=(hello world)

• foo=([1]=world [0]=hello)

• foo=(hello [5]=world)

• echo “${foo[5]}”

• We can also use “${foo[@]}” and “${foo[*]}”

13

More on Arrays

• Wonder what indices are used?

• echo “${!foo[@]}”

• How can we iterate through the array?

• for i in “${foo[@]}”; do echo $i; done

• ${#foo[5]} returns the length of element 5

• ${#foo[@]} returns now many elements are in foo

14

bash functions

• We define a bash function
using the ‘function’
keyword

• Arguments to functions
are accessed just like
script arguments: $1 to
$n, where n is an integer

15

function printargs
{
echo “printargs: $*”
echo “$0: $1 $2 $3 $4”
echo “$# arguments”

}

functions...
• New variables in a

script, outside a function
are global to the script

• New variables in a
function are global to
the script

• We can add ‘local’
before the declaration
to keep them in
function scope

16

function printargs
{
local var1=“hello”

echo “printargs: $*”
echo “$0: $1 $2 $3 $4”
echo “$# arguments”
echo “$var1”

}

echo “\$var1 is ${var1:-null}”

functions...

• We call functions just by
using their name

• When we source them,
they become global, like
they’ve been exported

• We can use recursion if
we’d like

17

function foo
{
for i in “$@”; do
echo “foo: $1”

done
}

foo bar{1..5}

The bash case

• ‘case’ is like switch in
other languages, but does
pattern matching on the
arguments

• patterns can be
separated by the pipe ‘|’

18

function casecheck
{
for i in “$@”; do
case $i in
hello)
echo “hi!” ;;

world)
echo “goodbye!” ;;

a | b | c)
echo “x y z!” ;;

*)
echo “default” ;;

esac
done

}

while/until

• bash also has the two
common loop constructs:
while and until

• while may or may not
execute, depending on the
command or condition

• until always executes at
least once

19

while condition
do
statements ...

done

until condition
do
statements ...

done

bash math
• Arithmetic can be done

in bash using $(()), which
signifies an arithmetic
expression

• Old-school: expr was used

• We don’t have to escape
special characters or
even use $ in front of
variables (though it’s not
a bug to do so)

20

the following
echos a 4
v=$((1 + 6 / 2))
echo $v

if [$(((5+6)/11)) = 1]
then
echo “1”

fi

math...

• bash arithmetic can also
use logicals: &&, ||, but
the truth value is 1, not
zero!

• We can declare a
variable as an integer
using declare -i var

• We can declare and
assign using let as shown

21

the following creates
x and assigns 6 to it
let x=5+1; echo $x

math operators
• ++: increment by 1

• --: decrement by 1

• +: plus

• -: minus

• *: multiplication

• /: divide

• %: remainder

• **: exponentiation

• <<: bit-shift left

• >>: bit-shift right

• &: bitwise and

• |: bitwise or

22

• ~: bitwise not

• !: logical not

• ^: bitwise exclusive or

• ,: sequential evaluation

• <: less than

• >: greater than

• <=: less than or equal

• >=: greater than or equal

• ==: equal

• !=: not equal

• &&: logical and

• ||: logical or

23

loop arithmetic

• We can use (()) for
arithmetic in our loops,
or test conditions with
them in while and until
loops

24

for loop
for ((init ; end ; update))
do
statements

done

for ((i=1; i <= 5; i++))
do
echo $i

done

