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Abstract

The set of bounded observables for a quantum system is repre-
sented by the set of bounded self-adjoint operators S(H) on a com-
plex Hilbert space H. The usual order A ≤ B on S(H) is determined
by assuming that the expectation of A is not greater than the expec-
tation of B for every state of the system. We may think of ≤ as a
numerical order on S(H). In this article we introduce a new order �
on S(H) that may be interpreted as a logical order. This new order is
determined by assuming that A � B if the proposition that A has a
value in ∆ implies the proposition that B has a value in ∆ for every
Borel set ∆ not containing 0. We give various characterizations of
this order and show that it is generated by an orthosum ⊕ that en-
dows S(H) with the structure of a generalized orthoalgebra. We also
show that the usual order ≤ cannot be generated by an orthosum. We
demonstrate that if we restrict ⊕ to an interval [0, A] ⊆ S(H) then
we obtain a structure that is isomorphic to an orthomodular lattice of
projections on H. The lattice structure of S(H) is investigated and
unlike (S(H),≤ ) it is shown that (S(H),� ) is a near-lattice in the
sense that if A, B � C then A ∧ B and A ∨ B exist. Moreover, we
show that if dim(H) <∞ then A∧B always exists. We also consider
the commutative case in which observables are represented by fuzzy
random variables.
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1 Introduction

In this article we introduce a new order for quantum observables. In some
respects this order is more natural and has better properties than the usual
order of observables while in other respects the usual order appears to be
more suitable. In any case it is useful to compare the two orders and perhaps
to employ one or the other depending on the applications or circumstances
involved.

The set of bounded observables for a quantum system is usually rep-
resented by the set S(H) of bounded self-adjoint operators on a complex
Hilbert space H. In the traditional order for A, B ∈ S(H) we define A ≤ B
if 〈Ax, x〉 ≤ 〈Bx, x〉 for every x ∈ H. This order has the physical interpre-
tation that the expectation of A is not greater than the expectation of B
in every state of the system. We may think of ≤ as a numerical order on
S(H). Under this order (S(H),≤ ) becomes a partially ordered set or poset.
However, a well known theorem due to R. Kadison [8] shows that (S(H),≤ )
is not a lattice. In fact, (S(H),≤ ) is as far from being a lattice as possible
in the sense that the greatest lower bound A∧B exists if and only if A ≤ B
or B ≤ A in which case A∧B is the smaller of the two. This is unfortunate
because lattices have a much stronger structure than posets and A ∧ B and
the least upper bound A ∨ B have physical significance. The new order �
introduced in this paper remedies this situation in the sense that A∧B and
A∨B exist if there is a C ∈ S(H) such that A, B � C. We call such a struc-
ture a near-lattice. In this way, (S(H),� ) becomes a near-lattice ordered
generalized σ-orthoalgebra.

We present various characterizations of � and compare this partial order
with the usual partial order. Physically, the most interesting characterization
states that A � B if and only if PA(∆) ≤ PB(∆) for every Borel set ∆ with
0 /∈ ∆ where PA is the spectral measure for A. This characterization may
be interpreted as saying that the event (or proposition) PA(∆) implies the
event PB(∆). We conclude that � is a logical order for observables. It is also
observed that � is algebraic in the sense that � is generated by the orthosum
⊕ of an orthoalgebra whereas the usual order ≤ cannot be generated by an
orthosum.

We demonstrate that if we restrict ⊕ to an interval [0, A] ⊆ S(H) then we
obtain a structure that is isomorphic to an orthomodular lattice of projections
on H. We also show that if dim(H) <∞ then [0, A] is the cartesian product
of projection lattices. Moreover, in the finite dimensional case it is shown
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that A ∧ B always exists. We also consider the commutative case in which
observables are represented by fuzzy random variables. This case further
motivates our definition of � and provides intuition for results and proofs of
the general noncommutative case. As we shall see, most of our results in the
commutative case have noncommutative counterparts. A possible exception
is that f ∧g always exists for random variables f and g while we do not know
whether A ∧B always exists for A, B ∈ S(H).

Finally, we point out that in both the commutative and noncommutative
cases the numerical order ≤ and the logical order � agree on sharp elements.
In the commutative case the sharp elements are given by the measurable
subsets (or events) of the sample space and we have the equivalent statements
A ⊆ B, A ≤ B and A � B. In the noncommutative case the sharp elements
are given by the set of orthogonal projections (quantum events) P(H) and for
P, Q ∈ P(H) we have the equivalent statements, PQ = P , P ≤ Q, P � Q.

2 Effect Algebras

The study of measurements is an important part of any physical theory. The
simplest type of measurement is a yes-no measurement or effect [1, 2, 7, 9,
10]. More general measurements and observables can be constructed using
these effects. The set of effects for a quantum system can be organized into
a mathematical structure called an effect algebra which has recently been
introduced for foundational studies in quantum mechanics [3, 4, 5, 6]. This
section reviews the definition of an effect algebra and the related concepts of
generalized effect algebra and orthoalgebra. The main algebraic operation in
these structures is an orthosum a⊕ b which is a partial binary operation on
the set of effects. If a⊕ b is defined we write a ⊥ b and say that a and b are
orthogonal. Roughly speaking, a⊕ b corresponds to a parallel combination
of the two effects a and b.

A generalized effect algebra is an algebraic system (E, 0,⊕) where E
is a set, 0 ∈ E and ⊕ is a partial binary operation on E that satisfies the
following conditions.

(GEA1) If a ⊥ b then b ⊥ a and b⊕ a = a⊕ b.

(GEA2) If b ⊥ c and a ⊥ (b⊕ c), then a ⊥ b, c ⊥ (a⊕ b) and

(a⊕ b)⊕ c = a⊕ (b⊕ c)
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(GEA3) 0 ⊥ a for all a ∈ E and 0⊕ a = a.

(GEA4) If a⊕ b = a⊕ c, then b = c.

(GEA5) If a⊕ b = 0, then a = b = 0.

A generalized orthoalgebra is a generalized effect algebra (E, 0,⊕)
that also satisfies:
(OA) If a ⊥ a then a = 0.
An effect algebra is an algebraic system (E, 0, 1,⊕) where E is a set, 0, 1 ∈
E with 0 �= 1 and ⊕ is a partial binary operation on E that satisfies (GEA1),
(GEA2) and

(EA1) For every a ∈ E there exists a unique a′ ∈ E such that a ⊥ a′

and a⊕ a′ = 1.

(EA2) If a ⊥ 1 then a = 0.

An orthoalgebra is an effect algebra that satisfies (OA).

Lemma 2.1. [3] Every effect algebra is a generalized effect algebra and every
orthoalgebra is a generalized orthoalgebra.

Proof. Let (E, 0, 1,⊕) be an effect algebra. To show that (GEA3) holds we
apply (EA1) and (EA2) to obtain 0 = 1′. Hence, by (GEA2) we have that

(0⊕ a)⊕ a′ = 0⊕ (a⊕ a′) = 0⊕ 1 = 1

Applying (EA1) gives that 0⊕ a = a. To show that (GEA4) holds suppose
that a⊕ b = a⊕ c. By (EA1) there exists a d ∈ E such that

(a⊕ b)⊕ d = (a⊕ c)⊕ d = 1

Applying (GEA1) and (GEA2) we obtain

(a⊕ d)⊕ b = (a⊕ d)⊕ c = 1

By (EA1) we have that b = c = (a⊕d)′. To show that (GEA5) holds suppose
that a⊕ b = 0. Then a ⊥ b and a⊕ b ⊥ 1 so by (GEA2) we have that a ⊥ 1.
Applying (EA2) gives that a = 0. Hence, by (GEA3) we have that b = 0.
That every orthoalgebra is a generalized orthoalgebra now follows.
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For a generalized effect algebra E with a, b ∈ E, we define a ≤ b if there
exists a c ∈ E such that a ⊥ c and a ⊕ c = b. This unique c is denoted by
c = b� a.

Lemma 2.2. [3] If E is a generalized effect algebra, then (E ≤) is a poset
and 0 ≤ a for every a ∈ E.

Proof. We have that a ≤ a because a⊕ 0 = a. If a ≤ b and b ≤ a then there
exist c, d ∈ E such that a⊕ c = b and b⊕ d = a. Hence,

b⊕ d⊕ c = a⊕ c = b = b⊕ 0

Applying (GEA4) we obtain d⊕ c = 0 so by (GEA5) d = c = 0. Therefore,
a = b. To prove transitivity, suppose that a ≤ b and b ≤ c. Then there exist
d, e ∈ E such that a ⊕ d = b and b ⊕ e = c. Hence, a ⊕ (d ⊕ e) = c so that
a ≤ c. Since 0⊕ a = a we have that 0 ≤ a for every a ∈ E.

Let E be a generalized effect algebra and let a ∈ E with a �= 0. In the
interval [0, a] = {b ∈ E : b ≤ a} define b ⊕a c = b ⊕ c whenever, b ⊥ c and
b⊕ c ≤ a. We thus have that b ⊥a c whenever b ⊥ c and b⊕ c ∈ [0, a]. The
next result shows that [0, a] has desirable properties.

Theorem 2.3. If E is a generalized effect algebra (orthoalgebra) and a ∈ E
with a �= 0, then {[0, a], 0, a,⊕a} is an effect algebra (orthoalgebra). More-
over, the order on [0, a] is the restriction of the order on E to [0, a].

Proof. Of course, ⊕a satisfies conditions (GEA1) and (GEA2). To demon-
strate (EA1) suppose that b ∈ [0, a] and define c = a � b. Then b ⊥a c
and b ⊕a c = a. Moreover, c is unique by (GEA4). To demonstrate (EA2)
suppose that b ∈ [0, a] and b ⊥a a. Then b ⊕ a ≤ a and b ⊕ a ≥ a so that
b⊕ a = a = 0⊕ a. Applying (GEA4) we conclude that b = 0. Now suppose
that E is a generalized orthoalgebra and b ⊥a b. Then b ⊥ b which implies
that b = 0. Hence, {[0, a], 0, a,⊕a} is an orthoalgebra. Finally, it is clear
that b ≤a c in [0, a] implies that b ≤ c in E. Conversely, if b, c ∈ [0, a] and
b ≤ c in E then b ⊕ d = c for some d ∈ E. But d ≤ b ⊕ d = c ≤ a so that
b⊕a d = c. Therefore, b ≤a c.

It is well known that (E,≤, ′) is a bounded involution poset for any
effect algebra E. That is, for every a, b ∈ E we have that 0 ≤ a ≤ 1, a′′ = a
and a ≤ b implies b′ ≤ a′. Also a ≤ b′ if and only if a ⊥ b. Moreover, if E is
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an orthoalgebra then (E,≤, ′) is an orthocomplemented poset. That is,
(E,≤, ′) is a bounded involution poset and a ∧ a′ = 0, a ∨ a′ = 1 for every
a ∈ E. Finally, if E is an orthoalgebra and a ⊥ b implies that a⊕ b = a ∨ b,
then E is an orthomodular poset.

We call an effect algebra E a σ-effect algebra if for any nondecreas-
ing sequence a1 ≤ a2 ≤ · · · in E the least upper bound ∨ai exists in E.
We define generalized σ-effect algebras, generalized σ-orthoalgebras and σ-
orthoalgebras in similar ways.

Although there are many examples of effect algebras and orthoalgebras,
we shall only consider a few of them here. Any Boolean algebra is an or-
thoalgebra where a ⊥ b if a ∧ b = 0 and in this case a ⊕ b = a ∨ b. If X is
a nonempty set, the collection of fuzzy subsets [0, 1]X of X forms an effect
algebra where f ⊥ g if f +g ≤ 1 and in this case f⊕g = f +g. For a complex
hilbert space H we define the set of quantum effects E(H) on H as the set
of bounded linear operators on H satisfying 0 ≤ A ≤ I where ≤ is the usual
order of self-adjoint operators. For A, B ∈ E(H), define A ⊥ B if A + B ≤ I
and in this case A ⊕ B = A + B. Then (E(H), 0, I,⊕) becomes a σ-effect
algebra. The set of orthogonal projections P(H) ⊆ E(H) corresponds to the
set of quantum events and forms a σ-orthoalgebra.

An example of a generalized effect algebra that is not an effect algebra is
the set of nonnegative real numbers R+ = [0,∞). In this case, we define a ⊥ b
for all a, b ∈ R+ and a⊕b = a+b. Similar examples are given by the set of all
nonnegative functions on a nonempty set and the set of all positive operators
S(H)+ on a complex Hilbert space. Examples of generalized orthoalgebras
that are not orthoalgebras will be given in the next two sections.

A generalized effect algebra E is lattice ordered if E is a lattice relative
to its usual order; that is, the greatest lower bound a ∧ b and least upper
bound a∨ b exist for all a, b ∈ E. We say that E is near-lattice ordered if
a ∧ b and a ∨ b exist whenever there is a c ∈ E with a, b ≤ c. Our previous
examples except E(H) and S(H)+ are lattice ordered while E(H) and S(H)+

are not even near-lattice ordered. A lattice ordered orthoalgebra in which
a⊕ b = a ∨ b is called an orthomodular lattice. An important example of
an orthomodular lattice is P(H).

An element a of an effect algebra E is sharp if a ∧ a′ = 0. It is easy
to show that E is an orthoalgebra if and only if every a ∈ E is sharp. In
[0, 1] ⊆ R the only sharp elements are 0 and 1 and in [0, 1]X an element is
sharp if and only if it is a characteristic function and hence a subset of X.
The sharp elements of E(H) are precisely the projections P(H). An element
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a of a generalized effect algebra E is principal if b, c ≤ a with b ⊥ c imply
that b ⊕ c ≤ a. In the examples R+, S(H)+ the only principal element is
0. If E is an effect algebra, then every principal element is sharp but the
converse does not hold [3].

3 The Commutative Case

This section considers the case of classical commuting observables. These
are represented by random variables on a probability space (Ω,A, µ). As
usual, we think of A as the set of events for some statistical experiment. For
A, B ∈ A we write A ⊥ B if A∩B = ∅ and define the orthosum A⊕B = A∪B
whenever A ⊥ B. Then (A, ∅, Ω,⊕) is a σ-orthoalgebra in which A′ = Ac. In
fact, (A, ∅, Ω,⊕) is a Boolean σ-algebra which is a much stronger statement.

We identify an event A ∈ A with its characteristic function χA. Notice
that A ⊥ B if and only if χAχB = 0. We can think of characteristic functions
as yes-no or 1 − 0 measurements for our statistical system. That is, given
an outcome ω ∈ Ω, χA(ω) gives the values 1 or 0 depending on whether
ω ∈ A or not. One of the main reasons that the orthosum is important
is that µ(A ⊕ B) = µ(A) + µ(B). In fact, considering [0, 1] ⊆ R to be an
effect algebra we have that µ(A ⊕ B) = µ(A) ⊕ µ(B) and µ(Ω) = 1 so µ
becomes an effect algebra morphism. Note that the orthoalgebra order � on
(A, ∅, Ω,⊕) coincides with the usual order ≤. That is χA � χB if and only
if χA(ω) ≤ χB(ω) for every ω ∈ Ω.

We would now like to extend the orthosum to general measurements that
can have more than two values so as to obtain a mathematical structure
for the set of all measurements associated with A. These measurements are
represented by the set M(A) of random variables on (Ω,A, µ). A natural
extension is obtained by defining f ⊥ g if fg = 0 for f, g ∈M(A). Defining
the support of f by supp(f) = {ω ∈ Ω: f(ω) �= 0} and the nullity of f
by null(f) = f−1(0) we have that f ⊥ g if and only if supp(g) ⊆ null(f).
Equivalently, f ⊥ g if and only if supp(f) ⊥ supp(g). If f ⊥ g we define
f⊕g = f+g. It is straightforward to check that (M(A), 0,⊕) is a generalized
orthoalgebra. Let � be the orthoalgebra order on M(A); that is, f � g if
there is an h ∈ M(A) such that f ⊥ h and f ⊕ h = g. It follows from
Lemma 2.2 that (M(A),�) is a poset and 0 � f for every f ∈M(A).

Theorem 3.1. The following statements are equivalent
(i) f � g. (ii) f(ω) = g(ω) for every ω ∈ supp(f). (iii) f = gχsupp(f).
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(iv) fg = f 2. (v) f−1(∆) ⊆ g−1(∆) for every ∆ ∈ B(R) with 0 /∈ ∆ where
B(R) is the σ-algebra of Borel subsets of R.

Proof. To show that (i) implies (ii) suppose that (i) holds. Then there exists
an h ∈M(A) such that fh = 0 and f +h = g. If ω ∈ supp(f) then h(ω) = 0
so that f(ω) = g(ω). It is clear that (ii), (iii) and (iv) are equivalent. We
now show that (ii) and (v) are equivalent. Suppose that (ii) holds and that
∆ ∈ B(R) with 0 /∈ ∆. If ω ∈ f−1(∆) then f(ω) ∈ ∆ and f(ω) �= 0. Hence,
ω ∈ supp(f) so that f(ω) = g(ω). Therefore, g(ω) ∈ ∆ so that ω ∈ g−1(∆).
It follows that f−1(∆) ⊆ g−1(∆). Conversely, suppose that f−1(∆) ⊆ g−1(∆)
for every ∆ ∈ B(R) with 0 /∈ ∆. If ω ∈ supp(f) then f(ω) �= 0. Hence,

{ω} ⊆ f−1 (f(ω)) ⊆ g−1 (f(ω))

so that g(ω) = f(ω). Finally, to show that (iv) implies (i) suppose that
fg = f 2 and let h = g − f . Then fh = fg − f 2 = 0 so that f ⊥ h and
f ⊕ h = g.

It follows from Theorem 3.1 that f � g if and only if f is a truncation
of g. Another interpretation is that f � g if and only if the event f−1(∆) is
contained in the event g−1(∆) for every ∆ ∈ B(R) with 0 /∈ ∆. Since this
amounts to certain propositions implying other propositions, we can think
of � as a logical order. Notice that f � g is not related to the usual order
f ≤ g in general. However, if g ≥ 0 then f � g implies that f ≤ g. It
also follows from Theorem 3.1 that every f ∈ M(A) is principal. Indeed, if
g, h � f with g ⊥ h then

(g + h)f = gf + hf = g + h

so that g ⊕ h � f .

Theorem 3.2. If f1 � f1 � · · · , then f = ∨fi exists in M(A) and f =
lim fi pointwise.

Proof. Since f1 � f1 � · · · , we have that supp(f1) ⊆ supp(f1) ⊆ · · · . Now
∪ supp(fi) = A ∈ A. Define f ∈ M(A) as follows. If ω ∈ A then ω ∈
supp(fn) for some n and define f(ω) = fn(ω) and if ω /∈ A define f(ω) = 0.
The function f is well-defined because if ω ∈ supp(fm) then either fm � fn

or fn � fm. In either case, fm(ω) = fn(ω). For every ω ∈ Ω if ω /∈ A
then fi(ω) = f(ω) = 0 for every i. If ω ∈ A then there exists an n such
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that fn(ω) = fn+1(ω) = · · · = f(ω). Hence, lim fi = f pointwise. Clearly,
fi � f for every i. Suppose that g ∈ M(A) and fi ≤ g for every i. If
ω ∈ A = supp(f) then f(ω) = g(ω) so that f � g. Therefore, f = ∨fi.

Corollary 3.3. (M(A), 0,⊕) is a generalized σ-orthoalgebra and (M(A),�)
is a σ-poset.

The equation µ(A⊕B) = µ(A)⊕ µ(B) can be rewritten as

µ
(
(χA ⊕ χB)−1(1)

)
= µ

(
χ−1

A (1)
)
⊕ µ

(
χ−1

B (1)
)

We can also write this as

µ
(
(χA ⊕ χB)−1(∆)

)
= µ

(
χ−1

A (∆)
)
⊕ µ

(
χ−1

B (∆)
)

for every ∆ ∈ B(R) with 0 /∈ ∆. It will follow from the next result that we
can extend this last equation to arbitrary random variables.

Lemma 3.4. If ∆ ∈ B(R) with 0 /∈ ∆ and f, g ∈M(A) with f ⊥ g then

(f ⊕ g)−1(∆) = f−1(∆)⊕ g−1(∆)

Proof. If ω ∈ f−1(∆) ∩ g−1(∆) then f(ω) ∈ ∆ and g(ω) ∈ ∆. Since 0 /∈ ∆,
f(ω), g(ω) �= 0. Hence, ω ∈ supp(f) ∩ supp(g) which contradicts the fact
that f ⊥ g. Therefore, f−1(∆) ⊥ g−1(∆) and we have that

f−1(∆)⊕ g−1(∆) = f−1(∆) ∪ g−1(∆)

If (f + g)(ω) ∈ ∆ then f(ω) ∈ ∆ or g(ω) ∈ ∆. Hence, (f ⊕ g)−1(∆) ⊆
f−1(∆) ∪ g−1(∆). Conversely, if f(ω) ∈ ∆ or g(ω) ∈ ∆ then (f ⊕ g)(ω) ∈ ∆
so that f−1(∆) ∪ g−1(∆) ⊆ (f ⊕ g)−1(∆).

We conclude from Lemma 3.4 that if f ⊥ g then

µ
[
(f ⊕ g)−1(∆)

]
= µ

[
f−1(∆)

]
⊕ µ

[
g−1(∆)

]
for every ∆ ∈ B(R) with 0 /∈ ∆. We interpret µ [f−1(∆)] = µ(f ∈ ∆) as
the probability that the measurement f has a value in ∆. We can restrict
our attention to ∆ ⊆ R � {0} because if we know µ

(
f ∈ {0}′

)
= µ(f �= 0)

then µ(f = 0) = 1− µ(f �= 0) is determined. Another way of viewing this is
that 0 ∈ R has a special significance in the sense that µ(A) = µ(χ−1

A �= 0) is
the probability that A occurs. We can interpret µ(f �= 0) as the probability
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that measurement f occurs so we disregard A ∈ A that are not a subset of
supp(f).

It follows from Theorem 3.2 and Lemma 3.4 that if fi ⊥ fj for i �= j, then
f1 ⊕ f2 ⊕ · · · exists and µ(⊕fi ∈ ∆) = ⊕µ(fi ∈ ∆) for every ∆ ∈ B(R) with
0 /∈ ∆ where ⊕fi = ∨gj and gj = f1 ⊕ · · · ⊕ fj. Moreover, since

lim
n→∞

(f1 + · · ·+ fn) = ⊕fi

and

|f1 + · · ·+ fn| = |f1|+ · · ·+ |fn| ≤ | ⊕ fi|

it follows from the dominated convergence theorem that if ⊕fi is integrable,
then ∫

⊕fi dµ =
∑ ∫

fi dµ

We interpret
∫

f dµ = Eµ(f) as the expectation or average value of the
measurement f . Hence, if Eµ(⊕fi) exists, then Eµ(⊕fi) =

∑
Eµ(fi).

Theorem 3.5. Let f, g ∈M(A) with the partial order � onM(A). (i) f∧g
exists. (ii) f∨g exists if and only if there is an h ∈M(A) such that f, g � h.

Proof. (i) Let A = {ω : f(ω) = g(ω)} and let h = fχA. Then h � f, g. Now
suppose that u ∈M(A) with u � f, g. If u(ω) �= 0 then u(ω) = f(ω) = g(ω)
so ω ∈ A. Hence, if u(ω) �= 0 then u(ω) = h(ω). Therefore, u � h so
h = f ∧g. (ii) If f ∨g exists then f, g � f ∨g ∈M(A). Conversely, suppose
there exists an h ∈ M(A) with f, g � h. By Theorem 3.1, f = hχA and
g = hχB for some A, B ∈ A. Let u = hχA∪B. Then f, g � u. If f, g � v then
hχA, hχB � v. It follows that u = hχA∪B � v. Therefore, u = f ∨ g.

Theorem 3.6. If f ∈ M(A) then [0, f ] is a Boolean σ-algebra isomorphic
to supp(f) ∩ A.

Proof. Every element of [0, f ] has the form g = fχA where A = supp(g) ⊆
supp(f). For g ∈ [0, f ] define g′ = f − g. Then g′ = fχA′ where A′ =
supp(f) � supp(g). Define φ(fχA) = A where A ∈ supp(f) ∩ A. Then
φ : [0, f ] → supp(f) ∩ A is clearly bijective. If g, h ∈ [0, f ] with g � h, then
supp(g) ⊆ supp(h) so that φ(g) ⊆ φ(h). Conversely, if φ(g) ⊆ φ(h) then
supp(g) ⊆ supp(h) so that g � h. If f1 � f2 � · · · then as in the proof
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of Theorem 3.2 we have that φ(∨fi) = ∪φ(fi). Finally, φ(0) = ∅ and for
g ∈ [0, f ] we have that

φ(g′) = supp(f)� supp(g) = φ(g)′

Hence, φ is a σ-isomorphism from [0, f ] to the Boolean σ-algebra supp(f) ∩
A.

The next section shows that many of the results of this section carry over
to the noncommutative case of quantum observables.

4 Quantum Observables

As in Section 1 we denote the set of bounded self-adjoint operators on a
complex Hilbert space H by S(H) and the set of orthogonal projections on
H by P(H). We interpret P(H) as the set of events and S(H) as the set of
bounded observables for some quantum system. If A ∈ S(H) and PA(∆),
∆ ∈ B(R) is the spectral measure for A, then PA(∆) is interpreted as the
event that A has a value in ∆. If ρ is a density operator on H, then ρ
corresponds to a state of the system and tr

(
ρPA(∆)

)
gives the probability

that A has a value in ∆ and tr(ρA) is the expectation of A in the state ρ.
For P, Q ∈ P(H) it is easy to show that P ⊥ Q (that is, P + Q ≤ I) if

and only if PQ = 0. We extend this definition to A, B ∈ S(H) by defining
A ⊥ B if AB = 0 in which case A ⊕ B = A + B. This definition is also
motivated by the work in Section 3. We denote the closure of the range of
A by ran(A) and the projection onto ran(A) by PA. The proof of the next
result is straightforward.

Lemma 4.1. For A, B ∈ S(H) the following statements are equivalent.
(i) A ⊥ B. (ii) ran(A) ⊆ null(B). (iii) ran(B) ⊆ null(A). (iv) PAPB = 0.
(v) ran(A) ⊥ ran(B)

Theorem 4.2. (S(H), 0,⊕) is a generalized orthoalgebra.

Proof. The conditions (GEA1), (GEA3) and (GEA4) clearly hold. To demon-
strate (GEA2) we first show that AB2 = 0 implies that AB = 0 for all
A, B ∈ S(H). If AB2 = 0 then AB2A = 0 so that

0 =
〈
AB2Ax, x

〉
= 〈BAy, BAx〉 = ‖BAx‖2

11



Hence, BAx = 0 for every x ∈ H so AB = BA = 0. If B ⊥ C and
A ⊥ (B ⊕ C), then BC = 0 and A(B + C) = 0. Hence, AB + AC = 0
which implies that AB2 + ACB = 0 so that AB2 = 0. By our previous work
AB = 0 so that A ⊥ B. Moreover, since AC = 0 we have that C ⊥ (A⊕B).
Finally,

(A⊕B)⊕ C = A + B + C = A⊕ (B ⊕ C)

To demonstrate (GEA5), suppose that A ⊕ B = 0. Then AB = 0 and
A + B = 0. Multiplying this last equation by A we conclude that A2 = 0
so by our previous work A = 0 and then B = 0. To demonstrate condition
(OA), if A ⊥ A then A2 = 0 so again, A = 0.

We denote the orthoalgebra order on S(H) by �, that is, for A, B ∈ S(H)
we have that A � B if there exists a C ∈ S(H) such that A ⊥ C and
A⊕C = B. It follows from Lemma 2.2 that (S(H),�) is a poset and 0 � A
for every A ∈ S(H). We now give various characterizations of this order.

Lemma 4.3. For A, B ∈ S(H) the following statements are equivalent.
(i) A � B, (ii) Ax = Bx for all x ∈ ran(A), (iii) A = BPA, (iv) AB = A2.

Proof. (i)⇒(ii) If (i) holds there exists a C ∈ S(H) such that AC = 0 and
A + C = B. Since ran(A) ⊆ null(C), if X ∈ ran(A) then Cx = 0. Hence,

Ax = (A + C)x = Bx

(ii)⇒(iii) If (ii) holds, then for every y ∈ H we have that APAy = BPAy.
Hence, A = APA = BPA. (iii)⇒(iv) If (iii) holds, then

PAB = (BPA)∗ = A = BPA

Hence,

A2 = ABPA = APAB = AB

(iv)⇒(i) If A2 = AB then A(B − A) = 0 and A + (B − A) = B. Hence,
A � B.

Corollary 4.4. In S(H) [0, I] = P(H) with their usual order.

12



Proof. We have that P ∈ P(H) if and only if P ∈ S(H) and PI = P 2. By
Lemma 4.3, PI = P 2 if and only if P ∈ [0, I]. Hence, [0, I] = P(H). Also,
for P, Q ∈ P(H) we have that P � Q if and only if PQ = P 2 = P . But
PQ = P if and only if P ≤ Q.

Corollary 4.5. Every A ∈ S(H) is principal.

Proof. Suppose that B, C � A and B ⊥ C. Then by Lemma 4.3 we have
that

(B + C)A = BA + CA = B2 + C2 = (B + C)2

Again, by Lemma 4.3 we conclude that B ⊕ C � A.

Theorem 4.6. For A, B ∈ S(H), A � B if and only if PA(∆) ≤ PB(∆)
for every ∆ ∈ B(R) with 0 /∈ ∆.

Proof. Suppose that PA(∆) ≤ PB(∆) for every ∆ ∈ B(R) with 0 /∈ ∆. By
the spectral theorem we have that

A =

∫
{0}′

λPA(dλ), B =

∫
{0}′

λPA(dλ)

By definition of the integrals there exist operators Ai, Bi ∈ S(H) given by

Ai =
∑

j

λj,iP
A(∆j,i), Bi =

∑
j

λj,iP
B(∆j,i)

where 0 /∈ ∆j,i, ∆j,i ∩∆k,i = ∅ for j �= k and lim Ai = A, lim Bi = B in the
strong operator topology. Then

AiBi =
∑

j

λ2
j,iP

A(∆j.i) = A2
i

Letting i → ∞ gives that AB = A2 so by Lemma 4.3, A � B. Conversely,
suppose that A � B so that AB = A2. We first prove that if C, D ∈ S(H)
satisfy CD = 0 then for every bounded Borel function f with f(0) = 0 we
have that f(C + D) = f(C) + f(D). We can approximate f pointwise by a
polynomial

∑n
i=1 ciλ

i. We then have that

f(C + D) ≈
∑

ci(C + D)i =
∑

ciC
i +

∑
ciD

i ≈ f(C) + f(D)

13



where the approximations are in the strong operator topology. Taking limits,
since the polynomials converge to f we obtain f(C + D) = f(C) + f(D).
Now χ∆(0) = 0 for every ∆ ∈ B(R) with 0 /∈ ∆. Since A(B − A) = 0 we
have by our previous work that for ∆ ∈ B(R) with 0 /∈ ∆

PB(∆) = χ∆(B) = χ∆ [A + (B−A)] = χ∆(A) + χ∆(B−A)≥χ∆(A) = PA(∆)

We can interpret Theorem 4.6 as saying that A � B if and only if the
event that A has a value in ∆ implies the event that B has a value in ∆ for
every ∆ ∈ B(R) with 0 /∈ ∆.

Corollary 4.7. If A � B and f is a Borel function satisfying f(0) = 0,
then f(A) � f(B).

Proof. Since A � B, there exists a C ∈ S(H) such that A ⊥ C and A⊕C =
B. As in the proof of Theorem 4.6, we have that f(A) ⊥ f(C) and

f(A)⊕ f(C) = f(A⊕ C) = f(B)

Hence, f(A) � f(B).

For example, it follows from Corollary 4.7 that if A � B, then A2 � B2.
This property does not hold for the usual order ≤ even when A ≥ 0, B ≥ 0.
For instance, letting

A =

[
1 1
1 1

]
, B =

[
2 1
1 1

]

we have that A ≥ 0, B ≥ 0, A ≤ B but A2 �≤ B2.

Theorem 4.8. If A1 � A2 � · · · � B then A = ∨Ai exists in S(H) and
A = lim Ai in the strong operator topology.

Proof. Applying Theorem 4.6 we have that

PAi
= PAi({0}′) ≤ PAi+1({0}′) = PAi+1

Hence, PA1 ≤ PA2 ≤ · · · . It follows that P = ∨PAi
exists in P(H) and P =

lim PAi
in the strong operator topology. Applying Lemma 4.3 we have that
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An = BPAn and it follows that BP = PB. Define the operator A ∈ S(H)
by A = BP . Since

An = BPAn = BPPAn = APn

we conclude from Lemma 4.3 that An � A. Suppose that An � C for all n
where C ∈ S(H). Then CPAn = An = BPAn so that CP = BP = A. Since

C2P = C2P 2 = (CP )2

we conclude by Lemma 4.3 that A = CP � C. Hence. A = ∨Ai. Since
An = APn we conclude that lim An = A in the strong operator topology.

Corollary 4.9. For A ∈ S(H), [0, A] is a σ-orthomodular poset.

Proof. By Theorems 2.3 and 4.8, [0, A] is a σ-orthoalgebra. If B, C � A with
B ⊥A C, then B, C � B ⊕A C. Now suppose that D � A and B, C � D.
Then by Lemma 4.3, BD = B2, CD = C2. Hence,

(B + C)D = BD + CD = B2 + C2 = (B + C)2

Again, by Lemma4.3 we have that B⊕A C � D. We conclude that B⊕A C =
B ∨ C in [0, A] and the result follows.

Corollary 4.9 could also be proved using Corollary 4.5. The next lemma
generalizes Corollary 4.4.

Lemma 4.10. If P ∈ P(H) then [0, P ] = {P1 ∈ P(H) : P1 ≤ P}.

Proof. If P1 ∈ P(H) and P1 ≤ P then P1P = P1 = P 2
1 so P1 � P and

P1 ∈ [0, P ]. Suppose that A ∈ S(H) and A ∈ [0, P ]. Then A � P so that
A = PPA. It follows that A = A2. We conclude that A ∈ P(H).

We now show that we need the condition Ai � B in Theorem 4.8. For
example, let H = L2(R, µ) where µ is Lebesgue measure on (R,B(R)). Let
Bi = [−i, i], i = 1, 2, . . . , and let Aif(λ) = λχBi

(λ)f(λ) for every f ∈ H.
Then Ai ∈ S(H) and Ai � Ai+1 because AiAi+1 = A2

i , i = 1, 2, . . . . However,
∨Ai does not exist in S(H). Indeed, if A = ∨Ai exists in S(H) then clearly
‖Ai‖ ≤ ‖A‖ for every i = 1, 2, . . . . However, it is easy to sow that ‖Ai‖ = i
which is a contradiction. This shows that (S(H), 0,⊕) is not a generalized
σ-orthoalgebra.
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It is easy to show that the order � is not related to the order ≤ on S(H).
For example, we can have A ≤ B but AB �= BA so that A �� B. Conversely,
letting A = diag(1, 0) and B = diag(1,−1) we have that A � B but A �≤ B.
In fact, in this case B ≤ A. Nevertheless, the next result shows that A � B
implies that A ≤ B for the case of positive operators.

Theorem 4.11. If A � B and B ≥ 0, then A ≤ B.

Proof. Suppose that A � B and B ≥ 0. Applying Lemma 4.3 we have that
Ax = Bx for all x ∈ ran(A). Now for every z ∈ H we have that z = x + y
for x ∈ ran(A), y ∈ null(A). Hence,

〈(B − A)z, z〉 = 〈(B − A)(x + y), x + y〉 = 〈(B − A)y, x + y〉
= 〈y, (B − A)(x + y)〉 = 〈y, (B − A)y〉 = 〈y, By〉 ≥ 0

Therefore, A ≤ B.

We say that a partial order � on a set E is algebraic if E can be
organized into a generalized effect algebra (E, 0,⊕) that generates �; that
is, a � b if and only if there exists a c ∈ E such that c ⊥ a and a⊕ c = b. Of
course, the order � on S(H) is algebraic. We now show that the usual order
≤ on S(H) is not algebraic. Suppose ≤ is generated by a generalized effect
algebra (S(H), 0,�); that is, A ≤ B if and only if there exists a C ∈ S(H)
such that A�C = B. Let A ∈ S(H) satisfy A ≤ 0 and A �= 0 (for example,
A = −I). Then there exists a B ∈ S(H) such that A� B = 0. By (GEA5)
we have that A = B = 0 which is a contradiction.

Notice that if A ∈ S(H) is invertible, then A is a maximal element
of (S(H),�). Indeed, if A invertible, then PA = I and if A � B then
A = BPA = B. This shows that if A, B ∈ S(H) are invertible and A �= B
then A ∨B does not exist in (S(H),�). We conclude that (S(H),�) is not
a lattice. We do not know whether A ∧ B always exists in (S(H),�). The
next result shows that (S(H),�) is a near-lattice.

Theorem 4.12. If A ∈ S(H) then [0, A] is σ-isomorphic to the σ-orthomodular
lattice LA = {P ∈ P(H) : P ≤ PA, PA = AP}.
Proof. By Lemma 4.3, B ∈ [0, A] if and only if B = APB where PB ∈ LA.
Define φ : [0, A] → LA by φ(B) = PB. If φ(B) = φ(C) then PB = PC and
B = APB = APC = C so φ is injective. If B = AP for P ∈ LA then

PB = PB
(
{0}′

)
= PA

(
{0}′

)
P = PAP = P
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Hence, if P ∈ LA letting B = AP we have that P = PB and φ(B) = P .
Thus, φ is injective. If B, C ∈ [0, A] with B � C then PB ≤ PC so that
φ(B) ≤ φ(C). Conversely, if φ(B) ≤ φ(C) then PB ≤ PC so that

B = APB � APC = C

Clearly, φ(0) = 0 and for B ∈ [0, A] we have that

A−B = A− APB = A(PA − PB)

where PA − PB ∈ LA. Hence, PA−B = PA − PB and we conclude that

φ(B′) = φ(A−B) = PA − PB = φ(B)′

It follows that φ is an isomorphism. If A1 � A2 � · · · � A then as in the
proof of Theorem 4.8,

φ(∨Ai) = ∨PAi
= ∨φ(Ai)

Hence, φ is a σ-isomorphism.

Of course, it follows from Theorem 4.12 that [0, A] is a σ-orthomodular
lattice.

Corollary 4.13. For A, B ∈ S(H), A ∧ B and A ∨ B exist in {S(H),�}
if there exists a C ∈ S(H) such that A, B � C. Hence, {S(H),�} is near-
lattice ordered.

We now consider some finite-dimensional examples. In the sequel let
dim H = n < ∞. If A, B ∈ S(H) and B � A then it follows from The-
orem 4.6 that A and B are simultaneously diagonalizable and can be rep-
resented by matrices A = diag(λ1, . . . , λn), B = diag(α1, . . . , αn) where
αi = λi whenever αi �= 0. Denoting the spectrum of A by σ(A) it follows
that σ(B) ⊆ σ(A) ∪ {0}. We say that A ∈ S(H) is nondegenerate if its
nonzero eigenvalues are distinct.

Theorem 4.14. If dim H = n < ∞ and A ∈ S(H) is invertible and nonde-
generate, then [0, A] is a Boolean algebra isomorphic to the Boolean algebra
2n.
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Proof. We can diagonalize A so that A has the representation
A = diag(λ1, . . . , λn) where λi ∈ R � {0} and λi �= λj, i �= j. Let P(A) be
the power set of {λ1, . . . , λn} so that P(A) = 2n. If B ∈ [0, A] then B has
the representation B = diag(α1, . . . , αn) where αi = λi whenever αi �= 0.
Define φ : [0, A] → 2n by φ(B) = {α′1, . . . , α′m} where α′1, . . . , α′m are the
nonzero eigenvalues of B. Then φ(B) ∈ P(A) and it is easy to check that φ
is an isomorphism.

The next result shows that we can get the isomorphism [0, A] ≈ 2m for
every m ≤ n.

Corollary 4.15. If dim H = n < ∞ and A is nondegenerate with |σ(A) �
{0} | = m ≤ n, then [0, A] ≈ 2m.

In the general case we have the following result.

Theorem 4.16. If dim H = n < ∞ and A ∈ S(H) has the spectral represen-
tation A =

∑j
i=1 λiPi where λi are nonzero and distinct with dim(Pi) = ni,

then

[0, A] ≈ P(Cn1)× P(Cn2)× · · · × P(Cnj)

Proof. If B � A then B =
∑

λikQik where Qik ≤ Pik . Let Qi = 0 if
i �= jk for some k and define φ : [0, A] → P(Cn1) × · · · × P(Cnj) by φ(B) =
Q1×Q2×· · ·×Qj. It is straightforward to show that φ is an isomorphism.

Although we do not know whether A ∧ B exists in general, we do have
an affirmative answer when dim H <∞.

Theorem 4.17. If dim H <∞ then A ∧B exists for every A, B ∈ S(H).

Proof. Let A and B have spectral representation A =
∑r

i=1 λiPi, B =∑s
i=1 µiQi where the λi are distinct, the µi are distinct and λi, µi �= 0. If

there exists no C ∈ S(H) with C �= 0 and C � A, B, then A ∧ B = 0.
Otherwise, suppose we have a C ∈ S(H) with C �= 0 and C � A, B. Then
at least one λi and µj coincide and Pi ∧Qj �= 0. We can then rearrange the
spectral representation of B to have the form

B =
t∑

i=1

λiQi +
s∑

i=t+1

µiQi
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Where µj are distinct from any λi. Let D ∈ S(H) have the spectral repre-
sentation

D =
t∑

i=1

λiQi ∧ Pi

It is clear that D � A, B and it is straightforward to show that if E ∈ S(H)
with E � A, B then E � D. Hence, D = A ∧B.
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