bash, part 2

Chris GauthierDickey

DENVER

More redirection

& Asyou know, by default we have 3 standard
streams:

® input output, error

® How do we redirect more than one stream?

® This requires an introduction fo file descriptors

DENVER

File Descriptors

® Recall that Unix uses files to represent many
types of things, from devices to network

streams

® Each

process has its own set of streams

which are numbered (file descriptor)

® standard input: file descriptor 0

® standard output: file descriptor 1

standard error: file descriptor 2

DENVER

Redirecting Streams

® We can redirect any file descriptor using:

n> file, where n is a number from 0 to the maximum
nuwmber of file descriptors

n< file, redirects the file contents to desceriptor n

Ey defavlt, » file and < file are the same as 1> file and 0¢
le

To redirect standard output and standard error:

® wget http:/www.google.com > outfile 2> errfile

)

DENVER

http://www.google.com
http://www.google.com

Appending

® We can append instead of overwriting:

® > redirects standard out, but appends

® nyfile, redirects the fd to file, but appends

* Why would we want to do this?

)

DENVER

printf instead of echo

® Echoisuseful but
printf gives us more o oltemine o
control over Writing & nesic woslave &

rintf “hello %s\n” world
printf works by ’
reading a string and
passing arguments to
it for substitution

DENVER

Formatting strings
with prm’rf

Ze: ASCIl character %$: string

%d, Zi: decimal digit %0: octal value
(unsigned)

%e: floating point

([-1d.precision)l+-1dd) %u: unsigned decimal

%E: floating point 7%x: unsigned hex
([-1d.precisionEL+-1dd)
%%: aliteral Z

%f: floating point
([-lddd.precision)

DENVER

Reading user input

® We can get user input by using the read”
command

® read ab ¢ will take a line of input and assign
the first word to a, the next to b, and finally to
¢

® |fyou input more words, the final variable will
get the rest of the line

DENVER

Example reading

® Try this next example
using 2, 3 and 4
arguments

If you don't give it § reac in user input to
enough arguments, all
fhe vars al’eh"l' ﬁ"ed echo “a: $a, b: $b, c: $c¢”

read a b c

If you give it too many,
the last one takes the
rest of the line

DENVER

Reading Options

® |fyou want to read into an array, use the -a
option

® read -a args: echo ¢{argsl 01} ¢{argsL 11}

® |f you want to separate lines by something
other than newline, use -d

® vread-d, args: echo ‘args

Entering helloworld will echo hello

)

DENVER

More reading options

-s will prevent what the user types from
being echoed (think password)

-h tells read how many characters to read in

-e tells read to use the readline facilities,
which gives advanced editing features on the

DENVER

Redirecting to a loop

® Reading is great, but we can redirect from a
file to act as input

® We can redirect to functions, loops, if-
statements

o Read will then take its input from the redirected item

DENVER

Example: redirecting to
a loop

* HereweredefineIFS 10 4 rcqirecting £rom a £ile
be : $0 we can read # to a loop

IFS=:

from /e'rc/paSSWd while read vl v2; do

echo “wvl: $vl, v2: S$v2”

* Notice how we redirect c°ne < /stc/passwd
the file to standard

DENVER

Command blocks

® We can enclose any set of commands by { 2,

which turns that set of commands into a
block.

® (Onceit’s a block, we can redirect input or
output:

® {readv; echo %v)} < /ete/passwd

DENVER

Fun Places for
Redirection

® /dev/null: This is the proverbial bif-bucket--
anything sent to here just goes away

o /dev/randowm: This is a string of random data
that you can read from

DENVER

Process Handling

8 Reeall:

® (TRI-Z suspends a running job

& fg wmoves the last background job to the foreground
® hg wmoves the last suspended job into the background
® jobs lists all the jobs

)

DENVER

Jobs

Each job has a job 10 the jobs commands lists
all your processes with their job 1P

Z%n will refer to job 1P n

Z%foo will refer to the job with the command
name that begins with foo

%00 will refer to the job with the command
name that contains foo

%- is the most recent bg job, %+ is the 2nd
most recent

DENVER

Signals

® (TRI-Z is actually a signal: the suspend signal
® Tolist all the signals, type kill -1

® The only signals mapped to control keys are:
® (TRL-C as SIGINT
® (TRIL-Z as SIGTSTP
CTRIA as SIGQUIT (stronger than INT)

& gstty can map sighals o keys

)

DENVER

The kill command

® kill sends signals to processes
o By default, kill sends SIGTERM

® You can specify a signal by number or by name
if preceeded by a dash

o kill -HUP 2129

® You can refer to a job by its process IP (just a
number) or its job IV (Znuwmber)

DENVER

The ps command

® psis likels, but for processes

o By default, it lists a PID TTY time, and
command

® The time is processor time so far used by the process

® We can pass args to ps to get more info:

® Just man ps for details!

DENVER

Some standard’ ps args

® (Onthe Linux systewms, ps -¢’ lists all the
processes by the user

® ‘psax’ does a similar thing, but includes all
processes

® psaux’ adds user IDs

DENVER

Trapping Signals

® Trapping signals can help your program deal
with abnormal sitvations

® Totrap signals, we use:
® trap emd sigl sig2 ...

® Here, emd is the nawme of the command or function to
call if one of the listed signals is reached

Execution returns to the command following the one
where the signal was raised

)

DENVER

Example Trap

® Here, the frap command # trap SIGINT
defines a handler for INT trap inthandler INT

function inthandler

® The function inthandler {
is called whenever the echo “You hit CTRL-C!”
process receives SIGINT }

while true; do

® Runitfandtry to kill it sleep 60
with CTRI-C done

.] UNIVERSITY OF

DENVER

lgnoring a Signal

® The nohup command will
cause the HUP signal to
be ignored (called when # Ignore any HUPs, similar
you exit your shell) # to the nohup command

function ignorehup ({
. trap “” HUP
® We can untrap a signal eval “$@”

using - }

® frap- HUP

.] UNIVERSITY OF

DENVER

Coroutines

® Let’s say you have multiple cores and want to
run commands simultaneously

o We start each command in a seript with &

* However, as soon as the script continuves, any
remaining processes not complete will enter an
orphaned state

foo &, bar, exit

If bar completes before foo, foo will becowme an orphan

)

DENVER

Coroutines

& To fix this, we add a ‘wait’ command at the end
® {00 & bar: wait

® This forces the script to wait until all background
scripts complete

® wait can also take PID of the job

* How dowe get a PID of a process?

)

DENVER

The PIP variable

® % s always the process ID (PIP) of the process
that is running

* It's useful for making temporary files
® cat ‘junk’ > /Amp/myfiles

DENVER

Subshells

® |nstead of spawning multiple processes, we
can also create subshells

® The syntax of a subshell looks like a code block, but we
use () instead

& (exit): echo “testing”

o Here, exitis runin a subshell, which doesnt cause the
parent to terminate

subshells inherit environment variables, standard
streaws, signal traps and the current directory

.] UNIVERSITY

DENVER

More Tools

® Unix contains a host of programs that belong
in your toolbox

& (ver the next few slides, several of the more
widely used tools will be presented

DENVER

find

® ‘find’ is a command that searches the
directory tree, performs operations, and can
execute commands on results

® Pont forget: man find

® PBasic syntax:

® find <path> <expression>

DENVER

Example Finds

® find.-name *ixt’

® Finds all the files from the current directory that end
with txt

® find.-name “.swp’ -exec rm O \;

® Finds all the files that end in .swp and removes them

o {}is substituted with the filename, \; keeps bash from
interpreting the ; on the command line

)

DENVER

cutting things

® ‘cut’is another simple utility that is useful for
columned data

® cut-d?¥-fl /ete/passwd

® -dis the delimiter, -t is the field, which takes a list that
is N, N- N-M, or -M

® that’s the nth column, nth to the end, nth to the mth, or
st to the mth column

o By default, TAB is the delimiter
b

DENVER

More tools

& ‘head’ lists the first lines of a file
® head -n 20 wmyfile: lists the first 20 lines

® ‘tail’ lists the last lines of a file

® tail myfile or tail -n 20 myfile lists the last 20 lines

® ‘sort’ sorts text files, various options can sort
on columns, numerically, efe

® sorf wyfile: by default it sorts each line
alphanuwerically

)

DENVER

More tools...

date: gives you the current date

time: gives you the timing statistics for
executing a command

zduwmp: gives you time in a given time zone

touch: creates a file or sets the wmodified time
to the current time

at: runs a job at a given time (usuvally for
running a job just once)

DENVER
34

More tools...

sleep: suspends the process for some number
of seconds

cal: prints a calculator
expr: an all-purpose calculator (just like 4(()))

de: an arbitrary precision calculator that uses
reverse polish notation (RPN)

DENVER

More tools

® grep <pattern> file: searches for the reqular
expression in file and prints out the line which
it’s contained on

® grep function foo’ *.sh

® ‘we’ gives word counts, line counts, byte
counts, depending on the argument

* we -| myfile

DENVER

More tools

o dv’ will list disk usage--by default, it runs in
your current directory

® {ry du -h for more readable info

® And even more---where can you look?

® /usr/bin, /usr/local/bin, /usr/shin, /usr/local/shin

)

DENVER

getopts for better
options

® Toimprove your ability to
gef Opﬂ(ms fOl’ your She" the initial : here prevents silly
Scl’ipfs, Use gefopfs error messages from getopts when

it fails. opt is set to “?” 1if
it was an illegal argument

YOU give it leﬂ’el’s fhaf while getopts “:ab:c” opt; do
can be arquments (think case $opt in

a) echo “arg a passed” ;;
-a -b) b) echo “arg b with $OPTARG” ;;
c) echo “arg c passed” ;;

\?) ho ' : blah blah blah’
A colon aftfer a letter i 1 oog8r oS BAsR BAE

means it needs an esac

argument, which is putin "¢
S0PTARG

.] UNIVERSITY OF

DENVER

getopts continved

® getopts sets OPTIND to the argument number
to be processed next each time it’s called

* We can use a new command, shift’ which left
shifts all the arguments by a given number (1
by default)

. Why do we need shift to do this? What use is it?

* After using getopts, we may want to process the rest of
the arguwments, so we do a shift ¢((OPTIND - 1))

We also can't say 1=92, for example

DENVER

39

Pebugging bash seripts

® Here’s a few things you can do now that your
scripts are getting more sophisticated

® Use the line set -0 verbose or set -0 xtrace at the start
of your seript

® Verhose prints each line as it executes, xtrace prints the
line with any substitutions in place

)

DENVER

Fake Signals

® You can also frap fake’ signals for debugging
o EXIT, called when exit is called from the seript
o ERR, called when any command returns non-zero
& saves the error code in %7 which you should save
® PEBUG called whenever the shell executes a statement
o yseful for monitoring a variable

RETURN, called when a seript, function, or source
finishes

)

DENVER

Gotta cateh ewm all

® Not really, you just trap the ones you want
® trap ‘echo script has exited’ EXIT

® Untrap thewm like other signals
® trap - EXIT

DENVER

