
Unix Security
COMP 2400, Fall 2008
Chris GauthierDickey

Understanding Unix
Security

• Unix has a reputation for being secure but also
for having bugs in programs that allow one to
exploit the system

• What is the source of these bugs? How can
they be prevented?

2

Step 1

• The first step to securing your system:

• Don’t turn it on!

• Perhaps that’s a bit extreme

• Lock it in a room that you only have a key to and don’t
connect it to the network

3

Considerations

• Do you really think the Pentagon is going to
connect their systems to the Internet?

• Only insecure ones

• Lockheed-Martin has a set of machines that
cannot be connected to the outside world
when you work on them

• It has some that can be connected, but they are for
projects that don’t require national security

4

Considerations...

• In addition, at LMCO, you cannot bring in
devices that let you transfer data--no cell
phones, no PDAs, no USB sticks

• Really, Step 1 for security makes sense when
it’s that important

• We rely on the fact that physical security is somewhat
easier to manage than network security

5

Step 2

• Keep your system up-to-date

• Run as little ‘new’ software as possible

• Bugs can be bad, but known bugs are better than
unknown bugs

• Consider, if you’re going the Linux route,
installing a more stable distribution--it’ll be
older, but most/all of the major security bugs
have been discovered and addressed

6

Check out US-CERT
• US-CERT publishes security alerts:

• http://www.us-cert.gov

• Make sure you keep your own system updated

• In UNIX, we can create a cron job to do the
task (and yes, there are other schedulers, but
cron is on all the Unix systems)

• Apple now uses launchd for this purpose

7

http://www.cert.org
http://www.cert.org
http://www.cert.org
http://www.cert.org

cron
• ‘cron’ is a program that runs at specified time on the Unix

systems

• cron actually checks the configuration files once a minute to
see if it needs to run anything

• We can edit a user crontab by the command: crontab -e

8

m h dom mon dow command
42 6 * * * dostuff.sh
@daily /usr/bin/apt-get update
@daily /usr/bin/apt-get install
0,30 * * * * dohalfhourstuff.sh
0 * * * 1-5 doweekdaystuff.sh

cron continued

• Cron will automatically email output of the
command after it runs

• You can pipe output to a log file or to /dev/null

• You can set the environment variable MAILTO so that
it mails to a specific address

• It may seem simple, but your vast knowledge
of bash programming will let you do pretty
much whatever you want!

9

Step 3: File System
Security

• Recall that when we list a file in the long
format we can see its permissions

• drwxrwxrwx

• We may also see a couple of other things like:

• d r w s r w s r w x

• The ‘s’ means SUID and SGID for user and group

10

SUID and SGID

• SUID changes the user ID of the executing
program to be that listed as the owner of the
program

• SGID changes the group ID just like SUID does
for executable files

• SGID on a directory causes all new files to be
created with that group ID

11

More SUID and SGID
• SUID bits show up as the ‘s’

• SUID programs are the source of many, many
security problems

• Only a few programs really need the SUID bit

• The Linux kernel will ignore SUID on a shell script

• You can’t make shell scripts secure, so the kernel will
ignore it

• Combine SUID bits with buffer overflow and
you get a hacked system

12

The root

• root *is* the super-user

• root can access, delete, modify, and execute
any file on the system

• Allowing anyone you don’t completely trust to
have root access is a Bad Thing™

• Understand now why SUID and SGID is bad?

13

(Almost) Never log in as
root

• Instead, use something like sudo or fakeroot,
which temporarily give you root permissions,
but log all root commands

• Create a user account that you use regularly
with minimal permissions

• You can add yourself to the sudo list for frequent
commands you need root access for

14

A small divergence
• Ever wonder why Windows has had so many

problems over the years with security?

• 1st, it’s the most widely used OS, so we’ll of course see
more problems with it

• 2nd, until Vista, almost all programs were installed as
a root equivalent

• In essence, they were all SUID and SGID with root as
owner

• Even in Vista, older programs ask you to install them
SGID by setting them to run as Administrator!

15

Back to SUID and SGID
• So, how do you set it?

• chmod u+s or chmod g+s

• In octal notation, recall that user, group, others were
contained in 3 octal numbers

• There’s actually 4 octals:

• 4000 = SUID

• 2000 = SGID

• 1000 = sticky bit, makes files in a directory deleteable
only by the owner of the file: used by the /tmp directory

16

Changing default
permissions

• By default, files you create are affected by a
mask which removes permissions

• We call it the ‘umask’ by its command name (run it!)

• Each bit in the umask removes that permission

• 0022, the default, removes write and execute bits so
that created files have at most 755 permissions (or
644, if it’s a non-executable file being created)

• Most restrictive?

• umask 077, and yes, root should have this

17

Finding those
SUID/SGID files

• Some Unixes scan for you and save the results
(look in /var/log/setuid)

• We can run:

• find / -type f \(-perm -04000 -o -perm -02000 \)

• If we keep track of them and notify ourselves when
they change, we may be able to detect someone
creating a back door

18

Other suspicious files
• Any world-writable file can be a security hole

(especially system files)

• find / -perm -2 ! -type l -ls

• ! -type l ignores /dev and symbolic links

• Unowned files can indicate a problem or a
hacked file

• find / \(-nouser -o -nogroup \) -print

• .rhosts file should *never* be allowed

• find /home -name .rhosts -print

19

Setting limits
• We can set limits on other users if we’re root,

but we can also set them on ourselves

• Use ‘ulimit’ to find out your limits

• Try it with ulimit -a

• ulimits can be hard or soft

• hard limits can only be changed by root

• soft limits can be changed up to the max of the hard
limits by the users

20

General Scanning

• You can use integrity scanners such as
Tripwire to store the integrity values of your
files on a read-only medium (dvd, cd)

• You can also use security scanners such as
Nessus which look for known exploits

• These port scan and try to log into your system

• Don’t use them on systems you don’t own!

21

User Security
• First, always use ssh and scp to log into or

copy files from system to system

• This encrypts your user name and password

• telnet, rlogin, ftp all send your password hash in plain-
text, making it easy to crack

• Disable services you don’t need in inetd, such
as ftp, telnet, etc--less is always better, you
can turn something on if you discover you
need it!

22

Step 4

• Keep backups!

• You only really need user files and configuration files

• Restore if you discover you’ve been hacked, but
reinstall fresh executables

• Backing up and restoring executables could put the
hacker’s files right back on your machine

23

User Security

• Don’t use NIS, use NIS+ which is more secure

• Use a firewall: ipchains for > Linux 2.2

• Recent hacking contests show that users who
just try to hack a machine over the network
are usually unable to if the firewall is enabled

• However, the next fastest attack was exploiting web
browser bugs by getting someone to visit a web-site

24

