
Introduction to Rexx
Prof. Chris GauthierDickey

COMP 2400: Unix Tools

What is Rexx?

• Rexx is a programming language used
primarily on the IBM mainframes, but also
available on other platforms

• e.g., regina on the Linux, OS X, and Windows platform

• It’s a scripting language, to be fair, much like
bash in functionality, but different
syntactically

2

Rexx

• Rexx is vital for z/VM as you can use it to
build and glue CMS applications together

• Rexx is composed of:

• operators, symbols, etc

• A tiny core of instructions: only 20 or so

• 70 built-in functions

• the ability to execute external commands

3

Rexx on Linux

• Unlike bash, you don’t have a Rexx shell on
Linux

• Instead, you have regina, a Rexx interpreter

• You have to write your code and execute it
using regina

• Like all other scripts, you can begin your Rexx
script with the #! to indicate the interpreter

4

Rexx on Linux

• Your first Rexx program

• Note the #!/usr/bin/regina
which specifies the
interpreter

• /* */ denotes a comment

• say is a command like echo
in bash

5

#!/usr/bin/regina
/* this is a rexx comment */
say “Hello World!”

Rexx Composition

• Rexx is made up of:

• Instructions, which are keywords, assignments, labels,
and commands

• Built-in functions

• System supplied functions

6

Variables

• A Rexx variable can consist of

• [A-Za-z#$_]([A-Za-z0-9#$_...])* <-- yes, a regex!

• RC, SIGL, RESULT are keywords you can’t use

• You can’t begin with a . or 0-9

• 250 chars is the max variable length

7

Assignments

• We use = for assignment

• x = 5

• #9F3D = ‘hello’

• y = m * x + b

• a = b

8

Math

• Operators:

• +, -, *, /: the usual

• %: DIVIDE and drop the
remainder

• //: DIVIDE and only return
the remainder

• **: Exponentiate

9

#!/usr/bin/regina
say 5 + 6
say 10 % 3
say 10 // 3
say 10 ** 3

Concatenation

• Putting a blank
between values places
a single blank
between them in
output

• Putting || places no
blanks between the
items

10

#!/usr/bin/regina
w1=’H’
w2=’AL’
w3=’is back’
/* note the multiple spaces,
 but it outputs only one
 space */
SAY w1||w2 w3

Comparison
• == is strictly equal

• = is equal

• \== is not strictly equal

• \= is not equal

• > greater than

• < less than

• >< greater than or less than

11

Boolean Operators

• & returns 1 if they are both true, 0 otherwise

• | returns 1 if at least one is true, 0 otherwise

• && returns 1 if only one comparison (but not
both) is true, 0 otherwise

• prefix \ returns the opposite response

• \(5 = 4)

12

IF-THEN-ELSE

• The if-then-else clause is
just like you expect it to
work

• It’s good programming
practice to use a NOP
command at an ELSE
that doesn’t have a body

• Your if-expression must
result in 1 or 0

13

#!/usr/bin/regina

PARSE ARG v1 v2
if v1 = ‘hello’
 then say ‘Goodbye’

if v2 = ‘world’ then
 do
 say ‘universe!’
 end
else
 do
 say ‘huh?’
 end

SELECT

• Select is slightly
different than most
languages

14

#!/usr/bin/regina
SELECT
 WHEN v1 = 1 THEN say ‘Got 1’
 WHEN v1 = 2 THEN say ‘Got 2’
 WHEN v1 = 3 THEN say ‘Got 3’
 OTHERWISE
 say ‘Many’
END

The DO loop

• The DO loop is like a for
loop

• We can also loop
‘forever’

15

#!/usr/bin/regina

parse arg x
DO i = 1 to x by 1
 say i
END

do FOREVER
 say ‘Oh no!’
end

• We can exit a loop with LEAVE, EXIT, or
ITERATE

• LEAVE terminates the loop and continues running

• EXIT exits the script

• ITERATE jumps back to the top of the loop, including
reading the condition

16

Exiting loops

WHILE and UNTIL

• DO WHILE expression

• lets us test an expression, which if true will continue to
execute the loop

• DO UNTIL expression

• lets us test an expression, which if false, will continue
to execute the loop

• UNTIL will NOT test until the END of the loop

17

