
Understanding
Makefiles
COMP 2400, Fall 2008

Prof. Chris GauthierDickey

Why Makefiles?
• Unix has been around for a long, long time

• Makefiles have been around about as long
(1977)

• Makefiles are the defacto standard when it
comes to Unix compilation

• Many modern projects just let the IDE do dependency
tracking

• IDEs are great for that, but have trouble with general
non-language build instructions

2

More on make

• Various versions have floated around over the
years

• Most Unix systems have GNUmake, which
we’ll use, or BSDmake

• It has some non-portable (to other make) things, but
that’s usually not a problem

• Most open-source projects use make, usually
generated by the auto-tools

3

What do makefiles do?

• A makefile is a set of instructions basically
telling the ‘make’ program how to do
something

• It’s that general--it doesn’t have to be compiling source,
but it mostly is

• It’s a program that looks at dependencies and ‘does
something’ when those dependencies have been
modified

4

Make for compilation

• The most common use of make is for
compilation

• Doing anything system admin related will often force
you to do this more than you can imagine

• Packages, projects, etc, especially open-source projects,
are often compiled from scratch

• Kernels are also recompiled, so understanding make is
good for that too (even though today it’s mostly
automated)

5

Make syntax

• Easy stuff first:

• # begins a comment, regardless of where it’s placed

• It doesn’t line-wrap

• It can begin in the middle of a line

Rules and Targets

• Rules tell make how to
execute a series of
commands

• target should be the
result of the make

• dependencies are what
make checks to
determine if target
should be remade

target: dependencies ...
 commands
 ...

Minor Issues

• Makefiles are particular about spacing

• Your set of commands each occur on one line

• You MUST put a tab character before each command

• The commands can be any Unix program found
in your path

More on Targets

• Make works by looking at the modification
date of the target and dependencies

• If the target doesn’t exist, it executes the associated
commands

• If the target date is older than any of the dependencies,
the commands are executed

An Aside on C

• As a Unix user/admin, you may have to compile
projects to add functionality

• For example, you may want to add a feature for your
specific hardware to the kernel

• Many of these are written in C, so it’s useful
to understand what C is and looks like

C Compilation

• C supports separate compilation, meaning that
any C file can be turned into code that can be
combined

• Each C file is turned into an object file by the
compiler:

• gcc -c file.c

• Here, gcc is the compiler, the flag -c says to turn it into
an object file, by default, it will be called file.o

C Compilation...
• Once you have a collection of object files, they

are combined into an executable file

• gcc -o myprog file.o foo.o bar.o

• This results in a program called myprog that can be
executed

• Every C program links with the C library

• Every Unix system is based on the C library, so
it’s always there

An Example

example taken from the GNU make manual

edit : main.o kbd.o command.o display.o \
 insert.o
 cc -o edit main.o kbd.o command.o display.o \
 insert.o

 main.o : main.c defs.h
 cc -c main.c
 kbd.o : kbd.c defs.h command.h
 cc -c kbd.c
 command.o : command.c defs.h command.h
 cc -c command.c
 display.o : display.c defs.h buffer.h
 cc -c display.c
 insert.o : insert.c defs.h buffer.h
 cc -c insert.c
 clean :
 rm edit main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

Things to Note

• Your target, dependencies and commands can
only run a single line--no newlines

• You continue a line with a \, which escapes the newline

• Dependencies can refer to targets in the
Makefile also

• We have a special target called ‘clean’, which
removes all the old object files

Variables

• make can use variables
to simplify the Makefile

• We can use them to make
sure we don’t miss things,
like adding all the
dependencies

objects = main.o kbd.o \
command.o display.o \
insert.o

edit : $(objects)
cc -o edit $(objects)

Understanding the
‘clean’ rule

• By default, make runs down the list of targets
and executes them if they’re not up to date

• The ‘clean’ rule doesn’t have dependencies and
never exists

• If everything is up to date, clean can be run
automatically (not what you want!)

• Instead, insert a .PHONY target ahead of it!

The clean rule in action

• clean can now only be
run if you type ‘make
clean’

• The preceding - prevents
an echo to the screen
when it’s executing

.PHONY :
clean :

-rm edit $(objects)

Name of your Makefile
• GNU make tries the following:

• GNUmakefile, makefile, Makefile

• Usually, you should use the last two

• Most source files are lower-case, therefore Makefile
appears at the top of a sorted list of files

• If you pass -f, you can specify the makefile
name

