
bash, part 3
Chris GauthierDickey

More redirection

• As you know, by default we have 3 standard
streams:

• input, output, error

• How do we redirect more than one stream?

• This requires an introduction to file descriptors

2

File Descriptors
• Recall that Unix uses files to represent many

types of things, from devices to network
streams

• Each process has its own set of streams
which are numbered (file descriptor)

• standard input: file descriptor 0

• standard output: file descriptor 1

• standard error: file descriptor 2

3

Redirecting Streams

• We can redirect any file descriptor using:

• n> file, where n is a number from 0 to the maximum
number of file descriptors

• n< file, redirects the file contents to descriptor n

• By default, > file and < file are the same as 1> file and 0<
file

• To redirect standard output and standard error:

• wget http://www.google.com > outfile 2> errfile

4

http://www.google.com
http://www.google.com

Appending

• We can append instead of overwriting:

• >> redirects standard out, but appends

• n>>file, redirects the fd to file, but appends

• Why would we want to do this?

5

printf instead of echo

• Echo is useful, but
printf gives us more
control over writing

• printf works by
reading a string and
passing arguments to
it for substitution

6

the following prints
hello world\n
printf “hello %s\n” world

Formatting strings
with printf

• %c: ASCII character

• %d, %i: decimal digit

• %e: floating point
([-]d.precision)[+-]dd)

• %E: floating point
([-]d.precisionE[+-]dd)

• %f: floating point
([-]ddd.precision)

• %s: string

• %o: octal value
(unsigned)

• %u: unsigned decimal

• %x: unsigned hex

• %%: a literal %

7

Reading user input

• We can get user input by using the ‘read’
command

• read a b c will take a line of input and assign
the first word to a, the next to b, and finally to
c

• If you input more words, the final variable will
get the rest of the line

8

Example reading
• Try this next example

using 2, 3, and 4
arguments

• If you don’t give it
enough arguments, all
the vars aren’t filled

• If you give it too many,
the last one takes the
rest of the line

9

read in user input to
a, b, and c

read a b c
echo “a: $a, b: $b, c: $c”

Reading Options

• If you want to read into an array, use the -a
option

• read -a args; echo ${args[0]} ${args[1]}

• If you want to separate lines by something
other than newline, use -d

• read -d , args; echo $args

• Entering hello,world will echo hello

10

More reading options

• -s will prevent what the user types from
being echoed (think password)

• -n tells read how many characters to read in

• -e tells read to use the readline facilities,
which gives advanced editing features on the
line

11

Redirecting to a loop

• Reading is great, but we can redirect from a
file to act as input

• We can redirect to functions, loops, if-
statements

• Read will then take its input from the redirected item

12

Example: redirecting to
a loop

• Here we redefine IFS to
be : so we can read
from /etc/passwd

• Notice how we redirect
the file to standard
input

13

redirecting from a file
to a loop
IFS=:
while read v1 v2; do
echo “v1: $v1, v2: $v2”

done < /etc/passwd

Command blocks

• We can enclose any set of commands by { },
which turns that set of commands into a
block.

• Once it’s a block, we can redirect input or
output:

• { read v; echo $v } < /etc/passwd

14

Fun Places for
Redirection

• /dev/null: This is the proverbial bit-bucket--
anything sent to here just goes away

• /dev/random: This is a string of random data
that you can read from

15

Process Handling

• Recall:

• CTRL-Z suspends a running job

• fg moves the last background job to the foreground

• bg moves the last suspended job into the background

• jobs lists all the jobs

16

Jobs
• Each job has a job ID, the jobs commands lists

all your processes with their job ID

• %n will refer to job ID n

• %foo will refer to the job with the command
name that begins with foo

• %?foo will refer to the job with the command
name that contains foo

• %- is the most recent bg job, %+ is the 2nd
most recent

17

Signals

• CTRL-Z is actually a signal: the suspend signal

• To list all the signals, type kill -l

• The only signals mapped to control keys are:

• CTRL-C as SIGINT

• CTRL-Z as SIGTSTP

• CTRL-\ as SIGQUIT (stronger than INT)

• stty can map signals to keys

18

The kill command

• kill sends signals to processes

• By default, kill sends SIGTERM

• You can specify a signal by number or by name
if preceeded by a dash

• kill -HUP 2125

• You can refer to a job by its process ID (just a
number) or its job ID (%number)

19

The ps command

• ps is like ls, but for processes

• By default, it lists a PID, TTY, time, and
command

• The time is processor time so far used by the process

• We can pass args to ps to get more info:

• Just man ps for details!

20

Some ‘standard’ ps args

• On the Linux systems, ‘ps -e’ lists all the
processes by the user

• ‘ps ax’ does a similar thing, but includes all
processes

• ‘ps aux’ adds user IDs

21

Trapping Signals

• Trapping signals can help your program deal
with abnormal situations

• To trap signals, we use:

• trap cmd sig1 sig2 ...

• Here, cmd is the name of the command or function to
call if one of the listed signals is reached

• Execution returns to the command following the one
where the signal was raised

22

Example Trap

• Here, the trap command
defines a handler for INT

• The function inthandler
is called whenever the
process receives SIGINT

• Run it and try to kill it
with CTRL-C

23

trap SIGINT
trap inthandler INT

function inthandler
{
echo “You hit CTRL-C!”

}

while true; do
sleep 60

done

Ignoring a Signal

• The nohup command will
cause the HUP signal to
be ignored (called when
you exit your shell)

• We can untrap a signal
using -

• trap - HUP

24

Ignore any HUPs, similar
to the nohup command
function ignorehup {
trap “” HUP
eval “$@”

}

Coroutines

• Let’s say you have multiple cores and want to
run commands simultaneously

• We start each command in a script with &

• However, as soon as the script continues, any
remaining processes not complete will enter an
orphaned state

• foo &, bar, exit

• If bar completes before foo, foo will become an orphan

25

Coroutines

• To fix this, we add a ‘wait’ command at the end

• foo &; bar; wait

• This forces the script to wait until all background
scripts complete

• wait can also take PID of the job

• How do we get a PID of a process?

26

The PID variable

• $$ is always the process ID (PID) of the process
that is running

• It’s useful for making temporary files

• cat ‘junk’ > /tmp/myfile$$

27

Subshells

• Instead of spawning multiple processes, we
can also create subshells

• The syntax of a subshell looks like a code block, but we
use () instead

• (exit); echo “testing”

• Here, exit is run in a subshell, which doesn’t cause the
parent to terminate

• subshells inherit environment variables, standard
streams, signal traps and the current directory

28

More Tools

• Unix contains a host of programs that belong
in your toolbox

• Over the next few slides, several of the more
widely used tools will be presented

29

find

• ‘find’ is a command that searches the
directory tree, performs operations, and can
execute commands on results

• Don’t forget: man find

• Basic syntax:

• find <path> <expression>

30

Example Finds

• find . -name ‘*.txt’

• Finds all the files from the current directory that end
with .txt

• find . -name ‘*.swp’ -exec rm {} \;

• Finds all the files that end in .swp and removes them

• {} is substituted with the filename, \; keeps bash from
interpreting the ; on the command line

31

cutting things

• ‘cut’ is another simple utility that is useful for
columned data

• cut -d ‘:’ -f1 /etc/passwd

• -d is the delimiter, -f is the field, which takes a list that
is N, N-, N-M, or -M

• that’s the nth column, nth to the end, nth to the mth, or
1st to the mth column

• By default, TAB is the delimiter

32

More tools
• ‘head’ lists the first lines of a file

• head -n 20 myfile: lists the first 20 lines

• ‘tail’ lists the last lines of a file

• tail myfile or tail -n 20 myfile lists the last 20 lines

• ‘sort’ sorts text files, various options can sort
on columns, numerically, etc

• sort myfile: by default it sorts each line
alphanumerically

33

More tools...
• date: gives you the current date

• time: gives you the timing statistics for
executing a command

• zdump: gives you time in a given time zone

• touch: creates a file or sets the modified time
to the current time

• at: runs a job at a given time (usually for
running a job just once)

34

More tools...

• sleep: suspends the process for some number
of seconds

• cal: prints a calculator

• expr: an all-purpose calculator (just like $(()))

• dc: an arbitrary precision calculator that uses
reverse polish notation (RPN)

35

More tools

• grep <pattern> file: searches for the regular
expression in file and prints out the line which
it’s contained on

• grep ‘function foo’ *.sh

• ‘wc’ gives word counts, line counts, byte
counts, depending on the argument

• wc -l myfile

36

More tools

• ‘du’ will list disk usage--by default, it runs in
your current directory

• try du -h for more readable info

• And even more---where can you look?

• /usr/bin, /usr/local/bin, /usr/sbin, /usr/local/sbin

37

getopts for better
options

• To improve your ability to
get options for your shell
scripts, use getopts

• You give it letters that
can be arguments (think
-a -b)

• A colon after a letter
means it needs an
argument, which is put in
$OPTARG

38

the initial : here prevents silly
error messages from getopts when
it fails. opt is set to “?” if
it was an illegal argument
while getopts “:ab:c” opt; do

case $opt in
a) echo “arg a passed” ;;
b) echo “arg b with $OPTARG” ;;
c) echo “arg c passed” ;;
\?) echo ’usage: blah blah blah’

exit 1
esac

done

getopts continued
• getopts sets OPTIND to the argument number

to be processed next each time it’s called

• We can use a new command, ‘shift’, which left
shifts all the arguments by a given number (1
by default)

• Why do we need shift to do this? What use is it?

• After using getopts, we may want to process the rest of
the arguments, so we do a shift $((OPTIND - 1))

• We also can’t say 1=$2, for example

39

Debugging bash scripts

• Here’s a few things you can do now that your
scripts are getting more sophisticated

• Use the line set -o verbose or set -o xtrace at the start
of your script

• Verbose prints each line as it executes, xtrace prints the
line with any substitutions in place

40

Fake Signals
• You can also trap ‘fake’ signals for debugging

• EXIT, called when exit is called from the script

• ERR, called when any command returns non-zero

• saves the error code in $?, which you should save

• DEBUG, called whenever the shell executes a statement

• useful for monitoring a variable

• RETURN , called when a script, function, or source
finishes

41

Gotta catch ‘em all

• Not really, you just trap the ones you want

• trap ‘echo script has exited’ EXIT

• Untrap them like other signals

• trap - EXIT

42

