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Abstract. We study minimal topological realizations of families
of ergodic measure preserving automorphisms (e.m.p.a.’s). Our
main result is the following theorem.

Theorem. Let {Tp : p ∈ I}, be arbitrary finite or countable
collection of e.m.p.a.’s on nonatomic Lebesgue probability spaces
(Yp, νp). Let S be a Cantor minimal system such that the car-
dinality of the set ES of all ergodic S-invariant Borel probability
measures is at least the cardinality of I. Then for any collec-
tion {µp : p ∈ I}, of distinct measures from ES there is a Cantor
minimal system S′ in the topological orbit equivalence class of S
such that, as a measure preserving system, (S′, µp) is isomorphic
to Tp for every p ∈ I. Moreover, S′ can be chosen strongly orbit
equivalent to S if and only if all finite topological factors of S are
measure-theoretic factors of Tp for all p ∈ I.

This result shows, in particular, that there are no restrictions at
all for the topological realizations of countable families of e.m.p.a.’s
in Cantor minimal systems.

Furthermore, since realizations are taking place within orbital
classes of a given Cantor minimal system, our results generalize the
strong orbit realization theorem and the orbit realization theorem
of [21]. Those theorems are now special cases of our result where
the collections {Tp}, {µp} consist of just one element each.

1. Introduction

The problem of constructing topological models for ergodic measure
preserving transformations has been studied for quite a long time. For
a single transformation T of a Lebesgue probability space the natural
class of topological systems in which one should try to find a model for
T is the class of uniquely ergodic homeomorphisms of compact metric
spaces. The famous Jewett-Krieger theorem ([17], [18]) states that an
arbitrary ergodic automorphism of a nonatomic Lebesgue space has a
topological model in the class of Cantor minimal and uniquely ergodic
systems (strictly ergodic homeomorphisms of a Cantor set).
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More recently, a number of results have been obtained concerning
a more general problem of topological realizations of families of er-
godic automorphisms within a single topological system (say, within
a minimal, but not uniquely ergodic Cantor system S) with respect
to its different invariant measures. More precisely, given a family
{Tα : α ∈ I} of e.m.p.a.’s, one wants to decide whether or not there
is a Cantor minimal system S with a collection of ergodic invariant
measures {µα : α ∈ I} in 1-to-1 correspondence with {Tα} such that
measure-theoretically the system (S, µα) is isomorphic to Tα for every
α ∈ I.

A result of T. Downarowicz [5] shows how dramatically non-uniquely
ergodic such systems S can be. Namely, an arbitrary Choquet metriz-
able simplex can be considered, up to affine homeomorphism, the sim-
plex of all Borel probability invariant measures (in the weak*-topology)
of a certain Cantor minimal system. B. Weiss [24] gave an example of a
universal minimal system, i.e., a minimal homeomorphism S : X → X
of a Cantor set X such that given any aperiodic automorphism T of
a Lebesgue probability space (Y, ν), there exists a S-invariant Borel
probability measure µ such that (X, S, µ) and (Y, T, ν) are measurably
isomorphic. We also mention the result of T. Downarowicz and J. Ser-
afin [9], which characterized the class of functions that can occur as the
entropy functions defined on the space of all Borel probability invariant
measures of a topological (Cantor) dynamical system. In the papers
of Downarowicz and Lacroix [8] and Downarowicz and Durand [7] the
results on minimal realizations of families of e.m.p.a.’s have been ob-
tained under some restrictions (existence of certain nontrivial common
factors).

All these results, however, left open even the following natural ques-
tion, which was one of the motivations for us to start this work. Given a
family of two e.m.p.a.’s (or more concretely, of two irrational rotations
of a circle) is it possible to realize it in a Cantor minimal system with
exactly two ergodic invariant probability measures? We show here that
the answer is positive even for arbitrary finite or countable families of
e.m.p.a.’s. In particular, we show the following.

Theorem 1. Let {Tp : p ∈ I}, be arbitrary finite or countable collection
of e.m.p.a.’s on nonatomic Lebesgue probability spaces (Yp, νp). Let S
be a Cantor minimal system such that the cardinality of the set ES of all
ergodic S-invariant Borel probability measures is at least the cardinality
of I. Then for any collection {µp : p ∈ I}, of distinct measures from
ES there is a Cantor minimal system S ′ with the same orbits as S such



TOPOLOGICAL REALIZATIONS 3

that, as a measure preserving system, (S ′, µp) is isomorphic to Tp for
every p ∈ I.

Moreover, S ′ can be chosen strongly orbit equivalent to S (by the
identity map) if and only if all finite topological factors of S are measure-
theoretic factors of Tp for all p ∈ I.

Recently, after a preliminary version of this paper was written, we
received a preprint [6] of T. Downarowicz, whose results overlap with
ours. For arbitrary finite (but not countably infinite) families of e.m.p.a.’s,
the positive answer to the realization problem follows also from [6]. The
method of [6] is very different from ours, and the problem is considered
not in the orbit theory setting. Roughly speaking, it is shown in [6]
that the condition of minimality of S imposes only the same (and no
additional) restrictions on realizability of arbitrary (finite, countable,
or uncountable) families of e.m.p.a.’s (or endomorphisms) as the con-
dition of aperiodicity of S. This reduction of “minimal realizability”
to “aperiodic realizability” can be applied to finite families where (due
to, say, Jewett-Krieger theorem) the restrictions for the aperiodic real-
izability are void, but cannot be applied to infinite families, for which
the precise restrictions for aperiodic realizability are unknown and, as
was noted in [6], seem somewhat mysterious.

When dealing with realizations of an (infinitely) countable family
{Tp} of e.m.p.a.’s, it is natural to expect a priori that the topology on
the space of ergodic invariant measures for a homeomorphism S may
impose additional restrictions for realizability (minimal, aperiodic, etc).
Therefore, the fact that there are no restrictions at all in the countable
case looks, at least for us, a little bit counterintuitive, even modulo
the positive result in the finite case. It should be noted, however, that
a supporting argument for the positive countable result comes from
[9], where the necessary entropy function condition for realizability of
arbitrary families is established, and this necessary condition turns out
to be void in the countable case. Based on that, the question whether
or not there are any restrictions which are non-void in the countable
case was asked in [6]. Specifically, Downarowicz conjectures that there
are no restrictions in the countable case, and our work proves this
conjecture.

In the present paper the topological models for the collections of
e.m.p.a.’s will be constructed within the topological orbit equivalence
classes of given homeomorphisms. In this connection, we need to
mention some facts on measurable and topological orbit equivalence.
The first fundamental result here is the theorem of H. Dye (see [10],
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[11]) saying that any two e.m.p.a.’s of nonatomic Lebesgue probabil-
ity spaces are orbit equivalent. The next striking step was done by
W.Krieger [19], where a deep connection between the (measurable) or-
bit equivalence and the isomorphism of von Neumann algebras was
established. This circle of ideas was, in a sense, finalized in the work
of A. Connes [3], U. Haagerup [14] and A. Connes - J. Feldman - B.
Weiss [4].

In the topological setting, the parallel theory of topological orbit
equivalence, with C∗-algebras playing the role similar to the role of
von Neumann algebras in the measurable setting, was initiated much
later. It started in the work of A. Vershik [22] [23] on adic realizations
of e.m.p.a.’s, and then was developed in the series of remarkable results
of T. Giordano, R. Herman, I. Putnam, C. Skau, E. Glasner and B.
Weiss [13], [16], [15]. In the relatively recent paper of N. Ormes [21], the
orbit realization theorem (ORT) solves in a positive way the problem
of constructing the topological models of an individual e.m.p.a. within
the topological orbit equivalence class of a given Cantor minimal sys-
tem. Both the Jewett-Krieger theorem and Dye’s theorem are special
cases of the results of ORT. Also in [21] is the strong orbit realization
theorem (SORT) which shows that except for a necessary condition on
periodic factors, a realizarion as in ORT can take place within a strong
orbit equivalence class. In a strong orbit equivalence, the related orbit
cocycle functions are required to have at most one point of disconti-
nuity each. Thus SORT stands in stark contrast to a result of Boyle
which states that two minimal systems related by continuous cocycles
are conjugate or conjugate to the inverse of the other [2]. The results
here demonstrate even more dramatically how time changes which are
discontinuous only at a single point can alter the measure-theoretic
properties of a minimal homeomorphism.

From the orbital point of view, the main results of [21] are the start-
ing point of our study, and the technique of [21] is an essential ingre-
dient in our proofs. Because of this, the reader is strongly advised to
be familiar with [21]. Our goal is to extend the results of [21] from the
case of a single e.m.p.a. to the case of arbitrary countable families of
transformations.

The main step in [21] is, roughly speaking, an inductive construction
of a nested sequence of multitowers for an e.m.p.a. T and a compati-
ble nested sequence for a given Cantor minimal system S with respect
to some S-invariant ergodic measure µ. The floors of the multitowers
for S are then rearranged so that the rearranged towers define a new
homeomorphism S ′, for which µ is still invariant, and such that S ′ con-
sidered as a µ-preserving system is measure-theoretically isomorphic to
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T . This inductive construction of [21] is the prototype of the inductive
construction in our paper, where, instead of a single measure µ, we are
dealing with a family {µp} of measures.

The idea of the present paper (again, very roughly speaking) is the
following. Given a finite family {T1, T2, . . . , Tm} (instead of a single
transformation T ), and a Cantor minimal system S having at least m
ergodic invariant Borel probability measures, we construct the nested
multitowers, in a sense, simultaneously for all Tp’s, 1 ≤ p ≤ m, and
do the rearrangements of their floors in the same way for each Tp.
In the case of a countable family {T1, T2, . . . , Tm, . . . }, at every step
(m+1) of the inductive construction we bring, along with the measures
µ1, . . . , µm considered at the previous m-th step, one more measure
µm+1. This becomes possible because the mutual singularity of the
distinct ergodic S-invariant measures µp’s implies that, for each m, the
range of the vector measure (µ1, . . . , µm) is the entire m-dimensional
unit cube (this is a simple special case of the Lyapunov theorem on the
range of the vector measure [20] though we do not need the full strength
of that theorem). This, in turn, gives us enough flexibility to construct,
on each step (m + 1) of the construction, the necessary multitowers in
such a way that not only the previous measures µ1, . . . , µm can be
taken care of with “better accuracy” than in the previous step, but in
addition, the measure µm+1 can join them.

The organization of this paper is the following. In §2 we introduce
some necessary notions and give basic definitions. In §3 we state several
lemmas which reduce the proof of the main theorem to the construction
of certain sequences of multitowers for a homeomorphism S and for
e.m.p.a.’s Tp. This section also contains the proofs of all these lemmas
except the central Lemma 6. The proof of Lemma 6 is given in §4.
Finally, §5 contains some concluding remarks.

2. Preliminaries

Now let us introduce some necessary definitions. For definitions that
are not given here, see [21].

Let S be a minimal homeomorphism of the Cantor set X. Denote by
ES the set of all ergodic S-invariant Borel probability measures.

Let {(Yp, Tp,Bp, νp) : p ∈ I} be a countable collection of e.m.p.a.’s of
nonatomic Lebesgue probability spaces {Yp}. We will primarily work
with the case where I is countably infinite, as opposed to finite, and
note when the situation is different (simpler) for the finite case. Let
Y be the disjoint union of the Yp’s. The set Y becomes a measurable
space if we introduce a σ-algebra B on it, namely the one generated
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by all σ-algebras Bp’s on Yp’s. Each measure νp, p ∈ I, can be pulled
on Y as a measure concentrated on Yp. With respect to each measure
νp the space Y is a probability measure space. Let T : Y → Y be the
transformation which is equal to Tp when restricted to Yp. Then T is
a measure preserving transformation of Y with respect to each νp. Let
FT = {νp : p ∈ I}.

We will assume throughout that the cardinality of ES is greater than
or equal to the cardinality of FT , a necessary condition for the realiza-
tion of the family of transformations in the orbit equivalence class of S.
Enumerate any subcollection {µp : p ∈ I} of distinct elements of ES.
Our goal is to find S ′ orbit equivalent to S with (S ′, µp) measurably
conjugate to (T, νp) for all p ∈ I.

A clopen multitower for S is a collection of disjoint clopen sets
σ = {A(i, j)| 1 ≤ i ≤ I, 0 ≤ j < H(i)} for some positive in-
tegers I, H(1), H(2), . . . , H(I) where SA(i, j) = A(i, j + 1) for 0 ≤
j < (H(i) − 1) and ∪I

i=1 ∪H(i)−1
j=0 A(i, j) = X. We use the notation

σ = 〈A(i, j); H(i); I〉 to denote such a multitower. Define base(σ) =
∪I

i=1A(i, 0) and top(σ) = ∪I
i=1A(i,H(i) − 1). If Σ and σ are towers

for S and every floor of σ is the union of floors of Σ we say that Σ
refines σ. We say (σ, Σ) is a nested pair, or σ ≺ Σ, if Σ refines σ and
base(Σ) ⊆ base(σ) (or equivalently, top(Σ) ⊆ top(σ)). A sequence of
towers (σ1, σ2, . . .) is called a nested sequence if σm ≺ σm+1 for all m.

We will construct clopen multitowers for S, but also consider them
measure-theoretically. For a clopen multitower σ for S and any µ ∈
MS, we will consider the “architecture” of σ with respect to µ. That
is, in addition to the number of towers I, and the heights of the towers
H(i), we will consider the measures of the floors µ(A(i, 0)).

A measurable multitower τ = 〈B(i, j); H(i); I〉 for T is defined anal-
ogously to a multitower for S, where the requirement that floors are
clopen is replaced with the requirement that the floors are measurable
(i.e., elements of B), and the requirement that the union of floors be
equal to X is replaced by the requirement that the union of floors is a
set of full measure for every measure in FT .

Definition 2. Let σ = 〈A(i, j); H(i); I〉 be a clopen multitower for S
and τ = 〈B(i, j); H ′(i), I ′〉 a measurable multitower for T . Let µ ∈ ES

and ν ∈ FT . We say (σ; µ) ≈ (τ ; ν) if

(1) ν
[
∪I

i=1 ∪H′(i)−1
j=0 B(i, j)

]
= 1

(2) H(i) = H ′(i) for 1 ≤ i ≤ I,
(3) µA (i, 0) = νB (i, 0) for 1 ≤ i ≤ I.
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Intuitively, the relation (σ; µ) ≈ (τ ; ν) means that σ and τ have the
same architecture with respect to the chosen measures.

Definition 3. Let (σ1, σ2, . . . , σM) be a finite nested sequence of clopen
multitowers for S. Set σm = 〈Am(i, j); Hm(i); Im〉.
Let (τ1, τ2, . . . , τM) be a finite nested sequence of measurable multitowers
for T . Set τm = 〈Bm(i, j); H ′

m(i); I ′m〉.
We say (σ1, σ2, . . . , σM) and (τ1, τ2, . . . , τM) are compatible with re-

spect to measures µ ∈ ET and ν ∈ FT if for all 1 ≤ m ≤ M ,

(1) (σm; µ) ≈ (τm; ν),
(2) for all 1 ≤ i ≤ Im and 1 ≤ k ≤ Im−1,

#{Am(i, j)| Am(i, j) ⊆ Am−1(k, 0), 0 ≤ j < Hm(i)}
= #{Bm(i, j)| Bm(i, j) ⊆ Bm−1(k, 0), 0 ≤ j < Hm(i)},

(3) for all 1 ≤ i ≤ Im and 1 ≤ k ≤ Im−1,
Am(i, 0) ⊆ Am−1(k, 0) ⇐⇒ Bm(i, 0) ⊆ Bm−1(k, 0),

(4) for all 1 ≤ i ≤ Im and 1 ≤ k ≤ Im−1,
Am(i, Hm(i)− 1) ⊆ Am−1(k, Hm−1(k)− 1)
⇐⇒ Bm(i,Hm(i)− 1) ⊆ Bm−1(k, Hm−1(k)− 1).

Notation 4. We will use the notation

(σ1, σ2, . . . , σM ; µ) ≈ (τ1, τ2, . . . , τM ; ν)

if the two sequences of towers are compatible with respect to measures
µ and ν.

Note that conditions (2) - (4) in Definition 3 are void when M = 1,
so there is no conflict between this notation and Definition 2.

The point of the definition of compatible multitowers is demonstrated
in the following lemmas.

3. Reduction Lemmas

The notion of compatibility allows us to recursively define a sequence
of bijections of floors of towers.

3.1. Correspondence of Floors. Suppose (σ1, σ2, . . . , σM) and (τ1, τ2, . . . , τM)
are two finite nested sequences of multitowers for S and T which are
compatible with respect to µ ∈ ET and ν ∈ FT . We may then define
a collection of bijections {hm : 1 ≤ m ≤ M} where hm is a bijection
from the set of floors of σm to the set of floors of τm intersected with a
set of ν measure 1 in the following way.

Define h1(A1(i, j)) = B1(i, j).
Then for m > 1, we define hm(Am(i, 0)) = Bm(i, 0). Condition (3)

of compatibility insures

Am(i, 0) ⊂ Am−1(k, l) =⇒ hm(Am(i, 0)) ⊂ hm−1(Am−1(k, l)).
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We define hm(Am(i, j)) recursively for j > 0. Having defined hm(Am(i, ĵ)),

for ĵ < j, we define hm(Am(i, j)) to be the floor Bm(i, j′) where j′ is the
minimum floor height such that Bm(i, j′) is not already the image of
a floor and Bm(i, j′) ⊂ hm−1(Am−1(k, l)) where (k, l) is the index with
Am(i, j) ⊂ Am−1(k, l). Condition (2) insures that there are exactly the
right number of floors of each type to make this assignment.

In particular, we have recursively defined a collection of bijections
which

(1) respects the subset relation, i.e., if Am(i, j) ⊂ Am−1(k, l) then
hm(Am(i, j)) ⊂ hm−1(Am−1(k, l)),

(2) is measure-preserving, i.e., ν (hm(Am(i, j))) = µ (Am(i, j)),
(3) respects columns, i.e., for all i, j, hm(Am(i, j)) = Bm(i, l) for

some l
(4) respects bases, i.e., for all i, hm(Am(i, 0)) = Bm(i, 0),
(5) respects tops, i.e., for all i, hm(Am(i,Hm(i)−1)) = Bm(i,Hm(i)−

1).

Furthermore, if Am(i, j) is a non-top floor of σm then hm(Am(i, j))
is a non-top floor of τm. Therefore, h−1

m Thm(Am(i, j)) = Am(i, j′) for
some 0 ≤ j′ < Hm(i). Set nm(i, j) = j′ − j.

We have insured in our definition of hm that if Am(i, j) ⊂ Am−1(k, l)
and Am−1(k, l) is a non-top floor, then nm−1(k, l) = nm(i, j).

The point that the above maps hm and nm are recursively defined
is more than a remark. It is important to our construction that we
can fix all of the above for the first m multitowers then add another
(m + 1)st multitower and extend all of the maps above.

As we see below, if we replace the finite sequences of towers with
an infinite sequence of compatible multitowers satisfying separation
properties, then we will be able to conclude that e.m.p.a.’s (S, µ) and
(T, ν) are measurably conjugate.

Lemma 5 (Reduction 1). Suppose there exists an infinite sequence of
nested clopen multitowers σ1 ≺ σ2 ≺ . . . for S, and an infinite sequence
of nested measurable multitowers τ1 ≺ τ2 ≺ . . . for T such that

(1) (σ1, σ2, . . . , σm; µp) ≈ (τ1, τ2, . . . , τm; νp) for all m, p ≥ 1,
(2) ∩mbase(σm) is one point set {x0} and

∨
m σm generates the

topology of X,
(3) the partitions {τm}m∈N separate points in Y on a set Y0 ⊂ Y

with νp(Y0) = 1 for all p.

Then there is a minimal homeomorphism S ′ such that S and S ′ are
strongly orbit equivalent by the identity map and for every µp ∈ ES,
(S ′, µp) is measurably conjugate to (Tp, νp).
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Proof. Given the above hypotheses, define the countable collection of
bijections hm as in Section 3.1. Since the sequence of clopen towers
{σm} separates points, every point x ∈ X is uniquely identified ac-
cording to the sequence of floors in {σm : m ≥ 1} which contain it.

Note that ∩mtop(σm) = {S−1(x0)}. If x 6= S−1(x0), then there
is a tower σm such that x /∈ top(σm). Let Am(i, j) denote the floor
of σm containing x. Define S ′(x) = Snm(i,j)(x). Because the maps
nm respect subsets, the definition of S ′(x) does not depend on the
choice of m. If x = S−1(x0), set S ′(x) = S(x). The function n(x)
which satisfies S ′(x) = Sn(x)(x) has at most one point of discontinuity
(namely, S−1(x0)) since n(x) is constant on any (clopen) floor of σm

which is not a subset of top(σm). The same holds for the function m(x)
satisfying S(x) = (S ′)m(x)(x).

That S ′ is continuous on X \ {S−1(x0)} follows from the fact that
n is constant on clopen sets (floors of σm). That S ′ is continuous at
S−1(x0) follows from the fact that S ′ (top(σm)) = base(σm) 3 x0 and
∩mbase(σm) = {x0}. The minimality of S ′ follows from the fact that S
and S ′ have the same orbits, and S is minimal. Therefore, S and S ′ are
minimal homeomorphisms of the Cantor set, strongly orbit equivalent
by the identity map.

Now fix µp ∈ ES. Since the multitowers {σm} separate points in
X and {τm} separates points on a set of νp-measure 1, the sequence
of maps {hm} can be extended to a measure-space isomorphism h :
(X,µp) → (Y, νp). For every non-top floor A(i, j) ∈ σm, we have
S ′(A(i, j)) = h−1Th(A(i, j)). We also have µp (∩mtop(σm)) = 0. There-
fore the map h gives a measurable conjugacy between (S ′, µp) and
(Tp, νp). ¤

Our task then is to construct multitowers as in the previous lemma.
This will be done by an inductive process, which is essentially described
in Lemma 6. This lemma, as well as Proposition 7 below, will be
used in the proof of the realization theorem for (infinitely) countable
families of e.m.p.a.’s. In the case of a finite family {Tp} the inductive
process is slightly different (simpler), since there is no need to bring an
additional measure µm+1 on the (m+1)-st step, if m+1 is bigger than
the number of the automorphisms in the family {Tp}. Because of this,
some insignificant changes (replacement of m + 1 by m) are needed in
the statement of Lemma 6 in the finite case. We leave these details to
the reader.

Lemma 6 (Reduction 2). Suppose every finite (periodic) factor of S
is a finite (periodic) factor of Tp for all p ∈ I.
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Let ε > 0. Let P be a clopen partition of X, and let x0 ∈ X. Let Q
be a finite partition of ∪m+1

p=1 Yp which is measurable with respect to νp

for 1 ≤ p ≤ m + 1.
Suppose there exist a clopen multitower σ for S, and τ a measurable

multitower for T such that (σ; µp) ≈ (τ ; νp) for every 1 ≤ p ≤ m,
and x0 ∈ base(σ). Then there exists a clopen multitower Σ for S and
measurable multitowers τ ′ and T for T such that

(1) (σ, Σ; µp) ≈ (τ ′, T ; νp) for 1 ≤ p ≤ m + 1,
(2) ‖τ − τ ′‖νp < ε for p = 1, 2, . . . ,m,
(3) x0 ∈ base (Σ), diam(base(Σ)) < ε,
(4) Σ refines P,
(5) T refines Q on a set E with νp (E) > 1−ε for p = 1, 2, . . . , m+1.

Before we turn our attention to the proof of the lemma above, let us
indicate how the realization theorem follows from it.

Proposition 7. Lemma 6 implies Theorem 1.

Proof. Let S and T be as in the hypotheses of Theorem 1, and assume
Lemma 6 is true.

First we explain that if our interest is orbit equivalence, as opposed
to strong orbit equivalence, we may assume without loss of generality
that S has no finite factors, and thus assume that S and T satisfy the
hypotheses of Lemma 6. By Lemma 7.1 of [21], there is a unital ordered
group G = (G,G+, u) where (G,G+) is an acyclic simple dimension
group, G/Inf(G) ∼= GS/Inf(GS) and G has trivial rational subgroup.

Further, by [16], there is a minimal homeomorphism Ŝ of the Cantor

set with GŜ ∼= G. By [13], Ŝ and S are orbit equivalent. Since Ŝ and S
are orbit equivalent, MS and MŜ are affinely homeomorphic. Thus,

by replacing S with Ŝ we have the hypotheses of both Theorem 1 and
of Lemma 6. This replacement does not change the orbit equivalence
class in which we are working.

For the strong orbit equivalence statement of Theorem 1, we note
that the necessity of the condition on finite factors for S and Tp is al-
ready known (see [21], p. 110), so we only need to prove the sufficiency
part.

Now let {εm} be a summable sequence of positive numbers. Let
{Pm}m∈N be a refining sequence of (finite) clopen partitions in X which
generate the topology. Let P0 and σ0 be a trivial partition of X and
multitower for S, respectively. Let {Qm}m∈N be a refining sequence
of finite measurable partitions of Y which separate points on a set of

full measure in Y with respect to all ν ∈ FT . Let Q0 and τ
(0)
0 be a

trivial partition of Y and multitower for T , respectively. Assume that
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for some M ≥ 0, we have a finite nested sequence of clopen multitowers
σ1 ≺ σ2 ≺ · · · ≺ σM for S and a finite nested sequence of multitowers

τ
(M)
1 ≺ τ

(M)
2 ≺ · · · ≺ τ

(M)
M satisfying

(1) (σ1, σ2, . . . , σM ; µp) ≈ (τ
(M)
1 , τ

(M)
2 , . . . τ

(M)
M ; νp) for 1 ≤ p ≤ M ,

(2) x0 ∈ ∩M
p=1base(σp), diam

(∩M
p=1base(σp)

)
< εM , σM refines PM ,

(3) τ
(M)
M refines PM on a set EM with νp(EM) > 1− εM .

Now apply Lemma 6 with ε = εM , P = PM+1, Q = QM+1, σ =

σM , τ = τ
(M)
M and the collections of measures µ1, µ2, . . . , µM+1 and

ν1, ν2, . . . , νM+1. Set σM+1 = Σ, τ
(M+1)
M+1 = T and τ

(M+1)
M = τ ′.

We define the multitowers τ
(M+1)
m for 0 ≤ m < M in the following

way. When intersected with ∪M
p=1Yp, every floor F of τ

(M)
M−1 is a union

over some index set of floors of τ
(M)
M . We let F ′ be the union over the

same index set of floors of τ
(M+1)
M−1 , but now intersected with ∪M+1

p=1 Yp.

Thus we obtain a new multitower τ
(M+1)
M−1 for T where

(τ
(M+1)
M−1 ; νp) ≈ (τ

(M)
M−1; νp)

and

||τ (M)
M−1 − τ

(M+1)
M−1 ||νp < εM

for 1 ≤ p ≤ M . Proceeding in this way, we define τ
(M+1)
m for m =

M − 1,M − 2, . . . , 1.
Clearly σ1 ≺ σ2 ≺ · · · forms an infinite sequence of nested clopen

multitowers where {x0} = ∩∞m=1base(σm), and
∨

σm generates the
topology of X.

Fix p ≥ 1. For M ≥ m, p, we have

||τ (M)
m − τ (M+1)

m ||νp < εM .

Since
∑

M≥0 εM < ∞ the Borel-Cantelli Lemma implies that there

are νp-measurable multitowers τm = limM→∞ τ
(M)
m . Since (σm; µp) ≈

(τ
(M)
m ; νp) for M ≥ m, p, it is also true that (σm; µp) ≈ (τm; νp). Simi-

larly,

(σ1, σ2, . . . , σm; µp) ≈ (τ1, τ2, . . . , τm; νp).

If m ≥ p, the multitower τ
(m)
m refines Qm on a set Em with νp(Em) >

1−εm. Since ||τm−τ
(m)
m ||νp <

∑
M≥m+1 εM , we have that τm refines Pm

on a set Fm where νp(Fm) > 1 −∑
M≥m εM . Therefore, as partitions,

the collection of multitowers {τm} separate points on a set of νp measure
one for every p ≥ 1. Therefore, the conditions of Lemma 5 are satisfied
and Theorem 1 holds. ¤
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It remains then to verify Lemma 6. Its proof follows to a great extent
the scheme of the proof of Lemma 5.1 of [21]. We reproduce here the
relevant definitions of [21] and include the proofs of all statements that
are not precisely the same as those in [21].

4. Proof of Lemma 6

Let us assume that the towers σ and τ are as in the hypothesis of
Lemma 6. We must construct three multitowers Σ, τ ′ and T . To do
this requires us to construct several intermediate multitowers.

4.1. Step 1 - Getting Started. The following is a simple lemma to
begin the construction.

Lemma 8. Given any integer Z > 0 we can create a clopen multitower

Σ1 = 〈A(i, j); Ĥ(i); Î〉 for S where Σ1 Â σ and Σ1 satisfies the following
properties:

• x0 ∈ base(Σ1)
• diam(base(Σ1)) < ε,
• base(Σ1) is a subset of the floor of σ which contains x0,
• top(Σ1) is a subset of the floor of σ which contains S−1(x0),

• Ĥ(i) > Z for all i,
• Σ1 refines P.

To achieve all of the above, it is only necessary to select a clopen mul-
titower (Kakutani skyscraper) whose base is a clopen neighborhood of
x0 with sufficiently small diameter and afterwards to refine the columns
so that the resulting multitower refines both σ and P . The value of Z
which we will use in this particular construction will be specified later
after several definitions and notations are established (Section 4.4.1).
For now we remark that the choice is based on the Ergodic Theorem
applied to indicator functions of the floors in the towers σ and τ and
measures µp, νp with 1 ≤ p ≤ m + 1. Since we currently have all
of these elements at our disposal, let us assume that we have created

Σ1 = 〈A(i, j); Ĥ(i); Î〉.
4.2. Step 2 - The Copying Lemma. Next we create a multitower
T1 for T satisfying (T1; νp) ≈ (Σ1; µp) for p = 1, 2, . . . , m + 1. This
requires a version of the Alpern Multitower Lemma below [1]. See [12]
for a simple proof which follows Kakutani’s idea of the proof of classical
Rokhlin Lemma.

Lemma 9 (Alpern Multitower Lemma). Let (Y, T, ν) be an arbitrary
e.m.p.a. of a nonatomic Lebesgue probability space.
Let H(1), H(2), . . . , H(I) be a set of positive integers with gcd{H(i) :
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1 ≤ i ≤ I} = g, and let α(1), α(2), . . . , α(I) be positive real num-

bers with
∑I

i=1 H(i)α(i) = 1. If T has a finite factor of cardinality g
(i.e., a factor consisting of one orbit of cardinality g), then there is a
multitower T = 〈B(i, j); H(i); I〉 for T with ν(B(i, 0)) = αi.

Our statement of the copying lemma is slightly different from the
standard one (in which it is assumed that gcd{H(i) : 1 ≤ i ≤ I} = 1),
but it follows immediately from the standard version.

Let g = gcd{Ĥ(i)}. Since the orbit of period g is a factor of S, it is
also a factor of Tp for all p ∈ I. Therefore, we may apply the above
lemma to each of the e.m.p.a.’s (Yp, Tp, νp) for 1 ≤ p ≤ m + 1, with

I = Î, H(i) = Ĥ(i) and αi = µp(A(i, 0)). Then by unioning the floors
of the individual m + 1 different multitowers together, we can create a
multitower T1 for T satisfying (T1; νp) ≈ (Σ1; µp) for 1 ≤ p ≤ m + 1.
We may assume (T1; νp) is the trivial multitower for p > m + 1.

Next we refine the towers of T1 by the partition Q and by τ . Call
the resulting multitower T2 = 〈B(i, j); H(i); I〉. Note that although T2

refines τ as a partition, the pair (τ, T2) is not nested since the base of
T2 need not be a subset of the base of τ .

4.3. Step 3 - Labellings. We now consider two labellings on T2. For
us, a labelling L on a multitower is a map from the set of floors of the
multitower to a finite subset of N×N. The labellings we have in mind
are generally those defined by a refining multitower. For example, for
τ = 〈b(k, l); h(k); K〉, we have a labelling L on T2 where L is the map
from floors of T2 to pairs of the form {(k, l) : 1 ≤ k ≤ K, 0 ≤ l < h(k)}
where L(B(i, j)) = (k, l) if B(i, j) ⊂ b(k, l).

The point of defining labellings is to work in the other direction.
That is, given the multitower T2 we wish to define a labelling which
gives rise to a multitower τ ′ with τ ′ ≺ T , (τ ′; νp) ≈ (σ; µp) and ‖τ ′ −
τ‖νp < ε for 1 ≤ p ≤ m. In this vein, we define (h, β)-labellings ([21],
Def. 5.2, p. 120).

Definition 10. Let T = 〈B(i, j); H(i); I〉 be a multitower for an e.m.p.a.
(Y, T, ν) . Let h = (h(1), h(2), . . . , h(K)) be an element of NK and let
β = (β(1), β(2), . . . , β(K)) be a K-tuple of positive real numbers such

that
∑K

k=1 h(k)β(k) = 1. We say a labelling L of T is an (h, β)-
labelling with respect to ν if it has the following properties:

(1) Image(L) = {(k, l) ∈ N2| 1 ≤ k ≤ K, 0 ≤ l < h(k)}
(2) for 0 ≤ j < (H(i)− 1),

if L(B(i, j)) = (k, l) with l < (h(k) − 1) then L(B(i, j + 1)) =
(k, l + 1),
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if L(B(i, j)) = (k, h(k) − 1) then L(B(i, j + 1)) = (k′, 0) for
some k′,

(3) ν(L−1{(k, l)}) = β(k) for all (k, l).

Thus for any 1 ≤ p ≤ m, setting βp(k) = νp(b(k, 0)), the labelling
L defined on T2 via the relationship τ ≺ T2 is an (h, βp)-labelling with
respect to νp. Conversely, to define τ ′ with (τ ′; νp) ≈ (τ ; νp) we need to
define a new labelling on T2 which is an (h, βp)-labelling with respect
to νp. In addition, we would like (τ ′, T2) to be a nested pair.

Definition 11. An (h, β)-labelling on a multitower T = 〈B(i, j); H(i); I〉
is nested if L(B(i, 0)) ∈ {(k, 0)| k ∈ N} for all i.

Recall that the important feature of the pair of multitowers for T
that we need to arrange is that they be compatible with the pair of S
multitowers. In this vein we consider a second labelling on T2 which
we call L′. This one is induced by the relationships σ ≺ Σ1, (Σ1; µp) ≈
(T1; νp) and T1 ≺ T2 for 1 ≤ p ≤ m. That is, the relation σ ≺ Σ1

gives rise to a labelling K on Σ1. Since (Σ1; µp) ≈ (T1; νp) there is a
measure-preserving bijection of floors (Section 3.1) which pushes the
labelling K onto a labelling on T1. Finally, if floor of T1 has a label
(k, l), then we may assign that same label to all subset floors in T2. This
defines a nested labelling L′. For 1 ≤ p ≤ m, since (σ; µp) ≈ (τ ; νp),
the labelling L′ is also an (h, β)-labelling of T2 with respect to νp with
β(k) = νp(b(k, 0)).

With the assistance of the following notations, we are able to restate
our goal in terms of labellings.

Notation 12. For the labelling L on T2 = 〈b(k, l); h(k); K〉, let Nk[m,n)i

be the number of floors in the ith column whose height index is between
m and (n− 1) and whose label is (k, 0), i.e.

Nk[m,n)i = #{B(i, j)| L(B(i, j)) = (k, 0) and j ∈ [m,n)}
We will use the notation N ′

k[m,n)i and N ′′
k [m,n)i similarly for la-

bellings L′ and L′′ of T2.

Definition 13. For two labellings of the same multitower L and L′, let
||L − L′||ν denote the ν-measure of the collection of floors which have
different images under L and L′.

We seek a labelling L′′ of T2 = 〈B(i, j); H(i); I〉 such that

(a) for 1 ≤ p ≤ m, L′′ is an (h, βp)-labelling with respect to νp where
βp(k) = νp(b(k, 0)),

(b) N ′′
k [0, H(i))i = N ′

k[0, H(i))i for all i and k,
(c) L′′(B(i, 0)) = L′(B(i, 0)) for all i, (therefore insuring that the la-

belling is nested)
(d) L′′(B(i,H(i)− 1)) = L′(B(i,H(i)− 1)) for all i,
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(e) ||L′′ − L||νp < ε/2 for 1 ≤ p ≤ m.

4.4. Step 4 - Relabelling. To prove that a labelling of the required
form exists, we will invoke the Ergodic Theorem. If the columns of
T2 are sufficiently tall, the Ergodic Theorem gives us control over the
label frequencies.

Definition 14. Let T = 〈B(i, j); H(i); I〉 be a measurable multitower
for an e.m.p.a. (Y, T, ν). Let L be a (h, β)-labelling of T for some

(h, β). For all i, let C(i) =
⋃H(i)−1

j=0 B(i, j). We say L satisfies the δ-
frequency condition with respect to ν if there is a collection of columns
G = {C(i1), C(i2), . . . , C(iL)} such that ν(G) > (1− δ) and for C(i) ∈
G

2δH(i) ≤ m ≤ H(i) implies

∣∣∣∣
1

m
Nk[0, m)i − β(k)

∣∣∣∣ < δ for all k.

The δ-frequency condition is guaranteed in a multitower with suffi-
ciently tall columns.

Lemma 15. ([21], Lemma 5.6, p. 124) Let (Y, T, ν) be an arbitrary
e.m.p.a. and let τ be a measurable multitower for T and let 0 < δ < 1

2
be given. There is an integer Z2(δ, T, ν) such that if a multitower T re-
fines the multitower τ and the column heights of T all exceed Z2(δ, T, ν),
then the labelling on T defined by τ satisfies the δ-frequency condition
with respect to ν.

See [21] for the proof, an application of the Pointwise Ergodic The-
orem.

Given any δ > 0, for each 1 ≤ p ≤ m, we can apply the above
lemma to (X, S, µp) and σ and to (X, T, νp) and τ . By taking maximum
Z2 value, we can insure the conclusion of the lemma for all of these
measures simultaneously. Note that this value of Z2 depends only on
δ, σ, τ , and the measures µp and νp where 1 ≤ p ≤ m.

Next we prove the main lemma for the proof of our main theorem,
the Labelling Lemma, which establishes the existence of a labelling
satisfying the desired properties. This is the finite family version of [21,
Lemma 5.5, p. 121] We reproduce the proof of with the appropriate
changes. It is striking how little needs to change in the argument.

Lemma 16 (Labelling Lemma). Let h = (h(1), h(2), . . . , h(K)) be
such that gcd(h(1), h(2), . . . , h(K)) = 1 and for 1 ≤ p ≤ m, let βp =
(βp(1), βp(2), . . . , βp(K)) be positive real numbers such that

∑
k h(k)βp(k) =

1.
Let T = 〈B(i, j); H(i); I〉 is a measurable tower for T and let L,L′

be (h, βp)-labellings of T with respect to νp.
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For any 0 < ε < 1, there exist numbers 0 < δ < 1/2 and Z1(δ) such
that if H(i) ≥ Z1(δ) for all i, L, L′ satisfy the δ-frequency condition
with respect to all measures νp, 1 ≤ p ≤ m, and L′ is a nested labelling,
then there exists a nested labelling L′′ of T such that

(a) L′′ is an (h, βp)-labelling with respect to νp,
(b) N ′′

k [0, H ′(i))i = N ′
k[0, H

′(i))i for all i and k,
(c) L′′(B(i, 0)) = L′(B(i, 0)) for all i,
(d) L′′(B(i,H ′(i)− 1)) = L′(B(i,H ′(i)− 1)) for all i,
(e) ||L′′ − L||νp < ε/2 for p = 1, 2, . . . , m.

Proof. Let J be an integer such that for any j ≥ J , there exist non-
negative integers m1, m2, . . . ,mK where j =

∑K
k=1 mkh(k). Choose δ

and Z1(δ) such that:

0 < δ < εβp(k)/6 for all k, p, and Z1(δ) > (J + 3 max h(k))/δ.

Assume T = 〈B(i, j); H(i); I〉 is a multitower with H(i) ≥ Z1(δ) for
all i. Let L and L′ be two labellings of T which satisfy the hypotheses
of the lemma.

Because the labellings L,L′ both satisfy the δ-frequency condition
with respect to all measures νp for 1 ≤ p ≤ m, there is a collection
of columns Gp, G

′
p, as in Definition 14, for each 1 ≤ p ≤ m. Let

G = ∪m
p=1(Gp ∩ G′

p). From here the proof from [21] essentially carries
over.

From the definition of G, if C(i) ∈ G then there is a p, 1 ≤ p ≤ m
such that for all k and for all m, 2δH(i) ≤ m ≤ H(i) we have

∣∣∣∣
1

m
Nk[0, m)i − βp(k)

∣∣∣∣ < δ and

∣∣∣∣
1

m
N ′

k[0,m)i − βp(k)

∣∣∣∣ < δ.

It is the fact that 1
m

Nk[0,m)i and 1
m

N ′
k[0,m)i are close to one another

that is important here, not that either is close to βp(k). This is why
the proof for one measure carries over so easily to a finite collection
of measures. Also take note that νp

(∪C(i)∈GC(i)
)

> (1 − 2δ) for any
1 ≤ p ≤ m.

For any floor B(i, j) where C(i) /∈ G, let L′′(B(i, j)) = L′(B(i, j)). In
sections A-D below we will define L′′ on a fixed column C(i) ∈ Gp ⊂ G.
The index i is fixed throughout these sections and will be suppressed.
We will consider the labellings as maps from {j| 0 ≤ j < H} to
{(k, l)| 1 ≤ k ≤ K, 0 ≤ l < h(k)}.

A. Base and top floors
Let k1, k2 be such that L′(0) = (k1, 0), and L′(H− 1) = (k2, h(k2)− 1).
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Let L′′(j) = L′(j) for j ∈ [0, h(k1)) and j ∈ [H − h(k2), H).

B. Floors h(k1) through (J − 1)
Let J be the smallest integer such that J > (J + h(k1)) and L(J) =

(k, 0) for some k. Notice that J ≤ (J + 2 max h(k)) < δH.
There are coefficients mk ∈ N such that (J − h(k1)) =

∑
mkh(k).

For each k, put the label (k, 0) on mk of the floors in [h(k1), J), filling
in labels on the remaining such that:

if L′′(j) = (k, l) with l < (h(k)− 1) then L′′(j + 1) = (k, l + 1),
if L′′(j) = (k, h(k)− 1) then L′′(j + 1) = (k′, 0) for some k′.

C. Floors J through (L− 1)
We will define L′′(j) = L(j) for j ∈ [J, L). We will choose L to

be as large as possible under the condition that with this definition,(
N ′′

k [0, L) + N ′′
k [H − h(k2), H)

)
does not exceed N ′

k[0, H) for any k.

For all k and for J ≤ L ≤ H, define

Ek(L) := N ′
k[0, H)− (

N ′′
k [0, J) + N ′′

k [H − h(k2), H) + Nk[J, L)
)
.

Notice that for all k, Ek(L) is a non-increasing function of L. We will
let L be the largest integer L such that Ek(L) ≥ 0 for all k. (One
can show that Ek(J) > 0 for all k, and Ek(H) < 0 for some k, so L
is well-defined. The proof that Ek(J) > 0 for all k is contained in the
following.)

Claim: L > (1− ε/2)H.
Proof of Claim: We first estimate the summands of Ek(L). Since our
column is in Gp we have

(1) N ′
k[0, H) >

(
βp(k)− δ

)
H

for all k.
Also for all k, we have

(2) N ′′
k [0, J) + N ′′

k [H − h(k2), H) ≤ (J + 3 max h(k)) < δH.

Notice that if J ≤ L < 2δH then for all k we have

Ek(L) > (βp(k)− δ)H − δH −Nk[J, L) > (βp(k)− 2δ)H − 2δH

= (βp(k)− 4δ)H

> βp(k)(1− 4ε/6)H > 0.

Therefore L ≥ 2δH, and again since our column is in G we have

(3) Nk[J, L) ≤ Nk[0, L) <
(
βp(k) + δ

)
L

for all k.
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For some k, we have Ek(L) = 0. Using 1, 2 and 3 we see that for
this k,

0 = Ek(L) > (βp(k)− δ)H − δH − (βp(k) + δ)L.

Rearranging, we get

L > [(βp(k)− 2δ)/(βp(k) + δ)] H > (1− 3δ/βp(k))H

> (1− ε/2)H

End of proof of Claim. ¤

D. Floors L through (H − h(k2))
We have Ek(L) = N ′

k[0, H) − N ′′
k [0, L) − N ′′

k [H − h(k2), H) for all
k. Multiplying both sides of this equation by h(k), then summing over
k, we see that

∑
k Ek(L)h(k) = (H − L − h(k2)). Therefore, there

are exactly enough unlabelled floors left to label Ek(L) of the floors in
[L,H−h(k2)) with (k, 0) for each k, and fill in labels on the remaining
floors such that:

if L′′(j) = (k, l) with l < (h(k)− 1), then L′′(j + 1) = (k, l + 1),
if L′′(j) = (k, h(k)− 1) then L′′(j + 1) = (k′, 0) for some k′.

After labelling the remaining floors in this way we see that
N ′′

k [0, H) = Ek(L) + N ′′
k [0, L) + N ′′

k [H − h(k), H) = N ′
k[0, H), for all

k.
We define L′′ in this manner for all C(i) ∈ G. We get N ′′

k [0, H(i))i =
N ′

k[0, H(i))i for all i and k, and L′′ = L′ on base(T ) and top(T ). All
that remains is to show that L′′ and L differ on a set of measure less
than ε with respect to all of the measures νp with 1 ≤ p ≤ m. For
C(i) ∈ G we have L = L′′ on [J(i), L(i)). We know that J(i) <
δH(i) < (ε/6)H(i) and (H(i)− L(i)) < (ε/2)H(i). Therefore,

||L − L′′||νp ≤
∑

C(i)∈G




J(i)−1∑
j=0

νp(B(i, j)) +

H(i)−1∑

j=L(i)

νp(B(i, j))


 +

∑

C(i)/∈G

νp(C(i))

<
∑

C(i)∈G

[
(J(i) + H(i)− L(i))νp(B(i, 0))

]
+ 2δ

<
∑

C(i)∈G

[(ε/6 + ε/2)H(i)νp(B(i, 0))] + ε/3

≤ (ε/6 + ε/2) + ε/3 = ε.

¤
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4.4.1. Selection of δ and H. Let 0 < ε < 1 be given. Let σ =
〈b(k, l); h(k); K〉 and τ = 〈b(k, l); h(k); K〉 be as in the statement of
Lemma 6.

From ε, we obtain a 0 < δ < 1/2 and an integer Z1(δ) from the
Labelling Lemma. Using this δ, we obtain Z2(δ, S, µp), Z2(δ, T, νp) for
each 1 ≤ p ≤ m from from the above lemma. Let Z be the maximum
of {Z1(δ), maxp Z2(δ, S, µp), maxp Z2(δ, T, νp)}. Then by the Labelling
Lemma, we get the desired labelling L′′ and a multitower for T , τ ′1.
It is by this process that the labelling L′′ is constructed, and hence a
multitower τ ′1 for T such that (τ ′1, T2) is a nested pair, (τ ′1; νp) ≈ (σ; µp)
and ‖τ ′1 − τ‖νp < ε/2 for all 1 ≤ p ≤ m.

4.5. Step 5 - Cleaning Up. Note that we are not quite done since it
is not true that (Σ1; µp) ≈ (T2; νp), instead, T2 is a refined copy of Σ1.

Repairing this is a step that may look just technical, but, in fact, it
plays a crucial role in the entire proof. The reader may have noticed
that up to this moment we have never used the fact that the ergodic
S-invariant measures µp, p = 1, 2, . . . are distinct (hence, mutually
singular). It is obvious, however, that without using this fact the proof
cannot be done. Further, one may also note that until this point, the
floors of T2 could have the property that they have positive measure
with respect to only one measure.

Each base set A(i, 0) in Σ1 corresponds to a collection of base sets

B(ki, 0), B(ki+1, 0), . . . , B(ki+1−1, 0) in T2 where µp(A(i, 0)) = νp

(
∪ki+1−1

j=ki
B(j, 0)

)
.

We will fix this, as in [21, p. 126], by partitioning each A(i, 0) into
clopen sets A′(ki, 0), A′(ki +1, 0), . . . , A′(ki+1−1, 0). However (and this
is the main difference between the situation in [21] and the situation
here), we now need to control the values of all measures µ1, . . . , µm

when we do this partitioning. Since the measures µp are mutually
singular, the range of the vector measure (µ1, . . . , µm) is the entire m-
dimensional cube. This allows us to choose the clopen sets A′(k, 0)
such that

∑

k

|µp(A
′(k, 0))− νp(B(k, 0))|H ′(k) < ε/2

for any 1 ≤ p ≤ m. Let A′(i, j) = SjA′(i, 0) for 0 ≤ j < H ′(i),
and let Σ = 〈A(i, j); H ′(i); I ′〉. Now choose measurable sets B′(i, 0) ⊆
∪ki+1−1

k=ki
B(k, 0) such that

νp(B
′(i, 0)) = µp(A

′(i, 0)) and
∑

i

|νp(B
′(i, 0) M B(i, 0))|H ′(i) < ε/2.
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Let B′(i, j) = T jB′(i, 0) for 0 ≤ j < H ′(i) and T = 〈B′(i, j); H ′(i); I ′〉.
Finally, consider the labelling L′′ on T , where L′′(B′(i, j)) = L′′(B(i, j)).
This defines a new multitower τ ′ such that (τ ′; νp) ≈ (σ; µp) and
‖τ ′ − τ‖νp < ε/2 for 1 ≤ p ≤ m. These are the final versions of
the towers, and this completes the proof of Lemma 6 and, therefore,
the proof of the main theorem.

5. Concluding remarks

The realization theorem for countable families of e.m.p.a.’s cannot be
fully generalized to arbitrary (uncountable) families. The result of [9]
shows that there are some descriptive conditions of the semicontinuity
type that are necessary for topological, even nonminimal, realization of
a family of e.m.p.a.’s, and the complete list of these conditions is un-
clear. What looks plausible is that the recent result of T. Downarowicz
[6], which shows that the conditions for minimal realization and con-
ditions for aperiodic realization are the the same, can be strengthened
“in the orbital direction”. Namely, it may be true that every family
that can be realized aperiodically can also be realized minimally in the
orbit equivalence class of any Cantor minimal system whose simplex
of invariant measures is affinely homeomorphic to the simplex corre-
sponding to the aperiodic realization.

A natural approach to this conjecture can be to apply first the count-
able realization theorem to a w∗-dense countable set of ergodic mea-
sures in the aperiodic realization. The difficulty is to prove, for every
w∗-convergent sequence of measures νp, the convergence of the cor-
responding multitowers to the multitower associated with the limiting
measure ν. This requires constructing multitowers such that every floor
has the boundary of zero measure with respect to all invariant mea-
sures simultaneously. It turns out that for Cantor minimal systems
such “regular” towers can be constructed. It also seems possible that
such towers exist for Cantor aperiodic systems. There are, however,
other types of unresolved convergence difficulties in this approach, and
because of this we suspend further discussion.
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