
Editing with vi
Or more fun than you thought you’d have without a

mouse

COMP 2400, Fall 2008
Prof. Chris GauthierDickey

The vi editor

• The standard interactive editor on Unix
systems is called ‘vi’.

• How do you open a file?

• vi file1 file2

• This allows you to edit two files, first file1, then file2

2

Command Mode

• When you start vi, you begin in command
mode
• All commands are entered from the keyboard--no

mouse here!

• vi has two other primary modes, insert mode
for free-form text input, and ex-mode for
running commands on the text

3

Movement Commands

• Movement: You can move the cursor around
using the arrow keys

• In the old days, we used h (left), j (up), k (down), and l
(right)

•0 moves to the beginning of a line, $
moves to the end

•<ctrl>-F and <ctrl>-B move forward and
backwards a page

4

More Movement

• w moves you to the start of the next word

• e moves you to the last character of the next
word

• b moves you to the previous word

• Note that vi separates all words by
punctuation

• Use the capitalized versions: W, E, B for whole words

5

And more movement

• Use (and) to jump to prior and next sentences

• Use { and } to jump to prior and next
paragraphs

6

Saving and Quitting

• Typing : followed by a letter executes what is
called ‘ex’ mode.

• :q will quit vi, if you have nothing to save

• :q! will quit vi, throwing away changes

• :w will save the current file you’re editing

• :x (or :wq) will save the file and quit vi

7

More Files

• :w filename will write the contents to the
given file name

• :sp filename will open another file in a split
window

• <ctrl>-w <ctrl>-w will switch between windows--all
commands only affect the active window

8

My dog closed my
terminal!

• Don’t worry, vi keeps a backup and will warn
you when you try to edit the file again

• vi -r will list the files that can be recovered

• vi -r <filename> will recover the edited file
when your terminal was closed

9

Simple editing

• x deletes the character the cursor is on

• J (capitalized) joins the next line with the
current line

• r followed by a character replaces the
character under the cursor

• dd deletes the current line

10

More editing

• d plus a movement command will delete in
that manner

• dw deletes up to the next word, db the prior word

• d) deletes to the end of the sentence, d} deletes to the
end of the paragraph

• . will repeat a command. For example, dd. will
delete two lines

11

Undo!

• Finally, the command u will undo prior edits

• <ctrl>-r will redo the last undo

12

Insert Mode

• To enter insert mode:

• i will let you enter text at the cursor

• a will move the cursor forward one and let you enter
text

• To exit insert mode:

• <esc> will put you back in command mode

13

More Insert mode

• You can now type in free-form, backspace,
delete, and enter will work as expected

• More insert commands:

• A will start appending text to the current line

• I will start adding text at the start of the current line

14

Edit/Insert

• o will insert a blank line below your current
line, move the cursor and place you in insert
mode

• O will insert a blank line above your current
line, move the cursor and put you in insert
mode

• cc will replace the current line with a new line
and put you in insert mode

15

Edits/inserts

• c0 deletes everything from the cursor to the
start of the line and puts you in insert mode

• c$ deletes everything from the cursor to the
end of the line and puts you in insert mode

• c (for change) is like the d command, you can
use it with movements to edit and insert

16

Combos!

• We’ve seen two combo commands already: d
and c

• Using a number prior to a command repeats it
that many times

• 100dd deletes 100 lines, 12w jumps forward
12 words

17

Special c and d combos

• You can combine c and d with a number and
command:

• d2j will delete the current and next two lines

• d3w will delete the next 3 words

• Experiment!

18

Searching

• Sometimes you need to find something:

• /<regexp> will search forward for the regular
expression in the text and put the cursor on the
expression

• /<enter> will repeat the last search

• ?<regexp> will search backwards

19

Moving to visual mode

• Hitting ‘v’ will switch vi (on vim, elvis, gvim,
etc versions) to visual mode. visual mode was
added later, old versions of vi won’t have it

• v will let text be highlighted through the use of
movement commands

• Hitting ‘v’ while in visual mode will drop you
back to command mode

20

Copy/Cut

• Once in visual mode:

• y will copy the text (y for yank!)

• d will cut the text

• Either of these commands will drop you back
to command mode

• p/P will insert the text which was copied/cut
from y or d either after/before the cursor

21

Replacing text

• Replacing text requires the ex-mode

• :s/<regexp>/replacement/<enter>

• :s/<regexp>/replacement/g will replace all occurrences
on the line

• :%s/<regexp>/replacement/g will replace all in the file

• :%s/<regexp>/replacement/gc will ask for confirmation

22

Miscellaneous

• For source files, vi can auto-indent for you

• If it’s not on, type :set autoindent

• <ctrl>-d will indent to the left one level

• <ctrl>-t will indent to the right one level

• :set tabstop=4 sets the indention to 4 per level

23

• :set sm will show matching {, (, or [when
programming

• :syntax on will turn on syntax highlighting
(ie, color)

24

