Understanding
Makefiles

COMP 2400, Fall 2008
Prof. Chris GauthierDickey

Why Makefiles?

® Unix has been around for a long, long time

® Makefies have been around about as long
(1977)

® Makefiles are the defacto standard when it
comes to Unix compilation

® Many modern projects just let the IDE do dependency
tracking

o [DEs are great for that, but have trouble with general
non-language build instructions

2

More on make

® Various versions have floated around over the
years

® Most Unix systems have GNUmake, which
we’'ll use, or BSPmake

® |t has some non-portable (to other make) things, but
that’s usually not a problem

®* Most open-source projects use make, usually
generated by the auto-tools

What do makefiles do?

® A makefileis a set of instructions basically
telling the 'make’ program how to do
something

® |t’s that general--it doesnt have to be compiling source,
but it mostly is

® |t’s a program that looks at dependencies and does
something” when those dependencies have been
modified

Make for compilation

® The most common use of make is for
compilation

® Doing anything system admin related will often force
you to do this more than you can imagine

® Packages, projects, etc, especially open-source projects,
are often compiled from scratch

o Kernels are also recompiled, so understanding make is
good for that too (even though today it’s mostly
automated)

Make syntax

o Easy stuff first:

® #begins a comwment, regardless of where it’s placed
® |tdoesnt line-wrap

® |fcan begin in the middle of a line

Rules and Targets

o Rules tell make how to
execute a series of
commands

target: dependencies ...
commands

® target should be the
result of the make

dependencies are what
make checks to
determine if target
should be remade

Minor lssues

* Makefiles are particular about spacing
® Your set of commands each occur on one line

® You MUST put a tab character before each command

® The commands can be any Unix program found
in your path

More on Targets

® Make works by looking at the modification
date of the target and dependencies

® |fthetarget doesn’t exist, it executes the associated
commands

® |f the target date is older than any of the dependencies,
the commands are executed

An Aside on (

® As a Unix user/adwmin, you may have to compile
projects fo add functionality

® For example, you may want to add a feature for your
specific hardware to the kernel

®* Many of these are written in C, so it’s useful
to understand what C is and looks like

C Compilation

® (> supports separate compilation, meaning that
any C file can be turned into code that can be
combined

® Each C file is turned into an object file by the
compiler:

& gee -c file.c

® Here, gee is the compiler, the flag -¢ says to furn it into
an object file, by default, it will be called file.o

C Cowmpilation...

® (Once you have a collection of object files, they
are combined into an executable file

® gec -0 myprog file.o f0o.0 bar.o

® This results in a program called myprog that can be
executed

® Every C program links with the C library

& Every Unix system is based on the C library, so
it’s always there

An Example

example taken from the GNU make manual

edit : main.o kbd.o command.o display.o \
insert.o
cc -0 edit main.o kbd.o command.o display.o \
insert.o

main.o : main.c defs.h
cCc —-Cc mailn.c
kbd.o : kbd.c defs.h command.h
cc —-c kbd.c
command.o : command.c defs.h command.h
cc —-c command.c
display.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
cc —-c 1nsert.c
clean
rm edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

Things to Note

® Your target, dependencies and commands can
only run a single line--no newlines

® You continve a line with a \, which escapes the newline

® [ependencies can refer to targets in the
Makefile also

* We have a special target called clean’, which
removes all the old object files

Variables

® wake can use variables

to simplify the Makefile = obJjects = main.o kbd.o \
command.o display.o \

insert.o

® We can use them to make
sure we dont miss things, cqit : s (objects)
like adding all the cc -0 edit $(objects)
dependencies

Understanding the
clean’ rule

By default, make runs down the list of targets
and executes thew if they’re not up fo date

The ‘clean’ rule doesnt have dependencies and
never exists

If everything is up to date, clean ¢an be run
automatically (not what you want!)

Instead, insert a .PHONY target ahead of it!

The clean rule in action

. PHONY :
clean :
-rm edit $(objects)

® clean can now only be
run if you type ‘make
clean’

The preceding - prevents
an echo to the screen
when it’s executing

Nawe of your Makefile

& GNU make tries the following:
GNUmakefile, makefile, Makefile
Usuvally, you should use the last two

Most source files are lower-case, therefore Makefile
appears at the top of a sorted list of files

® |fyou pass -f, you can specify the makefile
name

