Introduction to Rexx

Prof. Chris GauthierDickey
COMP 2400: Unix Tools

IIIIIIIIIIII

DENVER

What is Rexx?

& Rexx is a programming language used
primarily on the IBM mainframes, but also
available on other platforwms

® ¢.g. regina on the Linux, 08 X, and Windows platform

® |t’s a seripting language, to be fair, much like
bash in functionality, but different
syntactically

IIIIIIIIIIII

DENVER

Rexx

& Rexx is vital for z/VM as you can use it to
build and glue CMS applications fogether

& Rexx is composed of:
& operators, symbols, efc
& A tiny core of instructions: only 20 or so
® 70 built-in functions

8 the ability o execute external commands

UUUUUUUUU

Rexx on Linvx

& Unlike bash, you dont have a Rexx shell on
Linux

® |nstead, you have regina, a Rexx inferpreter

® You have to write your code and execute it
Using regina

o Like all other scripts, you can begin your Rexx
seript with the #! to indicate the interpreter

IIIIIIIIIIII

DENVER

Rexx on Linvx

& Your first Rexx program

® Note the #!/usr/bin/regina
which specifies the | |
i"ferp(efer #!/usr/bin/regina

/* this is a rexx comment */
say “Hello World!”

8 /**/ denotes a comment

& sayis a command like echo
in bash

.] UNIVERSITY OF

DENVER

Rexx GComposition

® Rexx is made up of:

® [nstructions, which are keywords, assignments, labels,
and commands

& Built-in functions
& System supplied functions

UUUUUUUUU

Variables

® A Rexx variable can consist of

o [A-Zaz#¢ WN[A-Za-z0-9%¢_..1)* <--yes, aregex!
& RC, SIGL, RESULT are keywords you cant use
® You cant begin witha.or 0-9

8 250 chars is the max variable length

IIIIIIIIIIII

DENVER

Assignments

® We use = for assignment
& x=%
8 #9F30 = ‘hello’
& y=m*x+h

® a=bh

IIIIIIIIIIII

DENVER

Math

® (perators:
& +-* / theusval

o 7Z:VIVIVE and drop the
remainder

& // DIVIPE and only return
the remainder

® **:Exponentiate

UUUUUUUUU

#!/usr/bin/regina
say 5 + 6

say 10 $ 3

say 10 // 3

say 10 ** 3

Concatenation

® Pytting a blank

between values places

a single blank
between them in
output

® Puttingll places no
blanks between the
items

DENVER

#!'/usr/bin/regina

wl="H’

w2='"AL’

w3=’'1is back’

/* note the multiple spaces,
but it outputs only one
space */

SAY wl| |w2 w3

Comparison

® ==igstrictly equal

® =jsequal

® \==is not strictly equal

® \=is not equal

® > greater than

® ¢less than

® ¢ greater than or less than

IIIIIIIIIIII

DENVER

U

Boolean Operators

& returns 1 if they are both true, 0 otherwise
| returns 1 if at least one is true, 0 otherwise

&¢ returns 1 if only one comparison (but not
both) is true, 0 otherwise

prefix \ returns the opposite response
s \(5:=4)

IIIIIIIIIII

DENVER

[F-THEN-ELSE

® Theif-then-else clause is
just like you expect it to
work

® [t's good programming
practice to use a NOP
command at an ELSE
that doesnt have a body

® Your if-expression must
resultin 1 or 0

.] UNIVERSITY OF

DENVER

#!/usr/bin/regina

PARSE ARG vl v2
if vl = ‘hello’
then say ‘Goodbye’

if v2 = ‘world’ then
do
say ‘universe!’
end
else
do
say ‘huh?’
end

SELECT

& Selectis slightly
different than most
languages

.] UNIVERSITY OF

DENVER

#!'/usr/bin/regina

SELECT
WHEN vl = 1 THEN say ‘Got 1’
WHEN vl = 2 THEN say ‘Got 2’
WHEN vl = 3 THEN say ‘Got 3’
OTHERWISE
say ‘Many’
END

The PO loop

® The D0 loop is like a for
loop

& We can also loop
‘forever’

.] UNIVERSITY OF

DENVER

#!'/usr/bin/regina

parse arg x

DO i=1toxbyl
say i

END

do FOREVER
say ‘Oh no!’
end

Exiting loops

® We can exit a loop with LEAVE, EXIT, or
ITERATE

o LEAVE terminates the loop and continves running
o EXIT exits the seript

o [TERATE jumps back to the top of the loop, including
reading the condition

IIIIIIIIIIII

DENVER

WHILE and UNTIL

® PO WHILE expression

® [ets us test an expression, which if true will continue to
execute the loop

® [0 UNTIL expression

® [ets us test an expression, which if false, will continue
to execute the loop

& UNTIL will NOT fest until the END of the loop

IIIIIIIIIIII

DENVER

