Regular Expressions

Comp 2400: Fall 2008
Prof. Chris GauthierPickey

What are regular
expressions?

® A compact way to specify patterns in text

® A compact way to specify a finite state
machine without pictures

® Typically a setf of characters and symbols
which are expanded to match finite and
infinite strings of text

What do they look like?

® Regular characters are part of reqular
expressions

o A-Z a-z 0-9 plus other symbols

® Sowme characters are meta-characters’
o Te*x 2 L{>LINI()

Simple matches

& A sequence of characters are matched in a
regex:

8 abe matches abe’

® if you use a regex for searching or matching in a string,
it could match any sequence of abe as a substring:

® abc would find abe in aaaabecee at the 4th character
position

L1: your first meta-
characters

® [1denote a character class’ or set of
characters that can be matehed

& [abel matches witha, b, ore
® [a-z] matches any character a to z
® [0-91 matches any character 0 to 9

® [Jarecase senstive and can be combined

® [A-Za-z1 matches a to z regardless of case

® What if you need to match meta-
characters inside the character class?

& By default, they will match on their own
® [a-z¢] will mateh a-z and ¢

& Special characters like newline are matched
by a backslash

® \n matches newline, \t matches tab, \r\n
matches the end of line on Windows or Maec

Introducing sed

® Now that were starting with regular
expressions, we'd like an easy way to test
thew out

® |[nfroducing sed: stream-editor

® yses regular expressions, among other things, fo edit
text on the fly using the typical unix 170 wmodel

® sed -k s/la-zA-Z1/1/y

® Will replace anything in the character class with 1,
try it!

regexs and sed

® (Qriginally, sed only supported basic reqular
expressions, and +, 7 were not supported

® They could be represented using {1,> and 0,1}
respectively

o POSIX.2 defined regular expressions

® yse the -E flag with sed to get full reqular expressions

Back to regexs

® The(and) group characters together

& Typically we use grouping with modifiers

Modified with +,*,", 7, and ¢
+ means the regex repeated 1 or more times
* means the regex is repeated 0 or more times
" means the regex begins at the start of the line
¢ matches the end of line character

7 means 0 or 1 of a single character or group

Regexs and the longest
sequence

® Matches always occur on the longest
sequence:

& a+will always match aaaaaa instead of just the first a
in aaaaaa (ie, it won't match 6 times)

® Trysed-Es/a{1,2}/YES/

® {rycaaat, and it will return what?
® cYESaaf or cYESat

Examples

[a-z]* matches any group of characters with
only the letters a-z

* sed -E s/la-z1+/1/
(car)* matches 0 or more cars
unix(es)? matches unix or unixes
“re will mateh recount, but not Andre
re¢ on the other hand will mateh Andre

Using { and }

{n, m) are used for repeating
® pnandwmareintegers
® nis the minimum nuwmber, wm is the maximum nuwmber

® [eaving out m means it can repeat any number of times
{9) means repeat exactly 9 times
{0,1) means repeat 0 or 1 times
{1,) means repeat 1 or more times
{1,9) means repeat 1 to 9 times

Warnings with bounds

® a{%) matches exactly 3 a's: aaa
® a{l3) matches between 1 and 3 a’s:

8 a, aa, aaa

& But if you match against aaaa, it will match twice,
aaa, and a

More complex regexs

& Thebar, T lets the regex choose between two
pattierns

8 alb means matchaorhb

8 catlear means match cat or car

® How else could you match the above example?

® The.wmatches any character, but by default
doesn’t match the end-of-line character

® ¢t wmatches ¢ followed by anything followed
by t

The anti-class

* We can match against all characters not in a
class by starting with~

® ["a-z1 matches anything that’s NOT a-z

® sed-Es/U"abel+/NOABC/
® Given abedef will return: abeNOABC

Standard Character
Classes

® Any of the following surrounded by L: :]
® alnuwm alpha blank cntrl
& digit graph lower print
® punct space upper xdigit
® [:alnum:] in our locale is [0-9A-Za-z]
* [:alphalis [A-Za-z]
e [:blank:]is [\]

L:entrl: is any control character
L:digit: is [0-9]

L:graph:1 is any printable character, but not space or
space-like things

[:lower:1 is [a-z]

L:print:1 is any printable character, including space
L:punet:] is anything not a space or an L:alnum:]
L:space:] is L \t\n\W\f\r]

L:upperis [A-Z]

L:xdigit:1 is L0-9A-Fa-f]

Regexs as FSAs

Regex: a | bd*ec

* A vregular expression is N
one way to express Finite
State Autowmata (or
machine)
b C

& AnFSA canbe
represented using a regex
or a graph d

Building blocks of FSAs

Regex:alb
All FSAs can be
constructed by two basic a O
building blocks -
® alternation T O
* Kleene star ™ Regex: a
® (Q: How can we represent a

the others?

Questions

® |magine that you didn’t have +, how could you
represent it using the other regex constructs?

® |magine that you didnt have 7, how could you
represent it using other regex construets?

