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Abstract

This paper presents an additive and product structure for quan-
tum measurements. The additive structure generalizes the orthosum
of effects in effect algebras and preserves sums of expectations. The
additive structure also provides a natural order for measurements and
it is shown that an initial interval of measurements forms an effect
algebra. In certain cases, this effect algebra retains the properties
of the original effect algebra on which the measurements are defined.
Various sequential products of measurements are introduced and com-
pared. Conditional measurements are also studied.

1 Introduction

The simplest and most basic type of measurement is a one-zero (or yes-
no) measurement. We call such two-valued measurements effects. Quantum
effects may be unsharp (imprecise) and they generalize the sharp (precise)
quantum events that have been studied for over 75 years. In the Hilbert
space formulation of quantum mechanics, effects are represented by positive
operators bounded above by the identity operator, while sharp effects are
represented by projection operators [2, 3, 11, 12, 13]. In the last fifteen
years, researchers in the foundations of quantum mechanics have studied
effects in the more general context of an effect algebra [4, 5, 7]. An effect
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algebra encapsulizes the structure of the orthosum a ⊕ b for effects a and
b. Roughly speaking a ⊕ b corresponds to a parallel measurement of a and
b. More recently a sequential product a ◦ b has been introduced to form an
abstract structure called a sequential effect algebra [6, 8, 9, 10]. The product
a ◦ b corresponds to a series measurement in which a is performed first and
b second.

Although effect algebras and sequential effect algebras have provided in-
sights for a better understanding of quantum measurements, their applica-
bility has been limited to two-valued measurements. It is important that we
attain a deeper understanding of more general measurements, say measure-
ments with a finite or even infinite number of real values. In this paper we
study ways in which the orthosum and sequential product can be extended
from effects to more general measurements. Just as a sequential effect alge-
bra describes a mathematical structure for quantum effects we would like to
describe a mathematical structure for measurements. Although these struc-
tures are defined on effect algebras, they apply just as well to the special case
of Hilbert space quantum mechanics.

We first point out in Section 3 that a general measurement is described
by a normalized effect-valued measure. We then consider the special case
of measurements with a finite number of values. It is noted that there is a
one-to-one correspondence between elements of an effect algebra and (1, 0)-
measurements. We denote the set of measurements on an effect algebra E by
M(E). We define the partial binary operation ⊕ onM(E). It is shown that
⊕ extends the orthosum on E and provides additive expectations in the sense
that Es(X ⊕ Y ) = Es(X) + Es(Y ) where Es denotes the expectation in the
state s. We prove that M(E) is a generalized effect algebra and introduce
the natural order X ≤ Y on M(E). It follows that (M(E ,≤) is a partially
ordered set. We then show that for any nontrivial X ∈M(E), the interval

[0̂, X] = {Y ∈M(E) : Y ≤ X}

is an effect algebra. In many cases, these intervals preserve the properties
of E . The concepts of local and global sharpness of measurements are intro-
duced.

In Section 4 we study measurements with finitely many real values which
we call finite measurements. Denoting the set of finite measurements by
MF (E) we show that any X∈MF (E) is the orthosum of (1, 0)-measurements.
It is also shown that if X ∈ MF (E) then [0̂, X] is isomorphic to a cartesian
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product of intervals in E . The relationship between divisor effect algebras
and finite measurements on chains is discussed.

Section 5 considers measurements on a sequential effect algebra E . For
X ∈MF (E) and Y ∈M(E) we define the conditional measurement [Y | X].
The related concepts of conditional probability and conditional expectation
are discussed. It is shown that

[(Y ⊕ Z) | X] = [Y | X]⊕ [Z | X]

Finally, various types of sequential products of measurements are introduced
and compared. For simplicity we have phrased our previous discussion in
terms of effect algebras and sequential effect algebras. However, when we
arrive at our rigorous presentation in the text we shall mainly consider σ-
effect algebras and σ-sequential effect algebras. These σ-structures are com-
monly employed in quantum mechanics when measures and states are studied
[2, 3, 11, 12, 13]

2 Definitions and Notation

An effect algebra is a system (E , 0, 1,⊕) where 0 and 1 are distinct elements
of the set E and ⊕ is a partially defined binary operation on E called an
orthosum that satisfies the following conditions.

(EA1) If a⊕ b is defined then b⊕ a is defined and b⊕ a = a⊕ b.

(EA2) If a ⊕ b and (a ⊕ b) ⊕ c are defined, then b ⊕ c and a ⊕ (b ⊕ c)
are defined and a⊕ (b⊕ c) = (a⊕ b)⊕ c.

(EA3) For every a ∈ E there exists a unique a′ ∈ E such that a⊕a′ = 1.

(EA4) If a⊕ 1 is defined then a = 0.

We call the elements of E effects and view them as quantum events
that may be imprecise or fuzzy. Whenever we write a ⊕ b we are implicitly
assuming that this element is defined. In accordance with (EA2) we can omit
parentheses and write a⊕ b⊕ c. We define a ≤ b if there exists a c ∈ E such
that a⊕ c = b. It is easy to show that (E ,≤) is a partially ordered set with
0 ≤ a ≤ 1 for every a ∈ E and that a ⊕ b is defined if and only if a ≤ b′.
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When a ≤ b′ we say that a and b are orthogonal and write a ⊥ b. It is also
easy to show that a′′ = a and that a ≤ b implies b′ ≤ a′.

An element a ∈ E is sharp if the greatest lower bound a ∧ a′ = 0. We
denote the set of sharp elements of E by ES. An orthoalgebra is an effect
algebra in which a ⊥ a implies that a = 0. It can be shown that an effect
algebra E is an orthoalgebra if and only if E = ES. A σ-effect algebra is
an effect algebra in which a1 ≤ a2 ≤ · · · implies that the least upper bound
∨ai exists. If ai, i = 1, 2, . . . , is a sequence in a σ-effect algebra for which
a1 ⊕ · · · ⊕ an exists for every n ∈ N, then it follows that ∨n(a1 ⊕ · · · ⊕ an)
exists and we write this element as ⊕∞i=1ai.

An orthomodular poset is an orthoalgebra E in which a ⊥ b implies
that a⊕b = a∨b. An effect algebra is lattice ordered if it is a lattice under
its usual order. An orthomodular lattice is a lattice ordered orthomodular
poset. An MV-effect algebra is a lattice ordered effect algebra in which
a ∧ b = 0 implies that a ⊥ b (and it then follows that a ⊕ b = a ∨ b). A
distributive orthomodular lattice is a Boolean algebra. For more details
about these algebraic structures we refer the reader to [4, 5, 7].

If E is an effect algebra and a ∈ E with a �= 0 then the interval [0, a] =
{b ∈ E : b ≤ a} becomes an effect algebra with unit a and orthosum ⊕a de-
fined as follows. For b, c ∈ [0, a], b ⊕a c is defined if b ⊕ c is defined and
b ⊕ c ≤ a in which case b ⊕a c = b ⊕ c. If E1, . . . , En are effect algebras,
their cartesian product E1 × · · · × En becomes an effect algebra under their
coordinate orthosum

(a1, . . . , an)⊕ (b1, . . . , bn) = (a1 ⊕ b1, . . . , an ⊕ bn)

All the previous definitions and results apply to the corresponding σ-structures
in the natural way.

If E and F are effect algebras a map φ : E → F is additive if a, b ∈ E
with a ⊥ b implies that φ(a) ⊥ φ(b) and φ(a ⊕ b) = φ(a) ⊕ φ(b). An
additive map φ : E → F satisfying φ(a) = 1 is called a morphism. A
monomorphism is a morphism φ : E → F such that φ(a) ⊥ φ(b) implies
a ⊥ b. A surjective monomorphism is an isomorphism. It can be shown
that a morphism φ : E → F is an isomorphism if and only if φ is bijective and
φ−1 is a morphism. If E and F are σ-effect algebras, a morphism φ : E → F
is a σ-morphism if a1 ≤ a2 ≤ · · · implies that φ(∨ai) = ∨φ(ai). We define
a σ-isomorphism in a similar way. A simple example of a σ-effect algebra is
the unit interval [0, 1] ⊆ R. For a, b ∈ [0, 1] we say that a ⊕ b is defined if
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a+ b ≤ 1 and in this case a⊕ b = a+ b. A σ-morphism φ : E → [0, 1] is called
a state on the σ-effect algebra E . The set of states on E is denoted by Ω(E).

We now give examples of the most common σ-effect algebras. For n ∈ N,
the n-chain Cn = {0, 1, 2a, . . . , na} where na = 1 becomes a totally ordered
σ-effect algebra where ra⊕sa is defined if r+s ≤ n and in this case ra⊕sa =
(r + s)a. The only sharp elements in Cn are 0 and 1. A Boolean σ-algebra
B is a σ-effect algebra in which a ⊕ b is defined if a ∧ b = 0 in which case
a⊕ b = a∨ b. All the elements of B are sharp. For a nonempty set X, the set
of fuzzy subsets [0, 1]X of X is a σ-effect algebra in which f ⊕ g is defined if
f(x) + g(x) ≤ 1 for all x ∈ X and in this case f ⊕ g = f + g. An element of
[0, 1]X is sharp if and only if it is a characteristic function. Thus, the sharp
fuzzy sets correspond to the subsets of X.

For quantum mechanics the most important example is a Hilbert space
σ-effect algebra E(H) for a Hilbert space H. The elements of E(H) are the
positive operators on H that are bounded above by the identity operator
I. For A, B ∈ E(H) we say that A ⊕ B is defined if A + B ≤ I and in
this case A ⊕ B = A + B. The set of sharp elements of E(H) is the set of
projection operators P(H) on H. By Gleason’s theorem, if dim(H) ≥ 3, then
s is a state on E(H) if and only if there exists a density operator W such that
s(A) = tr(WA) for all A ∈ E(H). Also recall that any self-adjoint operator S
on H corresponds to a spectral measure P S which is a σ-morphism from the
Borel σ-algebra B(R) into P(H). More generally, a σ-morphism from B(R)
into E(H) is called a normalized positive operator-valued measure
(POVM) [2, 3, 11].

Effect algebras are limited by the fact that they only describe what is
roughly speaking a parallel combination a⊕ b of effects. In order to describe
a series combination of effects we introduce a sequential product a ◦ b. For
a binary operation a ◦ b if a ◦ b = b ◦ a we write a | b. A sequential effect
algebra (SEA) is a system (E , 0, 1,⊕, ◦) where (E , 0, 1,⊕) is an effect algebra
and ◦ is a binary operation on E that satisfies the following conditions.

(SEA1) The map φ(b) = a ◦ b is additive for every a ∈ E .

(SEA2) 1 ◦ a = a.

(SEA3) If a ◦ b = 0, then a | b.

(SEA4) If a | b then a | b′ and a ◦ (b ◦ c) = (a ◦ b) ◦ c for every c ∈ E .

(SEA5) If c | a and c | b, then c | a ◦ b and c | (a⊕ b).
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A σ-SEA E is a SEA that is a σ-effect algebra satisfying the following
conditions.

(σ-SEA1) If a1 ≤ a2 ≤ · · · , then b ◦ (∨ai) = ∨(b ◦ ai) for all b ∈ E .

(σ-SEA2) If a1 ≤ a2 ≤ · · · and b | ai then b | ∨ai.

For details concerning SEA’s we refer the reader to [8, 9]. We shall be
content here with some examples. In the σ-effect algebra [0, 1] ⊆ R the unique
sequential product is a ◦ b = ab so [0, 1] becomes a σ-SEA. In the σ-effect
algebra [0, 1]X the unique sequential product is f ◦g = fg so [0, 1]X becomes a
σ-SEA. A Boolean σ-algebra is a σ-SEA under the unique sequential product
a ◦ b = a ∧ b. A Hilbert space σ-effect algebra E(H) is a σ-SEA under the
sequential product A◦B = A1/2BA1/2. It is unknown whether this sequential
product is unique. Finally, it is easy to show that there does not exist a
sequential product on a chain Cn for n ≥ 2 [8].

3 Orthosums of Measurements

In the sequel, E will denote a σ-effect algebra and B(R) will denote the σ-
effect algebra of Borel subsets of R. A measurement X on E is a normalized
effect-valued measure on B(R). That is, X : B(R) → E is a σ-morphism in
the sense that X(R) = 1 and

X

( ∞⋃
i=1

∆i

)
=

∞⊕
i=1

X(∆i)

whenever ∆i ∩ ∆j = ∅, i �= j. We may think of X(∆) as the effect that
is observed when X has a value in the Borel set ∆. We denote the set of
measurements on E by M(E). A particularly simple class of measurements
are the finite measurements which have a finite set of values. For such a
measurement X there exists a finite set

Λ(X) = {λ1, . . . , λn} ⊆ R

such that X ({λi}) = ai ∈ E where ai �= 0, i = 1, . . . , n and ⊕ai = 1. Then
for any ∆ ∈ B(R) we have

X(∆) = ⊕{ai, : λi ∈ ∆}
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where by convention ⊕(∅) = 0. We denote the set of finite measurements by
MF (E). Special cases are the constant measurements satisfying X ({λ}) =
1 for some λ ∈ R. In particular we define 0̂, 1̂ ∈ MF (E) where 0̂ ({0}) = 1
and 1̂ ({1}) = 1. Other important examples are the (1, 0)-measurements â
for a ∈ E , a �= 0, 1, where â ({1}) = a, â ({0}) = a′.

For ∆ ∈ B(R) our notation implies that ∆′ is the complement R �∆ of
∆. For X, Y ∈M(E) we say that X ⊕ Y exists if

p(X, Y ) = X
(
{0}′

)
⊕ Y

(
{0}′

)
is defined and in this case (X⊕Y )(∆) = X(∆)⊕Y (∆) if 0 /∈ ∆ and if 0 ∈ ∆
then

(X ⊕ Y )(∆) = (X ⊕ Y ) (∆� {0})⊕ p(X, Y )′

We call X ⊕ Y : B(R) → E the orthosum of X and Y and if X ⊕ Y exists
we write X ⊥ Y . Notice that X ⊥ Y if and only if X

(
{0}′

)
≤ Y ({0}). If

we call X
(
{0}′

)
the support of X ∈ M(E) we see that X ⊥ Y if and only

if the supports of X and Y are orthogonal.

Theorem 3.1. If X ⊥ Y then X ⊕ Y ∈M(E).

Proof. First we have

(X ⊕ Y )(R) = (X ⊕ Y )
(
{0}′

)
⊕ p(X, Y )′ = p(X, Y )⊕ p(X, Y )′ = 1

To show that X ⊕ Y is countably additive, suppose that ∆i ∈ B(R) with
∆i ∩∆j = ∅, i �= j. If 0 /∈ ∪∆i we have

(X ⊕ Y )(∪∆i) = X(∪∆i)⊕ Y (∪∆i) = [⊕X(∆i)]⊕ [⊕Y (∆i)]

= ⊕ [X(∆i)⊕ Y (∆i)] = ⊕(X ⊕ Y )(∆i)

Now suppose that 0 ∈ ∪∆i. We can assume without loss of generality that
0 ∈ ∆1 and 0 /∈ ∆i, i �= 1. We then have

(X ⊕ Y )(∪∆i) = (X ⊕ Y ) (∪∆i � {0})⊕ p(X, Y )′

= (X ⊕ Y )

[
(∆1 � {0}) ∪ ∪

i�=1
∆i

]
⊕ p(X, Y )′

= (X ⊕ Y ) (∆1 � {0})⊕ ⊕
i�=1

(X ⊕ Y )(∆i)⊕ p(X, Y )′

= (X ⊕ Y ) (∆1 � {0}) ⊕ p(X, Y )′ ⊕
i�=1

(X ⊕ Y )(∆i)

= ⊕(X ⊕ Y )(∆i) �
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For s ∈ Ω(E), X ∈ M(E) we interpret s [X(∆)] as the probability that
X has a value in ∆ when the system is in the state s. It is then natural to
call the probability measure s ◦X : B(R)→ [0, 1] the distribution of X in
the state s. The expectation of X in the state s is defined by

Es(X) =

∫
R

λs [X(dλ)]

if the integral exists. The next lemma shows that the orthosum on M(E)
has two important properties; it extends the orthosum on E and it provides
additive expectations.

Lemma 3.2. (i) If a ⊥ b then (a⊕ b)∧ = a∧⊕ b∧. (i) If X ⊥ Y and Es(X),
Es(Y ) exist, then Es(X ⊕ Y ) = Es(X) + Es(Y ).

Proof. (i) If a ⊥ b then

p(â, b̂) = â ({1})⊕ b̂ ({1}) = a⊕ b

is defined. Moreover,

(â⊕ b̂) ({1}) = â ({1})⊕ b̂ ({1}) = a⊕ b

and

(â⊕ b̂) ({0}) = (â⊕ b̂)(∅)⊕ p(â, b̂)′ = (a⊕ b)′

Hence, â⊕ b̂ = (a⊕ b)∧. (ii) We have that

Es(X ⊕ Y ) =

∫
R

λs [(X ⊕ Y )(dλ)] =

∫
{0}′

λs [(X ⊕ Y )(dλ)]

=

∫
{0}′

λ {s [X(dλ)] + s [Y (dλ)]}

=

∫
{0}′

λs [X(dλ)] +

∫
{0}′

λs [Y (dλ)]

=

∫
R

λs [X(dλ)] +

∫
R

λs [Y (dλ)] = Es(X) + Es(Y ) �
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Example 1. Let E = E(H) be a Hilbert space σ-effect algebra. Let
X, Y ∈MF (E) be defined by X ({1/2}) = I and Y ({1}) = I/2,
Y ({0}) = I/2. Then Es(X) = 1/2 = ES(Y ) for every s ∈ Ω(E) and yet
X �= Y . This shows that expectations do not determine measurements even
when there is a rich supply of states.

We say that Ω(E) is order determining if s(a) ≤ s(b) for every s ∈ Ω(E)
implies that a ≤ b. A measurement X is bounded if there exists an M > 0
such that X ([−M, M ]) = 1. If X, Y ∈ M(E) are bounded and X ⊥ Y
then Es(X ⊕ Y ) = Es(X) + Es(Y ) for every s ∈ Ω(E). However, X ⊕ Y
need not be the unique measurement satisfying this equation even when
Ω(E) is order determining. For instance in Example 1, let X1 ({1}) = I/4,
X1 ({0}) = 3I/4. Then Es(X) = 1/2 = Es(X1 ⊕X1) for every s ∈ Ω(E) but
Y = X1 ⊕X1.

In the sequel we shall repeatedly use the fact that for X, Y ∈ M(E) if
X(∆) = Y (∆) for every ∆ ∈ B(R) with 0 /∈ ∆ then X = Y . The next result
summarizes the important properties of orthosums.

Theorem 3.3. The set M(E) forms a generalized effect algebra. That is,
the following properties are satisfied.
(i) If X ⊥ Y , then Y ⊥ X and Y ⊕X = X ⊕ Y
(ii) If Y ⊥ Z and X ⊥ (Y ⊕ Z) then X ⊥ Y , Z ⊥ (X ⊕ Y ) and

(X ⊕ Y )⊕ Z = X ⊕ (Y ⊕X)
(iii) 0̂ ⊥ X and 0̂⊕X = X for all X ∈M(E).
(iv) If X ⊕ Y = X ⊕ Z then Y = Z.
(v) If X ⊕ Y = 0̂, then X = Y = 0̂.

Proof. (i) This follows directly from the definition. (ii) If X ⊥ (Y ⊕ Z),
then

p(X, Y ⊕ Z) = X
(
{0}′

)
⊕ Y

(
{0}′

)
⊕ Z

(
{0}′

)
is defined. Since p(X ⊕ Y, Z) = p(X, Y ⊕ Z) it follows that X ⊥ Y and
Z ⊥ (X ⊕ Y ). Moreover, if 0 /∈ ∆ then

[(X ⊕ Y )⊕ Z] (∆) = [X(∆)⊕ Y (∆)]⊕ Z(∆) = X(∆)⊕ (Y (∆)⊕ Z(∆))

= [X ⊕ (Y ⊕ Z)] (∆)

It follows that (X ⊕ Y )⊕ Z = X ⊕ (Y ⊕ Z). (iii) Since p(0̂, X) = X
(
{0}′

)
we have that 0̂⊕X exists. If 0 /∈ ∆ then

(0̂⊕X)(∆) = 0̂(X)⊕X(∆) = 0⊕X(∆) = X(∆)
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so that 0̂⊕X = X. (iv) If 0 /∈ ∆, then

X(∆)⊕ Y (∆) = X(∆)⊕ Z(∆)

so by cancellation, Y (∆) = Z(∆). Hence, Y = Z. (v) If X ⊕ Y = 0̂ then

X
(
{0}′

)
⊕ Y

(
{0}′

)
= 0

Hence, X ({0}) = Y
(
{0}′

)
= 0 so that X = Y = 0̂.

For X, Y ∈ M(E) we write X ≤ Y if there is a Z ∈ M(E) such that
X ⊕ Z = Y . For a, b ∈ E with a ≤ b we denote by b� a the unique element
c that satisfies a⊕ c = b.

Theorem 3.4. For X, Y ∈ M(E), X ≤ Y if and only if X(∆) ≤ Y (∆) for
every ∆ ∈ B(R) with 0 /∈ ∆.

Proof. Suppose that X ≤ Y so there exists a Z ∈M(E) such that X⊕Z = Y .
Then for any ∆ ∈ B(R) with 0 /∈ ∆ we have

X(∆)⊕ Z(∆) = (X ⊕ Z)(∆) = Y (∆)

Hence, X(∆) ≤ Y (∆). Conversely, suppose X(∆) ≤ Y (∆) for every ∆ ∈
B(R) with 0 /∈ ∆. If 0 ∈ ∆, since X(∆′) ≤ Y (∆′) we have

X(∆) = Y (∆)⊕ [Y (∆′)�X(∆′)] ≥ Y (∆)

Hence, Y (∆) ⊕ X(∆)′ is defined whenever 0 ∈ ∆. Define Z(∆) = Y (∆) �
X(∆) for every ∆ ∈ B(R) with 0 /∈ ∆ and if 0 ∈ ∆ define Z(∆) = Y (∆) ⊕
X(∆)′. To show that Z ∈M(E) we have

Z(R) = Y (R)⊕X(R)′ = 1

Suppose ∆i ∩∆j = ∅, i �= j and 0 /∈ ∪∆i. Then

Z(∪∆i) = Y (∪∆i)�X(∪∆i) = ⊕Y (∆i)� [⊕(∆i)]

= ⊕ [Y (∆i)�X(∆i)] = ⊕Z(∆i)
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If 0 ∈ ∪∆i, then we can assume without loss of generality that 0 ∈ ∆1 and
0 /∈ ∆i for i �= 1. We then have

Z(∪∆i) = Y (∪∆i)⊕X(∪∆i)
′ = ⊕Y (∆i)⊕ [⊕X(∆i)]

′

= ⊕Y (∆i)⊕
[
X(∆1)

′ �
(
⊕
i�=1

X(∆i)

)]
= [Y (∆1)⊕X(∆1)

′]⊕ ⊕
i�=1

[Y (∆i)�X(∆i)]

= Z(∆1)⊕ ⊕
i�=1

Z(∆i) = ⊕Z(∆i)

Hence, Z ∈M(E). To show that X ⊥ Z we have

Z ({0}) = Y ({0})⊕X ({0})′ ≥ X ({0})′ = X
(
{0}′

)
Hence, X

(
{0}′

)
⊥ Z

(
{0}′

)
so X ⊥ Z. If 0 /∈ ∆, then

(X ⊕ Z)(∆) = X(∆)⊕ Z(∆) = Y (∆)

Therefore, Y = X ⊕ Z so that X ≤ Y .

Lemma 3.5. If a1 ≤ a2 ≤ · · · , b1 ≤ b2 ≤ · · · , and ai ⊥ bi, i = 1, 2, . . . , then
∨ai ⊥ ∨bi.

Proof. If i ≤ j, we have that ai ≤ aj ≤ b′j. Therefore,

ai ≤
∧
i≤j

b′j =

(∨
i≤j

bj

)′
Hence

a′i ≥
∨
i≤j

bj =
∨

bj

so that ∧a′i ≥ ∨bj. We conclude that ∨ai ≤ (∨bj)
′ so that ∨ai ⊥ ∨bj.

Theorem 3.6. If Xi ∈M(E) satisfy X1 ≤ X2 ≤ · · · , then ∨Xi exists.

Proof. For ∆ ∈ B(R) with 0 /∈ ∆, by Theorem 3.4 we have that X1(∆) ≤
X2(∆) ≤ · · · so ∨Xi(∆) exists. Define X(∆) = ∨Xi(∆). To show that X is
additive, suppose ∆1, ∆2 ∈ B(R) with 0 /∈ ∆1 ∪∆2 and ∆1 ∩∆2 = ∅. Then

X(∆1 ∪∆2) = ∨Xi(∆1 ∪∆2) = ∨ [Xi(∆1)⊕Xi(∆2)]
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By Lemma 3.5 we have ∨Xi(∆1) ⊥ ∨Xi(∆2) and since

Xi(∆1)⊕Xi(∆2) ≤ ∨Xi(∆1)⊕ ∨Xi(∆2)

we have

X(∆1 ∪∆2) = ∨ [Xi(∆1)⊕Xi(∆2)] ≤ ∨Xi(∆1)⊕ ∨Xi(∆2)

= X(∆1)⊕X(∆2)

Since

∨ [Xi(∆1)⊕Xi(∆2)] ≥ Xi(∆1)⊕Xj(∆2)

for all i, j, we have

∨ [Xi(∆1)⊕Xi(∆2)] ≥ ∨i [Xi(∆2)⊕Xj(∆2)] = [∨iXi(∆1)]⊕Xj(∆2)

Similarly,

∨ [Xi(∆2)⊕Xi(∆2)] ≥ ∨iXi(∆1)⊕ ∨jXj(X2) = X(∆1)⊕X(∆2)

It follows that X(∆1 ∪∆2) = X(∆1) ⊕X(∆2). Moreover, it is clear that if
∆1 ⊆ ∆2 ⊆ · · · , 0 /∈ ∪∆i then X(∪∆i) = ∨X(∆i). This shows that X is

countably additive on {0}′. Finally, if we define X ({0}) =
[
X

(
{0}′

)]′
it is

straightforward to show that X extends to an element Y ∈ M(E) and by
Theorem 3.4 we have that Y = ∨Xi.

Corollary 3.7. The set M(E) forms a generalized σ-effect algebra.

It follows from Theorem 3.4 that (M(E),≤) is a partially ordered set and
0̂ ≤ X for every X ∈ M(E). For X ∈ M(E) with X �= 0̂, by Corollary 3.7

the system
(
[0̂, X], 0̂, X,⊕1

)
forms a σ-effect algebra where for Y, Z ∈ [0̂, X]

Y ⊕1 Z is defined if Y ⊕Z is defined and Y ⊕Z ≤ X in which case Y ⊕1 Z =
Y ⊕ Z. In the sequel, we shall omit the subscript in ⊕1. We say that
X ∈ M(E) is maximal if X ({0}) = 0. If X is maximal then X ≤ Y
implies that X = Y so X is maximal in the order sense. In this case, [0̂, X]
is a maximal σ-effect algebra in M(E). The next result shows that [0̂, 1̂] is
essentially E .

Lemma 3.8. The interval [0̂, 1̂] ⊆M(E) is σ-isomorphic to E.
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Proof. The map φ(a) = â is a bijection from E onto [0̂, 1̂] that preserves the
unit. If a ⊥ b then by Lemma 3.2, φ(a) ⊥ φ(b) and φ(a ⊕ b) = φ(a) ⊕ φ(b).

Hence, φ is a morphism. If â ⊥ b̂ then by definition a ⊥ b. Hence, φ is a
monomorphism so φ is an isomorphism. Finally, suppose that a1 ≤ a2 ≤ · · · .
Then â1 ≤ â2 ≤ · · · and by the proof of Theorem 3.6 we have that

(∨âi) ({1}) = ∨âi ({1}) = ∨ai

Moreover,

(∨âi)
(
{0}′

)
= ∨âi

(
{0}′

)
= ∨ai

so that

(∨âi) ({0}) = (∨âi)
′

It follows that ∨âi = (∨ai)
∧. Hence, φ is a σ-isomorphic.

The next result shows that [0̂, X] preserves the structure of E for orthoal-
gebras, orthomodular posets and Boolean algebras.

Lemma 3.9. Let X ∈ M(E) with X �= 0̂. (i) If E is an orthoalgebra then
so is [0̂, X]. (ii) If E is an orthomodular poset then so is [0̂, X]. (iii) If E is
a Boolean algebra then so is [0̂, X].

Proof. (i) Suppose that E is an orthoalgebra. For Y ∈ [0̂, X] suppose that
Y ⊕ Y exists in [0̂, X]. Then Y

(
{0}′

)
⊕ Y

(
{0}′

)
is defined so Y

(
{0}′

)
=

0. Hence, Y ({0}) = 1 so Y = 0̂. (ii) Suppose that E is a orthomodular
poset. For Y, Z ∈ [0̂, X] assume that Y ⊕ Z exists in [0̂, X]. If 0 /∈ ∆ then
Y (∆) ⊕ Z(∆) = Y (∆) ∨ Z(∆). It follows that Y ⊕ Z = Y ∨ Z in [0̂, X] so
[0̂, X] is an orthomodular poset. (iii) Suppose that E is a Boolean algebra.
For Y, Z ∈ [0̂, X] define Y1, Z1, W ∈ [0̂, X] as follows. For ∆ ∈ B(R) with
0 /∈ ∆ define W (∆) = Y (∆) ∧ Z(∆), Y1(∆) = Y (∆) � W (∆), Z1(∆) =
Z(∆)�W (∆). Extend Y1, Z1 and W to B(R) as we have done before. It is
straightforward to show that Y1 ⊕ Z1 ⊕W ∈ [0̂, X] and that Y = Y1 ⊕W ,
Z = Z1 ⊕W . It follows that [0̂, X] is a Boolean algebra.

It is an open question whether Lemma 3.9 holds for lattice ordered effect
algebras, MV-effect algebras and orthomodular lattices. We shall show later
that these results hold for X ∈MF (E).
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A measurement X ∈ M(E) is globally sharp if X(∆) ∈ ES for all
∆ ∈ B(R). We call X locally sharp in [0̂, Y ] if X ∈ [0̂, Y ]S. Of course,
X can be locally sharp in [0̂, Y ], X ∈ [0̂, Z] but not locally sharp in [0̂, Z].
Indeed, Y ∈ [0̂, Y ]S but in simple examples Y ∈ [0̂, Z]� [0̂, Z]S. In a similar
way local sharpness does not imply global sharpness. The next result shows
that global sharpness implies local sharpness.

Lemma 3.10. If X is globally sharp and X ∈ [0̂, Y ], then X ∈ [0̂, Y ]S.

Proof. Suppose Z ≤ X and Z ≤ Y �X. Then Z
(
{0}′

)
≤ X

(
{0}′

)
and

Z
(
{0}′

)
≤ Y

(
{0}′

)
�X

(
{0}′

)
≤ 1−X

(
{0}′

)
Since X

(
{0}′

)
∈ ES we have that Z

(
{0}′

)
= 0. Hence, Z ({0}) = 1 so that

Z = 0̂. It follows that X ∈ [0̂, Y ]S.

If X ∈M(E) and f : R→ R is a Borel function, we define f(X) ∈M(E)
by f(X)(∆) = X (f−1(∆)) for every ∆ ∈ B(R). In the usual way we have
that

ES [f(X)] =

∫
f(λ)s [X(dλ)]

if the integral exists.

4 Finite Measurements

We may think of a finite measurement X ∈MF (E) as a set of ordered pairs
{(λi, ai)}ni=1 where λi ∈ R satisfy λi �= λj, i �= j, and ai ∈ E satisfy ai �= 0
and ⊕ai = 1. We call Λ(X) = {λ1, . . . , λn} the value set of X and think of
X as a function X : Λ(X)→ E given by X(λi) = ai, i = 1, . . . , n. It follows
from our previous results that for X = {(λi, ai)}, Y = {(µj, bj)} ∈ MF (E),
X ⊕ Y exists if

p(X, Y ) =
⊕
λi �=0

ai

⊕ ⊕
µj �=0

bj

is defined and in this case (X ⊕ Y )(λi) = ai if λi ∈ Λ(X) � Λ(Y ), λi �= 0,
(X ⊕ Y )(µj) = bj if µj ∈ Λ(Y ) � Λ(X), µj �= 0, and (X ⊕ Y )(λi) = ai ⊕ bj
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if λi = µj �= 0. Finally, (X ⊕ Y )(0) = p(X, Y )′ if p(X, Y ) �= 1. We thus see
that

Λ(X ⊕ Y ) = [Λ(X) ∪ Λ(Y )]� {0}

if p(X, Y ) = 1 and

Λ(X ⊕ Y ) = Λ(X) ∪ Λ(Y ) ∪ {0}

if p(X, Y ) �= 1. Moreover, by Theorem 3.4 we have that X ≤ Y if and only if
Λ(X) ⊆ Λ(Y )∪ {0} and X(λ) ≤ Y (λ) for all λ ∈ Λ(X)� {0}. For λ ∈ R let
fλ : R→ R be defined by fλ(x) = λx. For X ∈ MF (E) we use the notation
λX = fλ(X). Then 0X = 0̂ and if λ �= 0 we have that λX = {(λλi, ai)}. The
next result shows that X ∈MF (E) if and only if X is a “linear combination”
of (1, 0)-measurements.

Lemma 4.1. An X ∈ M(E) is finite if and only if X = λ1â1 ⊕ · · · ⊕ λnân

where ⊕ai = 1.

Proof. If X has the above form, then X is clearly finite. Conversely, suppose
X is finite. If X is a constant X ({λ}) = 1 then X = λ1̂. Suppose X =
{(λi, ai)}ni=1 where λi �= 0, i = 1, . . . , n. Then X = λ1â1 ⊕ · · · ⊕ λnân.
Otherwise, X = {(λi, ai)}ni=1 where λn = 0 and λi �= 0, i = 1, . . . , n − 1.
Then X = λ1â1 ⊕ · · · ⊕ λn−1ân−1.

If the λi are distinct and ai �= 0, i = 1, . . . , n, then the decomposition
in Lemma 4.1 is unique up to order. Elements a1, . . . , an ∈ E coexist if
a1 ⊕ · · · ⊕ an is defined.

Theorem 4.2. If X ∈ MF (E) with X �= 0̂, then there exist coexisting ele-
ments a1, . . . , an ∈ E with ai �= 0 such that

[0̂, X] ≈ [0, a1]× · · · × [0, an] (4.1)

Conversely, if a1, . . . , an coexist with ai �= 0, then there exists an X ∈MF (E)
such that (4.1) holds where ≈ denotes σ-isomorphic.

Proof. Let X(λi) = bi with ⊕bi = 1. If λi �= 0 for every i, let ai = bi and
otherwise we can assume without loss of generality that λn+1 = 0 and we let
ai = bi, i = 1, . . . , n. Then Y ∈ [0̂, X] if and only if Y (λi) ≤ ai i = 1, . . . , n.
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It is easy to check that Y �→ (Y (λ1, . . . , Y (λn)) is σ-isomorphism from [0̂, X]
onto [0, a1]× · · · × [0, an]. Conversely, if a1, . . . , an coexist, let

Λ(X) = {λ1, . . . , λn} ⊆ R� {0}

and define X : Λ(X)→ E by X(λi) = ai. If ⊕ai �= 1, extend X to Λ(X)∪{0}
by defining X(0) = (⊕ai)

′. Then [0̂, X] is σ-isomorphic to [0, a1] × · · · ×
[0, an].

Corollary 4.3. Let X ∈ MF (E) with X �= 0̂. If E has any of the follow-
ing properties, then so does [0̂, X]. (i) Lattice ordered, (ii) MV-effect al-
gebra, (iii) orthoalgebra, (iv) orthomodular poset, (v) orthomodular lattice,
(vi) Boolean algebra.

Proof. (i) If E is lattice ordered, [0, a] is also lattice ordered and the result
follows from Theorem 4.2. (ii) If E is an MF-effect algebra, [0, a] is lattice
ordered by (i). If b, c ∈ [0, a] and b∧ c = 0 then b⊕ c = b∨ c in [0, a] so [0, a]
is an MV-effect algebra and the result follows from Theorem 4.2. (iii), (iv)
and (vi) were proved in Lemma 3.9 and also follow from Theorem 4.2. (v)
follows from (iv) and (i).

Example 2. If X ∈MF ([0, 1]) has n nonzero values then [0̂, X] ≈ [0, 1]n.
In this case Y ∈ [0̂, X] can be locally sharp but not globally sharp. For
example, if Y corresponds to (1, 0, . . . , 0) ∈ [0, 1]n then Y is locally sharp in
[0̂, X].

Example 3. Let X ∈MF (E(H)) be sharp. Suppose that
X = {(λi, Pi)}ni=1 where λi �= 0 and

∑
Pi = I. Then PiH is a Hilbert space

whose dimension is not greater than that of H and we have

[0̂, X] ≈ E(P1H)× · · · × E(PnH)

In particular, if the Pi are one-dimensional projections then [0̂, X] ≈ [0, 1]n.

Example 4. Let S be a finite set and let 2S have its Boolean algebra
structure. For A ∈ 2S we can identify Â with χA. If
X = {(λi, Ai)} ∈ MF (2S) we can identify X with the function f : S → R

given by f(s) = λi if s ∈ Ai. We then have that X = f−1. In this way we
identifyMF (2S) with RS. For f ∈ RS define the support of f by

supp(f) = {s ∈ S : f(s) �= 0}
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For f, g ∈ RS we see that f ⊥ g if and only if supp(f) ∩ supp(g) = ∅ and in
this case f ⊕ g = f + g. Also, f ≤ g if and only if supp(f) ⊆ supp(g) and
f(s) = g(s) for all s ∈ supp(f). If f ∈ RS then [0̂, f ] ≈ 2|supp(f)| where
|supp(f)| is the cardinality of supp(f).

Let N be a positive integer with prime factorization

N = pk1
1 . . . p

kj

j

where the pi are distinct primes and ki ≥ 1, i = 1, . . . , j. Of course, N
has (k1 + 1) · · · (kj + 1) positive integer divisors. Let D(N) be the set of all
positive integer divisors of N and for m, n ∈ D(N) if m divides n we write
m | n. It is well known that (D(N), |) is a lattice. For m, n ∈ D(N) we
say that m ⊕ n is defined if mn | N in which case m ⊕ n = mn. Then
(D(N), 1, N,⊕) is an effect algebra called a divisor effect algebra. Notice
that the effect algebra order m ≤ n is the usual order m | n and n is sharp
in D(N) if and only if n and N/n are relatively prime. Also, n is an atom in
D(N) if and only if n is prime. Observe that the effect algebra structure of
D(N) is an MV-effect algebra.

Theorem 4.4. An effect algebra E is a divisor effect algebra if and only if
E ≈ [0̂, X] where X ∈MF (Cn) for some n ∈ N.

Proof. Suppose that E = (D(N), 1, N,⊕) is a divisor effect algebra and N =

pk1
1 . . . p

kj

j . Let n =
∑

ki, {λ1, . . . , λn} ⊆ R � {0} and define X ∈ MF (Cn)

by X = {(λi, kia)}ji=1 where a is the atom in the chain Cn. Then X1 ≤ X if
and only if X1 has the form X1 = {(λi, 'ia)} where 0 ≤ 'i ≤ ki and we delete
the terms with 'i = 0 and define X(0) = (n −∑

'i)a. Thus, the elements
of [0̂, X] are in a natural one-to-one correspondence with the elements of
D(N). Moreover, if X2(λi) = ria and X2 ∈ [0̂, X] then X1 ⊥ X2 if and only
if 'i + ri ≤ ki in which case

(X1 ⊕X2)(λi) = ('i + ri)a

Thus, if X1 corresponds to q = p�1
1 . . . p

�j

j and X2 corresponds to p = pr1
1 . . . p

rj

j

then X1 ⊕ X2 corresponds to qp. This shows that E ≈ [0̂, X]. Conversely,
let X ∈ MF (Cn) and let E = [0̂, X]. Then X has the form X(λi) = kia,
i = 1, . . . , j, λi �= 0. Just as before there is a one-to-one correspondence
between elements of [0̂, X] and elements of D(N) which preserves ⊕, where

N = pk1
1 . . . p

kj

j
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It follows from Theorem 4.4 that [0̂, X] for X ∈ MF (Cn) is an MV-
effect algebra. Also, since the sharp elements of an MV-effect algebra form
a Boolean algebra this holds for [0̂, X]S. If N has the form pn then D(N) is
the chain Cn and if N has the form N = p1 . . . pn then D(N) is the Boolean
algebra 2n. We conclude that [0̂, X] for X ∈ MF (Cn) is either a completely
sharp Boolean algebra, a completely unsharp chain or an MV-effect algebra
between these extremes and if n ≥ 3 all of these possibilities occur. The next
result follows from Theorems 4.2 and 4.4.

Corollary 4.5. If N ∈ N with prime factorization N = pk1
1 . . . p

kj

j , then
D(N) ≈ Ck1 × · · · × Ckj

.

Example 5. Let X ∈MF (C4) be defined by

X = {(λ1, a), (λ2, a), (λ3, 2a)}

where {λ1, λ2, λ3} ⊆ R� {0}. Then [0̂, X] contains 0̂, X and the following
ten elements.

X1 = {(λ1, a), (0, 3a)} , X ′1 = {(λ2, a), (λ3, 2a), (0, a)}
X2 = {(λ2, a), (0, 3a)} , X ′2 = {(λ1, a), (λ2, 2a), (0, a)}
X3 = {(λ3, a), (0, 3a)} , X ′3 = {(λ1, a), (λ2, a), (λ3, a)(0, a)}
X4 = {(λ3, 2a), (0, 2a)} , X ′4 = {(λ1, a), (λ2, a), (0, 2a)}
X5 = {(λ1, a), (λ3, a)(0, 2a)} , X ′5 = {(λ2, a), (λ3, 2a), (0, 2a)}

Then [0̂, X] ≈ D(60) under the isomorphism:

0̂→ 1, X → 60, X1 → 5, X ′1 → 12, X2 → 3, X ′2 → 20

X3 → 2, X ′3 → 30, X4 → 4, X ′4 → 15, X5 → 10, X ′5 → 6

5 Sequential Effect Algebras

We now consider various types of products of measurements on a σ-SEA
(E , 0, 1,⊕, ◦). Let X ∈ MF (E) with X = {(λi, ai)} and let Y ∈ M(E). We
define the conditional measurement [Y | X] : B(R)→ E by

[Y | X](∆) =
∑

ai ◦ Y (∆)
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It is easy to check that [Y | X] ∈ M(E). We say that X, Y ∈ M(E) are
compatible if X(∆1) ◦ Y (∆2) = Y (∆2) ◦X(∆1) for all ∆1, ∆2 ∈ B(R). For
X ∈ MF (E) and Y ∈ M(E), if X and Y are compatible, then [Y | X] = Y
but the converse does not hold [1]. Since

[̂b | â] ({1}) = a ◦ b⊕ a′ ◦ b

and

[̂b | â] ({0}) = a ◦ b′ ⊕ a′ ◦ b′

we see that

[̂b | â] = (a ◦ b′ ⊕ a′ ◦ b)∧

For a, b ∈ E and s ∈ Ω(E) we define the conditional probability of b
given a in the states s by s(b | a) = s(a◦b)/s(a) provided that s(a) �= 0. For
Y ∈ M(E) the conditional expectation of Y given a ∈ E in the state s
is

Es(Y | a) =

∫
λs [X(dλ) | a]

For a, b ∈ E we have that

Es

(
[̂b | â]

)
= s(a ◦ b) + s(a′ ◦ b) = s(a)s(b | a) + s(a′)s(b | a′)

and in general

Es ([Y | X]) =

∫
λ

∑
s (ai ◦ Y (dλ)) =

∫
λ

∑
s(ai)s [Y (dλ) | ai]

=
∑

s(ai)Es(Y | ai)

Lemma 5.1. If X ∈MF (E) and Y, Z ∈M(E) with Y ⊕ Z defined then

[(Y ⊕ Z) | X] = [Y | X]⊕ [Z | X]

Proof. Since Y ⊕ Z is defined we have that

[Y | X]
(
{0}′

)
⊕ [Z | X]

(
{0}′

)
=

∑
ai ◦ Y

(
{0}′

)
⊕

∑
ai ◦ Z

(
{0}′

)
=

∑
ai ◦

[
Y

(
{0}′

)
⊕ Z

(
{0}′

)]
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so [Y | X] ⊥ [Z | X]. For ∆ ∈ B(R) with 0 /∈ ∆ we have that

[(Y ⊕ Z) | X] (∆) =
∑

ai ◦ [(Y ⊕ Z)(∆)] =
∑

ai ◦ [Y (∆)⊕ Z(∆)]

=
∑

ai ◦ Y (∆)⊕
∑

ai ◦ Z(∆)

= [Y | Z](∆)⊕ [Z | X](∆)

Hence, [(Y ⊕ Z) | X] = [Y | X]⊕ [Z | X].

We now define a type of sequential product for finite measurements. For
X, Y ∈MF (E) with X = {(λi, ai)}, Y = {(µj, bj)} we define X&Y : B(R2)→
E by

(X&Y )(∆) =
⊕
i,j

{ai ◦ bj : (λi, µj) ∈ ∆}

Then X&Y is a normalized effect-valued measure on B(R2) because

⊕
i,j

ai ◦ bj = ⊕
i
ai ◦ ⊕bj = ⊕ai ◦ 1 = ⊕ai = 1

We call X&Y X and then Y and think of X&Y as a measurement based on
B(R2) in which X is performed first and Y second. We also write

X&Y = {((λi, µj), ai ◦ bj)}

where it is assumed that terms with ai ◦ bj = 0 are omitted. Notice that for
a, b ∈ E we have that

â&b̂ = {((1, 1), a ◦ b) , ((0, 0), a′ ◦ b′) , ((1, 0), a ◦ b′) , ((0, 1), a′ ◦ b)}

It follows that â&b̂ = b̂&â if and only if a ◦ b = b ◦ a; that is, a and b are
compatible. Of course â&b̂ �= (a ◦ b)∧.

The marginal measurements (X&Y )(∆ × R) and (X&Y )(R ×∆) as
functions of ∆ are both elements ofMF (E) and satisfy

(X&Y )(∆× R) = ⊕
i,j
{ai ◦ bj : λi ∈ ∆} = ⊕{ai : λi ∈ ∆} = X(∆) (5.1)

(X&Y )(R×∆) = ⊕
i,j
{ai ◦ bj : µj ∈ ∆} = ⊕ai ◦ Y (∆) = [Y | X](∆) (5.2)

Equation (5.1) says that the second measurement does not affect the first,
while Equation (5.2) says that the first measurement affects the second.
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We define the expectation Es(X&Y ) in the state s by

Es(X&Y ) =
∑
i,j

s(ai ◦ bj)(λi, µj) ∈ R2

We then have

Es(X&Y ) =

(∑
i,j

s(ai ◦ bj)λi,
∑
i,j

s(ai ◦ bj)µj

)
=

(∑
λis(ai), Es ([Y | X])

)
= (Es(X), Es ([Y | X]))

We now briefly compare X&Y to a different candidate for a sequential
product of measurements. For X, Y ∈M(E) define XαY ) : B(R)×B(R)→ E
by

(XαY )(∆1 ×∆2) = X(∆1) ◦ Y (∆2)

In this case the marginal measurements satisfy (XαY )(∆×R) = X(∆) and
(XαY )(R×∆) = Y (∆). It follows that X&Y �= XαY . To directly see that
X&Y �= XαY we compare them on the set {λ1, λ2} × {µ}. We then have
that

(X&Y ) ({λ1, λ2} × {µ}) = (X&Y ) ({(λ1, µ), (λ2, µ)})
= X ({λ1}) ◦ Y ({µ})⊕X ({λ2}) ◦ Y ({µ}) (5.3)

and

(XαY ) ({λ1, λ2} × {µ}) = X ({λ1, λ2}) ◦ Y ({µ})
= [X ({λ1})⊕X ({λ2})] ◦ Y ({µ}) (5.4)

In general, the right hand sides of (5.3) and (5.4) do not agree.
Unfortunately, XαY does not necessarily extend to an effect-valued mea-

sure on B(R2). To show this, suppose that XαY has an extension to B(R2).
For ∆1, ∆2 ∈ B(R2) we then have that

Y (∆2) = (XαY ) ((∆1 ∪∆′1)×∆2)

= (XαY ) [(∆1 ×∆2) ∪ (∆′1 ×∆2)]

= (XαY )(∆1 ×∆2)⊕ (XαY )(∆′1 ×∆2)

= X(∆1) ◦ Y (∆2)⊕X(∆1)
′ ◦ Y (∆2) (5.5)
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Now (5.5) does not hold in general. For example, if (5.5) holds in E(H) then
X(∆1) and Y (∆2) commute [10].

Again, let X, Y ∈MF (E) with X = {(λi, ai)}, Y = {(µj, bj)}. We define
another type of sequential product X ◦Y ∈MF (E) as follows. The value set
Λ(X ◦ Y ) ⊆ Λ(X)Λ(Y ) and

X ◦ Y ({λiµj}) =
⊕
r,s

{ar ◦ bs : λrµs = λiµj} (5.6)

if the right hand side of (5.6) is not 0 and otherwise λiµj /∈ Λ(X ◦ Y ). The
next result shows that X ◦ Y has some of the important properties of the
sequential product a ◦ b.

Theorem 5.2. For X, Y ∈ MF (E), the product X ◦ Y has the following
properties.
(i) 1̂ ◦X = X ◦ 1̂ = X and 0̂ ◦X = X ◦ 0̂ = 0̂.
(ii) X ◦ Y = 0̂ implies that Y ◦X = 0̂.

(iii) (a ◦ b)∧ = â ◦ b̂.
(iv) If Z ∈MF (E) and Y ⊥ Z, then X ◦ Y ⊥ X ◦ Z and

X ◦ (Y ⊕ Z) = X ◦ Y ⊕X ◦ Z

Proof. The proofs of (i) and (ii) are straightforward. (iii) Notice that

(a ◦ b)∧ = {(1, a ◦ b), (0, (a ◦ b)′)}

Since â ◦ b̂ ({1}) = a ◦ b and

â ◦ b̂ ({0}) = a ◦ b′ ⊕ a′ ◦ b⊕ a′ ◦ b′ = (a ◦ b)′

we have that (a ◦ b)∧ = â ◦ b̂. (iv) First,we have that

â ◦ (̂b⊕ ĉ) = {(1, a), (0, a′)} ◦ {(1, b⊕ c), (0, (b⊕ c)′)}
=

{
(1, a ◦ (b⊕ c)) ,

(
0, [a ◦ (b⊕ c)]′

)}
Moreover,

(â ◦ b̂)⊕ (â ◦ ĉ) = {(1, a ◦ b), (0, (a ◦ b)′)} ⊕ {(1, a ◦ c), (0, (a ◦ c)′)}
= {(1, a ◦ b⊕ a ◦ c), (0, (a ◦ b⊕ a ◦ c)′)}
=

{
(1, a ◦ (b⊕ c)) ,

(
0, [a ◦ (b⊕ c)]′

)}
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Hence,

â ◦ (̂b⊕ ĉ) = (â ◦ b̂)⊕ (â ◦ ĉ)

Applying Lemma 4.1 gives

â ◦ (Y ⊕ Z) = â ◦ Y ⊕ â ◦ Z

A little more work extends this to the general result.
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