
THE MYSTERIOUS 2-CROWN
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Abstract. We show that the 2-crown is not coproductive, which is to say that
the class of those bounded distributive lattices whose Priestley spaces lack any
copy of the 2-crown is not productive. We do this by first exhibiting a general
construction to handle questions of this sort. We then use a particular instance
of this constrution, along with some of the combinatorial features of projective
planes, to show that the 2-crown is not coproductive.

1. Introduction

In any context in which a class of algebraic objects is dual to a class of geometric
objects whose structures carry a partial order, it naturally provokes interest when
the presence or absence of a particular finite poset in the geometric objects can be
characterized by the satisfaction of first-order conditions by the algebraic objects.
Bergman’s recent article [6], which treats (somewhat more than) finite posets in
the spectra of rings, is a good example of this line of investigation, but other
examples occur earlier in the literature. In [1], Adams and Beazer provided, for
each positive integer n, a list of first-order sentences in the language of bounded
distributive lattices, whose satisfaction was both necessary and sufficient to rule
out the occurrence of an n-chain in the Priestley space of the lattice. (This directly
generalized the classical result that a bounded distributive lattice is complemented
iff its Priestley space is trivially ordered.) And much earlier still in [14], Monteiro
showed that a topological space is relatively normal, a first-order condition on the
lattice of open sets, iff the prime ideals of open sets formed a forest, a condition
which is equivalent to the absence of a copy of the three-element poset {a, b < c},
a unrelated to b, in the Priestley space of the lattice of open sets.

The authors have undertaken a general investigation of this phenomenon in the
setting of Priestley duality, and this article is a continuation of that investigation.
We are specifically interested in the question of which connected finite posets P
have the feature that the absence of a copy of P in the Priestley space of a bounded
distributive lattice can be captured by the satisfaction of a first-order formula in
the lattice. We say the prohibition of P is first-order. In [3] we showed that the
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prohibition of a tree is first-order, and in [4] that, among connected finite posets
with top element, only trees had this property.

Our interest has therefore focused on general finite connected posets P , i.e.,
on the case in which more than one maximal element may be present. In [5] we
showed that the prohibition of acyclic posets is first-order in general. However,
the general case diverges fundamentally from the topped case inasmuch as generic
cycles are not just diamonds, but may also be k-crowns. (These posets will be
defined in Section 2.) Also in [5], the first steps in proving the converse were taken,
by showing that the prohibition of the k-crown, k ≥ 3, is not first-order. The
two-crown, however, resisted our techniques, and it is the purpose of this article to
fill this gap by showing that the prohibition of the 2-crown is not first-order. This
brings us a significant step closer to our overall objective, which is to establish the
conjecture in its most general form.

Conjecture 1.1. The prohibition of a finite connected poset P is first-order iff P
is acyclic.

Another question connected with these phenomena is that of the order structure
of the infinite coproduct of Priestley spaces. This is a compactification of the
disjoint union of the summands, and its structure is by no means well understood.
In particular, one asks which finite posets cannot occur in such a coproduct without
occurring in one of the summands. We say that such a poset is coproductive. In
the topped case, coproductivity coincides with first-order definability, i.e., with the
property of being a tree. Although we strongly believe this to be true in general,
we cannot yet claim it. Just the same, we showed in [5] that k-crowns, k ≥ 3, are
not coproductive. And here we do the same, and a little more, for the 2-crown.

2. Preliminaries

In this section and the next, we fix the basic notational conventions, and briefly
review the background results, which will allow the reader to make sense of what
follows. A configuration is a finite connected partially ordered set. An embedding
of a poset P in a poset Q is a mapping m : P → Q such that x ≤ y in P iff
m (x) ≤ m (y) in Q. If such an embedding exists we will say that Q contains a
copy of P , and write P ↪→ Q. We indicate the negative by writing P ↪→| Q. In this
section we clear the ground for what follows; we begin by fixing notation.

A subset M of a partially ordered set (X,≤) is termed a downset (upset) provided
that

x ≤ y ∈ M =⇒ x ∈ M (x ≥ y ∈ M =⇒ x ∈ M),
and for any subset M ⊆ X we denote the downset (upset) it generates by

↓ M ≡ {x : ∃ y ∈ M (x ≤ y)} (↑ M ≡ {x : ∃ y ∈ M (x ≥ y)} .

Recall that a Priestley space is a compact ordered space X such that whenever
x � y there is a clopen downset U ⊆ X such that x /∈ U 3 y. We will work
in the context of the famous Priestley duality connecting the category PSp of
Priestley spaces and order-preserving continuous functions with the category DLat
of bounded distributive lattices and bounded lattice homomorphisms. This duality
is usually described by these formulas.

P (L) ≡ {x : x is a proper prime ideal of L} , P (h) (x) ≡ h−1 [x] ,

D (X) ≡ {U : U is a clopen downset of X} , D (f) (U) ≡ f−1 [U ] .
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P (L) is endowed with a suitable topology, and it plays a pivotal role because it
is the topology which controls the approximation of elements of the remainder in
a coproduct by elements in the summands. However, the topology plays no role
in the calculations in this article, for the intricacies of approximation are captured
entirely by the appropriate description of the coproduct.

Let {Xi : i ∈ J} be a family of nonempty Priestley spaces. Since the coproduct
X ≡ ∐

i∈J Xi must be compact, it cannot simply be the disjoint union of the
summands Xi. Now X does contain (a copy of) the disjoint union of the summands,
and the additional points constitute what we call the remainder of the coproduct.
But it is not difficult to show (see [5]) that X can be organized as the disjoint union

X =
⋃

u∈βJ

Xu,

indexed by the Čech-Stone compactification βJ of the index set J . (We adhere to
the convention that the points of βJ are the ultrafilters on J .) The sets Xu are
order-independent, meaning that no element of one is comparable with any element
of another. This fact has the important consequence that a configuration, which is
after all connected, can embed in X only if it embeds in some Xu. Furthermore,
each summand Xi can be identified with the set indexed by the principal ultrafilter
{M ⊆ J : i ∈ M}, and this identification provides the canonical coproduct inser-
tions. Thus the remainder consists precisely of the points of the Xu’s indexed by
free ultrafilters u.

A configuration P is said to be coproductive if for any coproduct X =
∐

J Xi of
Priestley spaces,

P ↪→ X =⇒ ∃ i ∈ J (P ↪→ Xi) .

(Thus P is coproductive precisely when the class of lattices whose Priestley spaces
contain no copy of P is productive.) In light of the organization of the coproduct
outlined in the previous paragraph we may reformulate this as follows. P is copro-
ductive iff for any family {Xi : i ∈ J} of Priestley spaces, if P ↪→ Xu for some free
ultrafilter u then P must embed in some Xi with i ∈ J .

A result of Koubek and Sichler [11] shows that in general, Xu is the Priestley
space of the ultraproduct

∏
uD (Xi). Since first-order theories are closed under

ultraproducts by ÃLoś’s Theorem [12], we are led to an important deduction. If
P ↪→| X determines a first-order class of distributive lattices then P is coproductive.

3. What makes the 2-crown special

What makes the 2-crown special is precisely this. In spite of the fact that no
diamond can be embedded in a combinatorial tree and that no k-crown with k ≥ 3
can be embedded in a combinatorial tree, it is nevertheless true that a 2-crown can
be embedded in a combinatorial tree. We elaborate briefly on this important fact in
this subsection. We begin with the definitions.

A diamond is a configuration {a < b, c < d} with b and c incomparable. A k-
crown (k ≥ 2) is a configuration {ai, bi : 0 ≤ i ≤ k − 1} such that the ai’s are in-
comparable to one another and the bi’s likewise, and such that ai ≤ bj iff j = i
or j = i + 1mod k. Let f be an embedding of the 2-crown C = {a0, a1 < b0, b1}
into a configuration P . We say that f is improper if there is some c ∈ P such that
ai < c < bj for all i, j, and proper otherwise. We speak of f (C) as an improper
2-crown, or proper 2-crown in P , as the case may be.
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The distinction between properly and improperly embedded 2-crowns divides
the corresponding coproductivity issue into two parts. Therefore, in addition to
the question of whether the 2-crown can be embedded in a coproduct when it
embeds in no summand, we shall also discuss the same question with respect to
properly embedded 2-crowns – that is, whether there can be a coproduct in which
the 2-crown embeds properly even though it cannot be properly embedded in any
summand.

For a configuration (P,≤), we denote immediate precedence by the symbol ≺,
so that

a ≺ b ⇐⇒ b Â a ⇐⇒ (a < b and ∀c (a ≤ c ≤ b =⇒ (c = a or c = b))) .

We denote the corresponding symmetric relation by the symbol Â≺, so that

a Â≺ b ⇐⇒ (a ≺ b or a Â b) .

Thus (P,Â≺) is a graph which can be visualized as the Hasse diagram of P disre-
garding its up-down orientation.

A configuration P is a combinatorial tree if (P,Â≺) is a tree in the sense of graph
theory, i.e., if (P,Â≺) is acyclic, and we sometimes refer to the configuration itself
as being acyclic. We use the adjective ‘combinatorial’ to distinguish the trees we
wish to consider from those studied in computer science, which have the additional
feature of a top element. The following result characterizes the acyclicity of (P,Â≺)
in terms of the order. Both assertions are well-known; a proof of the second can be
found in [4].

Proposition 3.1. A configuration with top is acyclic iff it contains no diamond.
A general configuration is acyclic iff it contains no diamond, no k-crown for k ≥ 3,
and no proper 2-crown.

In the construction we will employ in the sequel, and in similar constructions we
have used in previous work, we need bipartite graphs with the following features.
Assume a labeling of the points of the form 1, 2, . . . , n and 1′, 2′, . . . , n′, with no
edges between i and j or i′ and j′ when i 6= j.

(1) There should be no edge between any i and i′.
(2) The graph should contain no copy of the (graph equivalent to) the config-

uration being treated.
(3) Subject to these qualifications, the graph should be as dense as possible,

i.e., have as many edges as possible.
In the case of the diamond, it is sufficient to join each i with each j′, i 6= j, and this
also works for the k-crown, k ≥ 4. Although the same construction does not suffice
for the 3-crown, it is sufficient in that case to join each i and j′, i < j, and one
still has quadratically many edges in the graph. However, avoiding 2-crowns, for
which the corresponding graph is a square, reduces the number of possible edges
drastically to at most ∼ n3/2. Luckily, this just suffices. (See Section 5.)

4. Increasingly colorful sequences, and a construction

In this section we first introduce the notion of an increasingly colorful sequence of
relations, and then use it to construct a coproduct of finite Priestley spaces which
has the virtue of carrying a copy of the configuration under consideration in its
remainder. We have used similar constructions in several previous articles, and we
develop it here in general terms in hopes of eventually employing it to resolve the
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Conjecture 1.1. We use it in Section 6 specifically to show that the 2-crown is not
coproductive.

We use k̃ to denote {i : 1 ≤ i ≤ k}. For a relation R ⊆ k̃ × k̃, we abbreviate
(i, j) ∈ R to iRj.

Definition 4.1. Let R be a relation on k̃ such that iRj implies i 6= j. A subset
J ⊆ k̃ is independent provided that (J × J) ∩ R = ∅. The chromatic number of a
subset A ⊆ k̃, denoted χR (A) or simply χ (A), is the least cardinality of a cover of
A by independent sets.

Obviously,

(¨) χ (A ∪B) ≤ χ (A) + χ (B) .

Definition 4.2. Let k1 < k2 < . . . < kn < . . . be an increasing sequence of natural
numbers, and for each n let Rn be a relation on k̃n such that

χn(k̃n) ≡ χRn
(k̃n) →∞.

Such a system (k̃n, Rn) will be referred to as an increasingly colorful sequence of
relations, or briefly, as an ICS.

We have assembled all of the apparatus necessary for the basic construction. On
the set

I ≡
{

(n, j) : n ∈ N, j ∈ k̃n

}

choose a free ultrafilter u. Set

F ≡ {J ⊆ I : ∃m ({n : χn {j : (n, j) /∈ J} ≤ m} ∈ u)} .

This set is a filter by (¨) and is proper because χn(k̃n) →∞. Choose an ultrafilter

v ⊇ F.

For J ⊆ I define

f (J) ≡ {(n, j) : ∃i ((n, i) ∈ J and iRnj)} .

Lemma 4.3. If J ∈ v then f (J) ∈ v.

Proof. Suppose for the sake of argument that J ∈ v but f (J) /∈ v, so that I r
f (J) ∈ v. Then by replacing J by J ∩ (I r f (J)) if necessary, we may assume that
J∩f (J) = ∅. But this means that for any n, the set {j : (n, j) ∈ J} is independent,
i.e.,

χn {j : (n, j) /∈ I r J} = χn {j : (n, j) ∈ J} = 1,

and hence I r J ∈ F ⊆ v and J /∈ v. ¤

Now we are able to present the fundamental definition of the summands Xn. Let(
k̃n, Rn

)
be an ICS, and let a and b represent fixed elements of P such that a ≺ b.

Let
Xn ≡ P × k̃n,

and write (p, i) ∈ Xn as pi. Order Xn as follows.
(1) If p ≤ a < b ≤ q, and for every r such that p < r < q we have either r ≤ a

or r ≥ b, then
pi < qj ⇐⇒ iRnj.
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(2) If p ≤ a < b ≤ q and there is an r such that p < r < q and such that r is
incomparable to either a or b, then

pi < qj ⇐⇒ iRnj or i = j.

(3) Otherwise
pi < qj ⇐⇒ p < q and i = j.

It is easy to check that this defines a partial order. Let pi < qj < rk; if i 6= j
then the first inequality is of type (1) or (2), hence the third is of type (3), j = k
and pi < rj by (1) or (2); similarly for j 6= k. If i = j = k then either the first
or the second inequality comes under (2) and pi < ri by the same rule, or both of
them are from (3) and then pi < ri either following (3) or (2) – in the second case
with q playing the role of the incomparable element.

Now we must embed P in the coproduct X of the summands Xn just defined.
This requires the following specific realization of X. Let An ≡ D (Xn) be the
bounded distributive lattice formed by all downsets of Xn, and let A ≡ ∏

An.
Then the desired realization of X is as the Priestley space P (A). Thus we may
achieve our objective by defining a map m : P → P (A) by the rule

m (p) ≡ {α ∈ A : {(n, j) : pj /∈ αn} ∈ v} , p ∈ P.

Here we use αn to denote the value of α at index n for elements α ∈ A; to reiterate,
αn is a downset of Xn.

Lemma 4.4. For each p ∈ P , m (p) is a proper prime ideal of A.

Proof. m (p) is obviously a downset. And for α, β ∈ m (p),

{(n, j) : pj /∈ (α ∨ β)n = αn ∪ βn}
= {(n, j) : pj /∈ αn} ∩ {(n, j) : pj /∈ βn} ∈ v,

thus verifying that α ∨ β ∈ m (p). If α ∧ β ∈ m (p) then v contains

{(n, j) : pj /∈ (α ∧ β)n = αn ∩ βn}
= {(n, j) : pj /∈ αn} ∪ {(n, j) : pj /∈ βn} .

Then the primeness of v forces it to contain one of the sets displayed on the right,
meaning that either α or β must lie in m (p). ¤

Proposition 4.5. m is an embedding.

Proof. To show that m is order-preserving, consider first p < q by virtue of rule
(3). If α ∈ m (p) then {(n, j) : pj /∈ αn} ∈ v, and since αn is a downset,

{(n, j) : pj /∈ αn} ⊆ {(n, j) : qj /∈ αn} ∈ v,

meaning α ∈ m (q). Next consider p ≤ a < b ≤ q. Since we have established that
m (p) ⊆ m (a) and m (b) ⊆ m (q) in the preceding two sentences, it suffices to show
that m (a) ⊆ m (b). For that purpose consider α ∈ m (a), so that {(n, i) : ai /∈ αn} ∈
v. Since αn is a downset, if ai /∈ αn and iRnj then bj /∈ αn. Therefore

f ({(n, i) : ai /∈ αn}) ⊆ {(n, j) : bj /∈ αn} .

Since the set displayed on the left lies in v by Lemma 4.3, the set on the right does
also.
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Now suppose that p � q, and let αp be defined by the rule αp
n ≡ {rj : r � p} for

all n. Then

{(n, j) : pj /∈ αp
n} = {(n, j) : p ≥ p} = I ∈ v,

{(n, j) : qj /∈ αp
n} = {(n, j) : q ≥ p} = ∅ /∈ v.

That is, αp ∈ m (p)rm (q). ¤

5. The ICS of projective planes

In Section 4 we gave a general construction of a family of summands Xn, n ∈ N,
and then located a copy of the given configuration P in the coproduct. But showing
P to be non-coproductive also requires showing that no copy of P can be found in
any of the Xn’s, and this usually requires a subtle argument. In the case of the
2-crown, the subtleties involve projective planes.

We begin by outlining all the facts about projective planes that we will need. The
reader wishing more background may consult, for example, [8]. A finite projective
plane consists of disjoint finite sets X and Y , and a relation E ⊆ X × Y . The
customary terminology is to refer to the elements of X as points and to those of Y
as lines. E is called the incidence relation, so that to say that x is incident on y is
to say that xEy. The defining qualities of E are

∀xi ∈ X (x1 6= x2 =⇒ ∃! y ∈ Y (x1Ey and x2Ey)) ,

∀yi ∈ Y (y1 6= y2 =⇒ ∃! x ∈ X (xEy1 and xEy2)) .

In addition, to prevent trivialities one assumes that there exist four points, no three
incident on the same line. From these axioms it follows that every line has the same
number n + 1 of points, that every point is incident on the same number n + 1 of
lines, and that

|X| = |Y | = n2 + n + 1.

Therefore |E| = (n + 1) |X| = (n + 1)
(
n2 + n + 1

) ≈ n3, and

(∗) |E| ≈ |X| 32 .

The number n is referred to as the order of the projective plane. For prime order,
there is the standard construction of the projective plane P (p) of order p, which
takes place in the context of the vector space of dimension 3 over the Galois field
G (p) of order p. The points x are taken to be the 1-dimensional subspaces and the
lines y to be the 2-dimensional subspaces, with xEy iff x ⊆ y. There is at least one
projective plane of each prime power order, and every known finite projective plane
has prime power order. But the question of the possible orders of finite projective
planes is open.

In Definition 5.2 we generate a relation from a projective plane. Because the
sequence Rn of relations so generated will be used in the construction of Section 4,
they must satisfy Definition 4.1, and in particular iRnj must imply i 6= j. This is
not difficult to arrange, but it requires a lemma.

Lemma 5.1. Let P ≡ (X,Y, E) be a finite projective plane. Then there is a bijection
φ : X → Y such that no x ∈ X is incident on φ (x).

Proof. In the graph G ≡ (X, Y,N), where N ≡ (X × Y )rE, consider an arbitrary
subset M ⊆ X. Then MN = {y ∈ Y : ∃x ∈ M (xNy)}. If the points of M are all
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incident on a single line y then MN = Y r {y}, and if not then MN = Y . Thus in
either case |MN | ≥ |M | and the result follows by Hall’s Theorem. ¤

Definition 5.2. Let P (p) ≡ (X, Y,E), let φ : X → Y be a bijection such that no
x ∈ X is incident on φ (x), let k ≡ |X| = |Y | = p2 + p + 1, and let ψ : k̃ → X be a
bijection. Define the relation R on k̃ by the rule

iRj ⇐⇒ ψ (i) Eφ (ψ (j)) .

In particular, in case when p = pn is the nth prime we label the corresponding
entities

k̃n and Rn.

The fundamental requirement imposed by Definition 4.2 is that the chromatic
numbers grow without bound. In order to establish this fact, we introduce a notion
of independence for sets of points in a finite projective plane. The relationship
between this notion and that of Definition 4.1 will be spelled out in Lemma 5.4.

Definition 5.3. A set A of points in a projective plane is said to be independent
if there is a set B of lines such that no point of A is incident on any line of B and
|A| ≤ |B|.
Lemma 5.4. If A is an independent set of points of P (p) then A is also independent
in

(
k̃, R

)
, i.e., in the sense of Definition 4.1.

Proof. Set B ≡ A. The independence of A under Definition 4.1 means that

(A×A) ∩Rn = ∅,
which is to say that no point of A incident on any line of B. ¤

To complete the argument that the chromatic numbers associated with the rela-
tions Rn grow, we need to estimate the size of independent subsets of P (pn). The
relevant estimate follows immediately from a beautiful and deep inequality of N.
Alon [2].

Proposition 5.5. Let A be an independent set of points in P (p). Then

|A| ≤ p
√

p.

Proof. Let x ≡ |A|. As Alon himself remarks on page 216, taking d = 2 in [2,
Theorem 2.3] shows that the number of lines on which points in A are incident is
at least (p + 1)2 x/ (p + x), so that the number of lines which are incident on no
points of A is at most

p2 + p + 1− (p + 1)2 x

p + x
= (p + 1)2 − p− (p + 1)2 x

p + x
=

(p + 1)2 p

p + x
− p.

If A is to be independent then we must have x bounded above by the figure displayed
on the right, and upon rearranging this inequality we see that (p + x)2 ≤ (p + 1)2 p,
and taking square roots yields x ≤ (p + 1)

√
p− p. The result follows. ¤

Corollary 5.6. χRn(k̃n) ≥ √
pn →∞.
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Up to this point we have established that
(
k̃n, Rn

)
above is an ICS.

We refer to
(
k̃n, Rn

)
as the ICS of projective planes. However, we must address

one more issue before applying the construction of Section 4 to the ICS of projective
planes. This issue arises because the nth summand Xn used in the construction
contains a copy of a poset associated with P (pn), so we must take care that this
poset is free of any copy of the 2-crown. It is most convenient to translate this
consideration into the language of graph theory. With a projective plane P we
associate the bipartite graph

B (P) ≡ (X ∪ Y, E) .

For P = P (pn), where pn is the nth prime, we abbreviate B (P (pn)) to Bn. We
must make sure that Bn contains no square, i.e., no pairs of distinct points xi ∈ X
and yj ∈ Y such that xiEyj for all i and j.

Lemma 5.7. Bn contains no square, but if (x0, y0) /∈ E then

(X ∪ Y, E ∪ {x0, y0})
does contain a square.

Proof. Bn contains no square because each pair of distinct points xi ∈ X have
a unique line y ∈ Y on which both are incident. On the other hand, if a point
x0 ∈ X is not incident on a line y0 ∈ Y , then by choosing any y1 ∈ Y on which x0

is incident we get a unique x1 ∈ X incident on both y0 and y1. But then x0 6= x1

and {x0, x1, y0, y1} forms a square. ¤

Bn is, of course, a very special bipartite graph, and there are others which are
square-free and even maximal with respect to this property. But it is a well-known
fact that the number of edges in a square free bipartite graph is at most n

3
2 + n

(Erdös 1938, [10], for a short proof see [13]).

6. The 2-crown is not coproductive

Theorem 6.1. The 2-crown is not coproductive.

Proof. For P take the 2-crown C2 ≡ {1, 2 < 1′, 2′}, and let (k̃n, Rn) be the n-th
member of the ICS of projective planes from Section 5. Construct the Xn’s as in
Section 4, setting (a, b) ≡ (1, 1′). Now by Proposition 4.5,

C2 ↪→ X ≡
∐

Xn

However, no single Xn contains the crown. The part {1, 1′} × k̃n has Bn as its
Hasse diagram, so that in light of Lemma 5.7, any representation of the crown has
to contain 2i or 2′i. Such a point is connected only with 1′i and 2′i (resp. 1i and
2i). From 1′i we can now proceed further only to a 1j with i 6= j and this is not
connected to 2′i. ¤

We immediately obtain the following corollary.

Corollary 6.2. Prohibiting 2-crowns does not define a first-order class of distribu-
tive lattices. Consequently, prohibiting properly embedded 2-crowns does not define
a first-order class of distributive lattices, either.
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Proof. The first sentence follows immediately from Theorem 6.1 by virtue of the fact
we pointed out at the end of Section 2, namely that any configuration whose prohi-
bition determines a first-order class of lattices is coproductive. On the other hand,
an arbitrary 2-crown is either proper or improper, and the prohibition of proper 2-
crowns is simply the prohibition of the combinatorial tree {1, 2 < c < 1′, 2′}, which
is known to define a first-order class of lattices. If the prohibition of proper 2-crowns
defined a first-order class of lattices, the prohibition of the general 2-crown would
define a class of lattices by the logical conjunction of the first-order conditions in
each case. ¤

In fact, our construction yields a stronger result.

Theorem 6.3. Prohibiting properly embedded 2-crowns is not coproductive.

Proof. It suffices to prove that the embedding C2 ↪→ X of Proposition 4.1 (as in
the proof of Theorem 6.1) is proper, that is, that there is no prime ideal x with

m (1) , m (2) ⊆ x ⊆ m (1′) ,m (2′) .

Let αp be as in the final part of the proof of Proposition 4.1. Explicitly we have

α1′
n = {rj : r = 1, 2, 2′; j ≤ kn} , α2′

n = {rj : r = 1, 2, 1′; j ≤ kn} ,

α1
n = {2j : j ≤ kn} , α2

n = {1j : j ≤ kn} ,

so that (
α1′ ∧ α2′

)
n

= {rj : r = 1, 2} = α1
n ∪ α2

n ∈ m (1) ∨m (2) ⊆ x.

Since x is prime, either α1′ or α2′ is in x ⊆ m (1′) ∩m (2′), while neither α1′ nor
α2′ lies in both m (1′) and m (2′). ¤

Our Xn’s do not contain any 2-crown, proper or not. In fact, to construct
a family of summands which contain only proper 2-crowns while their coproduct
contains a proper one is simpler than the construction presented here and does not
require projective planes.

The construction in Section 4 provides non-coproductivity proofs for many more
configurations than we have considered up to this point. Let us sketch a simple
example. A cycle

(F) C = a0 < a1 < . . . < ar1 > . . . > ar2 < . . . > ar2t = a0

is simple if the only order relationships between listed points follow from those
indicated, and the number of turns of such a cycle is τ (C) ≡ t. Thus the diamond
has one turn and the k-crown has k turns. A simple cycle is replete if the relations
indicated in (F) are actually ≺ and Â. It is easy to see that each simple cycle can
be replaced by a replete one with the same number of turns.

Proposition 6.4. Suppose all the replete cycles C of P having the minimum num-
ber m of turns share a couple a ≺ b of consecutive elements. Then P is not
coproductive.

Proof. Let g : Xn → P be the projection pi 7−→ p, and consider a replete cycle C
of Xn. Now g preserves ≺, so g (C) is a replete cycle unless C contains consecutive
elements of the form ai ≺ bj Â ak or bi Â aj ≺ bk. In particular, if C contains
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neither ai ≺ bj nor bi Â aj as consecutive elements then g (C) is a replete cycle of
P which avoids the a ≺ b edge, and so

τ (C) = τ (g (C)) > m.

If C contains either ai ≺ bj or bi Â aj as a consecutive pair, then by arguing as in
the proof of Theorem 6.1 we see that C must contain more than one such pair. It
follows that g (C) cannot be simple, and that τ (C) > m in this case also. Finally
the case in which all points of C lie in {a, b} × k̃n can be dealt with by suitable
choice of Rn: those from Section 5 if m = 2, Rn ≡ {(i, j) : i < j} otherwise. ¤

This was, of course, a very primitive case. By finer reasoning we can consider-
ably extend the class of known non-coproductive configurations. We do not know,
however, if one can prove in this way that no cyclic configuration is coproductive,
i.e., Conjecture 1.1. It may be necessary to further generalize the construction, for
example by twisting more than one edge of P .
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Cat. XXXII (1991), 243–256.
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