
Regular Expressions
Comp 2400: Fall 2008

Prof. Chris GauthierDickey

What are regular
expressions?

• A compact way to specify patterns in text

• A compact way to specify a finite state
machine without pictures

• Typically a set of characters and symbols
which are expanded to match finite and
infinite strings of text

What do they look like?

• Regular characters are part of regular
expressions

• A-Z, a-z, 0-9, plus other symbols

• Some characters are ‘meta-characters’

• . ^ $ * + ? { } [] \ | ()

Simple matches

• A sequence of characters are matched in a
regex:

• abc matches ‘abc’

• if you use a regex for searching or matching in a string,
it could match any sequence of abc as a substring:

• abc would find abc in aaaabcccc at the 4th character
position

[]: your first meta-
characters

• [] denote a character ‘class’, or set of
characters that can be matched

• [abc] matches with a, b, or c

• [a-z] matches any character a to z

• [0-9] matches any character 0 to 9

• [] are case senstive and can be combined

• [A-Za-z] matches a to z regardless of case

• What if you need to match meta-
characters inside the character class?

• By default, they will match on their own

• [a-z$] will match a-z and $

• Special characters like newline are matched
by a backslash

• \n matches newline, \t matches tab, \r\n
matches the end of line on Windows or Mac

• Now that we’re starting with regular
expressions, we’d like an easy way to test
them out

• Introducing sed: stream-editor

• uses regular expressions, among other things, to edit
text on the fly using the typical unix I/O model

• sed -E s/[a-zA-Z]/1/g

• Will replace anything in the character class with 1,
try it!

Introducing sed

regexs and sed

• Originally, sed only supported basic regular
expressions, and +, ? were not supported

• They could be represented using {1,} and {0,1}
respectively

• POSIX.2 defined regular expressions

• use the -E flag with sed to get full regular expressions

Back to regexs
• The (and) group characters together

• Typically we use grouping with modifiers

• Modified with +, *, ^, ?, and $

• + means the regex repeated 1 or more times

• * means the regex is repeated 0 or more times

• ^ means the regex begins at the start of the line

• $ matches the end of line character

• ? means 0 or 1 of a single character or group

Regexs and the longest
sequence

• Matches always occur on the longest
sequence:

• a+ will always match aaaaaa instead of just the first a
in aaaaaa (ie, it won’t match 6 times)

• Try sed -E s/a{1,2}/YES/

• try caaat, and it will return what?

• cYESaat or cYESat

Examples
• [a-z]+ matches any group of characters with

only the letters a-z

• sed -E s/[a-z]+/1/g

• (car)* matches 0 or more cars

• unix(es)? matches unix or unixes

• ^re will match recount, but not Andre

• re$ on the other hand will match Andre

Using { and }
• {n, m} are used for repeating

• n and m are integers

• n is the minimum number, m is the maximum number

• leaving out m means it can repeat any number of times

• {5} means repeat exactly 5 times

• {0,1} means repeat 0 or 1 times

• {1,} means repeat 1 or more times

• {1,5} means repeat 1 to 5 times

Warnings with bounds

• a{3} matches exactly 3 a’s: aaa

• a{1,3} matches between 1 and 3 a’s:

• a, aa, aaa

• But, if you match against aaaa, it will match twice,
aaa, and a

More complex regexs
• The bar, ‘|’ lets the regex choose between two

patterns

• a|b means match a or b

• cat|car means match cat or car

• How else could you match the above example?

• The . matches any character, but by default
doesn’t match the end-of-line character

• c.t matches c followed by anything followed
by t

The anti-class

• We can match against all characters not in a
class by starting with ^

• [^a-z] matches anything that’s NOT a-z

• sed -E s/[^abc]+/NOABC/g

• Given abcdef will return: abcNOABC

Standard Character
Classes

• Any of the following surrounded by [: :]

• alnum alpha blank cntrl

• digit graph lower print

• punct space upper xdigit

• [:alnum:] in our locale is [0-9A-Za-z]

• [:alpha:] is [A-Za-z]

• [:blank:] is [\t]

• [:cntrl:] is any control character

• [:digit:] is [0-9]

• [:graph:] is any printable character, but not space or
space-like things

• [:lower:] is [a-z]

• [:print:] is any printable character, including space

• [:punct:] is anything not a space or an [:alnum:]

• [:space:] is [\t\n\v\f\r]

• [:upper:] is [A-Z]

• [:xdigit:] is [0-9A-Fa-f]

Start

End

a

b c

d

• A regular expression is
one way to express Finite
State Automata (or
machine)

• An FSA can be
represented using a regex
or a graph

Regexs as FSAs
Regex: a | bd*c

Start

a

b

Building blocks of FSAs

• All FSAs can be
constructed by two basic
building blocks

• alternation ‘|’

• Kleene star ‘*’

• Q: How can we represent
the others?

Start a

Regex: a | b

Regex: a*

Questions

• Imagine that you didn’t have +, how could you
represent it using the other regex constructs?

• Imagine that you didn’t have ?, how could you
represent it using other regex constructs?

