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Abstract. For π ∈ Sn, let d(π) be the arithmetic average of {|i − π(i)|; 1 ≤ i ≤
n}. Then 0 ≤ d(π)/n ≤ 1/2, the expected value of d(π)/n approaches 1/3 as n
approaches infinity, and most permutations have d(π)/n close to 1/3. We also describe
all permutations with d(π)/n = 1/2.

Let s+(π) and s∗(π) be the arithmetic and geometric averages of {|π(i) − π(i +
1)|; 1 ≤ i < n}, respectively. Let M+, M∗ be the maxima of s+ and s∗ over Sn,
respectively. Then M+ = (2m2 − 1)/(2m − 1) when n = 2m, M+ = (2m2 + 2m −
1)/(2m) when n = 2m + 1, M∗ = (mm(m + 1)m−1)1/(n−1) when n = 2m, and

M∗ = (mm(m + 1)(m + 2)m−1)1/(n−1) when n = 2m + 1 > 1. We also describe all
permutations π, σ with s+(π) = M+, s∗(σ) = M∗.

1. Motivation and introduction

Allow us to begin with a motivation from the area of turbo coding [5, 8]:
Starting with the very first example [1], every turbo code employs a permutation,

called the interleaver. Although the interleaver has several functions within the coding
process, its main objective is to scramble the input bits so that input sequences with a
few nonzero bits do not produce output sequences with many nonzero bits, upon being
encoded with a convolutional code. The interleaver is typically of length at least one
thousand.

While it is easy to simulate the transmission channel and measure the performance
of a turbo code with a particular interleaver statistically, it appears to be difficult to
characterize those permutations that will perform well as interleavers without actually
testing them. Indeed, early publications on turbo coding recommend to select the
interleaver at random—an advice still followed in practice.

Nevertheless, it has now become clear that it is sometimes possible to match or out-
perform random interleavers with deterministic or semi-random interleavers by carefully
analyzing the channel and the decoding algorithm, among other parameters.

As an illustration, we mention three properties of permutations that have been sug-
gested in the literature as desirable for the purposes of turbo coding. Let n be an integer,
Sn the set of permutations on {1, . . . , n}, and π ∈ Sn. Then:

(a) π should have no fixed points and, more generally, the delay i− π(i) should be
far from zero for every i [4, 7],

(b) the quantity min{|i− j|+ |π(i)− π(j)|; 1 ≤ i < j ≤ n} should be large [3, 7],
(c) the dispersion |{(i− j, π(i)− π(j)); 1 ≤ i < j ≤ n}| · (n(n− 1)/2)−1 should be

large [9, 5].
Viewed in this way, interleaver design is very much a combinatorial problem.

In this paper, we define and discuss two properties of permutations similar to (a)–(c),
namely displacement and stretch. Most of our arguments are combinatorial in nature
and no knowledge of coding is needed. While the results obtained here can be considered
complete from the mathematical point of view (in their narrow scope), the investigation
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of the impact of the results on turbo coding is in preliminary stages, is carried out by a
different group of researchers, and is mentioned only once below.

Here are the two properties and a summary of results:

1.1. Displacement. For π ∈ Sn, let

(1) d(π) =
n∑

i=1

|i− π(i)|
n

.

The value d(π) has been defined in [4, Thm. 2], where it is called descriptively the
average of the absolute values of the delays. We prefer to call it the displacement of π,
and d(π)/n the normalized displacement of π.

We prove that the normalized displacement of a permutation ranges between 0 and
1/2, and we find all permutations with extreme displacement. Among all permutations in
Sn, the average normalized displacement approaches 1/3 as n approaches ∞. Moreover,
the distribution of displacements is such that a long, randomly chosen permutation will
very likely have normalized displacement close to 1/3.

Hence, by selecting the interleaver at random, the class of permutations with large
or small displacement is rarely (never!) put to the test. Preliminary results of Ramya
Chandramohan [2] indicate that an S-random interleaver (see [3]) with larger than av-
erage displacement performs slightly better than an S-random interleaver.

It is easy to construct permutations with normalized displacement arbitrarily close to
a given 0 ≤ d ≤ 1/2. The problem is more difficult when the permutation is supposed
to have additional properties, and we refer the reader to [2] for more details.

1.2. Stretching. The two quantities defined in (b), (c) are telling us something about
how the permutation π stretches intervals. To measure the average stretch of an arbi-
trary collection A of subsets of N = {1, . . . , n}, we propose the following two definitions:

For A ⊆ N , let diam(A) = max{i; i ∈ A} − min{i; i ∈ A}. When A ⊆ 2N and
π ∈ Sn, let

(2) s+A(π) = |A|−1 ·
(∑

A∈A

diam(π(A))
diam(A)

)
,

and

(3) s∗A(π) =

( ∏

A∈A

diam(π(A))
diam(A)

)1/|A|
.

We call both formulas the stretch of π with respect to A. Formula (3), which gives equal
weight to relative stretching and shrinking, is merely the multiplicative version of (2).

Since the formulas (2), (3) emphasize average stretch instead of extreme stretch, they
become trivial when A = 2N , A = {{i, j}; 1 ≤ i < j ≤ N}, etc. However, they
are not meaningless. For instance, when n = 3 and A = {{1, 2}, {2, 3}}, we have
s+A((1, 3, 2)) = 3/2 > 1 = s+A(id) and s∗A((1, 3, 2)) =

√
2 > 1 = s∗A(id), as one would

expect.
It appears to be hopelessly complicated to analyze s+ and s∗ for an arbitrary collection

A. We therefore focus on stretching with respect to B = {{i, i + 1}; 1 ≤ i < n}.
Roughly speaking, the additive formula (2) with A = B is maximized by any permu-

tation that starts in the middle of the interval N and keeps oscillating between the two
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halves of N . The multiplicative formula (3) with A = B leads to a much more intricate
solution. The maximum of s∗ is

(mmmm−1)1/(n−1), when n = 2m, and

(mm(m + 1)(m + 2)m−1)1/(n−1), when n = 2m + 1.

(See Acknowledgement.) Furthermore, the maximum is attained by two permutations
when n is even, and by four permutations when n > 1 is odd.

2. Displacement

2.1. Average displacement. We are first going to determine the average value of d(π)
over all permutations π ∈ Sn. The formula (4) can be obtained by combining Theorems
2 and 4 of [4] but our proof is shorter and more straightforward.

Theorem 2.1. Let n ≥ 1 be an integer. Then

(4)
1
n!

∑

π∈Sn

d(π) =
n2 − 1

3n
.

Proof. Pick m ∈ N . Since the number of permutations π ∈ Sn mapping m onto some
m′ is equal to (n− 1)!, we have

1
n!

∑

π∈Sn

|m− π(m)| = ((m− 1) + · · ·+ 1) + (1 + · · ·+ (n−m))
n

.

Thus
1
n!

∑

π∈Sn

d(π) =
1
n!

∑

π∈Sn

1
n

n∑

m=1

|m− π(m)| = 1
n

n∑

m=1

1
n!

∑

π∈Sn

|m− π(m)|

=
1
n

n∑

m=1

(m− 1)m + (n−m)(n−m + 1)
2n

=
1
n

n∑

m=1

(n−m)2 + (m− 1)2 + n− 1
2n

.

We now note that
n∑

m=1

(n−m)2 =
(n− 1)n(2n− 1)

6
=

n∑

m=1

(m− 1)2

and obtain the result. ¤
The average displacement over all permutations from Sn is therefore about n/3.

Asymptotically:

Corollary 2.2. We have

lim
n→∞

1
n
· 1
n!

∑

π∈Sn

d(π) =
1
3
.

2.2. Extreme displacement. We observe the simple fact that the minimal displace-
ment d(π) = 0 is attained by exactly one permutation—the identity permutation. The
dual question concerning maximal displacement is more interesting.

Let us call here a permutation π ∈ Sn crossing if for every i, j in N the two closed
intervals [i, π(i)], [j, π(j)] intersect (possibly at a single point). Otherwise, π is said to
be noncrossing.

Lemma 2.3. Let π ∈ Sn be a noncrossing permutation. Then there is ρ ∈ Sn with
d(ρ) > d(π).



4 DANIEL DALY AND PETR VOJTĚCHOVSKÝ
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Figure 1. Increasing displacement of noncrossing permutations.

Proof. Since π is noncrossing, there are i < j in N such that the intervals [i, π(i)],
[j, π(j)] are disjoint. Let ρ = π ◦ (i, j), where the transposition (i, j) is applied first.
Then

|i− ρ(i)|+ |j − ρ(j)| = |i− π(i)|+ |j − π(j)|+ 2(min{j, π(j)} −max{i, π(i)}),
which is perhaps best apparent from Figure 1. Since i < j and π is noncrossing, the
term min{j, π(j)} −max{i, π(i)} is positive, proving that d(ρ) > d(π). ¤

Now when we have seen that only crossing permutations can attain maximal displace-
ment, we characterize them.

Lemma 2.4. Let π ∈ Sn. If n = 2m then π is crossing if and only if it maps {1,
. . . , m} onto {m + 1, . . . , n}. If n = 2m + 1 then π is crossing if and only if it maps
{1, . . . ,m} to {m + 1, . . . , n} and {m + 2, . . . , n} to {1, . . . ,m + 1}.
Proof. Suppose first that n = 2m. Assume that π is crossing. If there is i ∈ {1, . . . , m}
with π(i) ∈ {1, . . . ,m} then, by the pigeon-hole principle, there must also be j ∈ {m +
1, . . . , n} with π(j) ∈ {m + 1, . . . , n}. But then the points i, j and their images π(i),
π(j) witness that π is noncrossing, a contradiction. Conversely, every permutation π
mapping {1, . . . , m} onto {m+1, . . . , n} must also map {m+1, . . . , n} onto {1, . . . , m},
and hence is a crossing permutation.

Now suppose that n = 2m+1. Assume that π is crossing and that π(m+1) ≥ m+1.
Then the image of {1, . . . , m}must be contained in {m+1, . . . , n}, which forces π to map
{m + 2, . . . , n} onto {1, . . . , m}. Similarly when π is crossing and π(m + 1) ≤ m + 1.
Conversely, assume that π maps {1, . . . ,m} to {m + 1, . . . , n} and {m + 2, . . . , n} to
{1, . . . ,m + 1}. Looking at two points at a time, it is easy to see that π is crossing. ¤

Note that the odd case of Lemma 2.4 imposes no restriction on the image of the
midpoint m + 1. Nevertheless, once m + 1 is mapped somewhere, condition (ii) of
Lemma 2.4 forces π to behave in a certain way. For instance, when π(m + 1) > m + 1,
it follows that π−1(m + 1) < m + 1. We will need this fact in the next proposition.

Theorem 2.5. Given n ≥ 1, let dn = max{d(π); π ∈ Sn}, and Dn = {π ∈ Sn; d(π) =
dn}. Then π ∈ Dn if and only if π is crossing. Moreover, dn = n/2 when n is even,
and dn = (n− 1)(n + 1)(2n)−1 when n is odd.
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Proof. Suppose that n = 2m, and let π ∈ Sn be a crossing permutation. By Lemma 2.4,
π maps {1, . . . ,m} onto {m + 1, . . . , n} and vice versa. Therefore

nd(π) =
m∑

i=1

|i− π(i)|+
n∑

i=m+1

|i− π(i)| =
m∑

i=1

(π(i)− i) +
n∑

i=m+1

(i− π(i))

= 2

(
n∑

i=m+1

i−
m∑

i=1

i

)
= 2

(
n(n + 1)

2
− 2 · m(m + 1)

2

)
=

n2

2
.

This short calculation proves that, as far as π is crossing, the value of d(π) is independent
of π and is equal to n/2. The set Dn then coincides with crossing permutations by
Lemma 2.3, and dn = n/2 follows.

a m + 1 = π(a) π(π(a)) a m + 1 ρ(a)
−→

Figure 2. Proof of Theorem 2.5.

Suppose that n = 2m + 1, and let π ∈ Sn be a crossing permutation. If π(m +
1) 6= m + 1, we construct a crossing permutation ρ with ρ(m + 1) = m + 1 satisfying
d(ρ) = d(π) as follows: Without loss of generality, suppose c = π(m+1) > m+1. Then
a = π−1(m + 1) < m + 1, as we have remarked before this proposition. Let ρ(a) = c,
ρ(c) = a, ρ(m + 1) = m + 1 and ρ(k) = π(k) for k 6∈ {a,m + 1, c}. The situation is
depicted in Figure 2. By the construction, d(π) = d(ρ).

We can therefore assume that the crossing permutation π fixes m + 1. Then, by
Lemma 2.4,

nd(π) =
m∑

i=1

(π(i)− i) +
n∑

i=m+2

(i− π(i))

= 2

(
n∑

i=m+2

i−
m∑

i=1

i

)
= 2m(m + 1) =

(n− 1)(n + 1)
2

.

As in the even case, we see that the value of d(π) does not depend on π, that Dn consists
exactly of all crossing permutations, and that dn = (n− 1)(n + 1)(2n)−1. ¤

2.3. Distribution of displacements. The reader may wish to select a permutation
π of length n = 1000 at random and calculate its displacement d(π). We predict that
330 < d(π) < 336. Of course, we could be wrong, as there are permutations with
displacement ranging from 0 to n/2. Using the characterization of permutations with
maximal displacement (Lemma 2.4), we count exactly (m!)2 such permutations in the
even case n = 2m. The ratio (2m)! · (m!)−2 approaches 0 exponentially fast, so such
permutations are rare. This is an instance of a much more general notion known to
measure theorists as concentration of measure phenomena. Let us talk about it briefly.
We imitate [6, Ch. 6].

Let (X, ρ, µ) be a metric space (X, ρ) equipped with a Borel probability measure µ.
For a subset A of X and ε > 0 define Aε = {x ∈ X; ρ(x,A) ≤ ε}, where ρ(x,A) is the
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distance of x from the set A. The concentration function α(X, ) : R+ → R+
0 is defined

by
α(X, ε) = 1− inf{µ(Aε); A ⊆ X,A is Borel, µ(A) ≥ 1/2}.

In words, α(X, ε) measures how much space remains in X when one half of X is inflated
by ε.

Let X = {(Xn, ρn, µn); n = 1, 2, . . . } be a family of metric probability spaces. Then
X is called a normal Levy family with constants c1, c2 if for every ε > 0 and for every
n we have α(Xn, ε) ≤ c1e

−c2ε2n.
Let ρn be the (normalized Hamming) metric on Sn defined by

ρn(π, σ) =
1
n
|{i; π(i) 6= σ(i)}|,

and let µn be the (normalized counting) measure on Sn defined by

µn(π) =
1
n!

.

Then {(Sn, ρn, µn)} is a normal Levy family with constants c1 = 2, c2 = 1/64, according
to [6, Sec. 6.4].

Although the defining condition for normal Levy families only restricts the interplay
of the measure and the metric in (Xn, ρn, µn), one can say a lot about the behavior
of reasonable functions fn : Xn → R. We will assume here that fn is Lipschitz with
constant 1 (i.e., |fn(x) − fn(y)| ≤ ρn(x, y) for every x, y ∈ Xn), but a more general
requirement would do (cf. [6]).

So, assume that f : (X, ρ, µ) → R is Lipschitz with constant 1. Denote by Mf the
median value of f on X, and let A = {x ∈ X; f(x) ≤ Mf}, B = {x ∈ X; f(x) ≥ Mf}.
Then, by definition, µ(A) ≥ 1/2, µ(B) ≥ 1/2, and µ({x ∈ X; |f(x) − Mf | ≤ ε}| ≥
µ(Aε ∩ Bε) ≥ 1 − 2α(X, ε). When X = Xn is a member of a normal Levy family, we
thus obtain

µ({x ∈ Xn; |f(x)−Mf | ≤ ε}) ≥ 1− 2c1e
−c2ε2n.

When Xn = Sn is equipped with the above metric and measure, we get

µ({x ∈ Xn; |f(x)−Mf | ≤ ε}) ≥ 1− 4e−ε2n/64.

This inequality explains why the values of f on Sn are packed near the median. More-
over, with such a spike in the distribution, the median will be close to the average value
of f .

We are about to clinch the argument with the following observation:

Proposition 2.6. Let (Sn, ρn, µn) be as above. Then all functions fn : Sn → R defined
by fn(π) = d(π)/n are Lipschitz with constant 1.

Proof. Let π, σ be two permutations in Sn. Then

1
n
|d(π)− d(σ)| = 1

n2

∣∣∣∣∣
n∑

i=1

|i− π(i)| −
n∑

i=1

|i− σ(i)|
∣∣∣∣∣ ≤

1
n2

∣∣∣∣∣
n∑

i=1

|i− π(i)− i + σ(i)|
∣∣∣∣∣

=
1
n2

n∑

i=1

|π(i)− σ(i)| ≤ 1
n2
· n · |{i; π(i) 6= σ(i)}| = ρn(π, σ),

and we are though. ¤



HOW PERMUTATIONS DISPLACE POINTS AND STRETCH INTERVALS 7

2.4. Prescribed displacement. Since Sn is finite, the values of d(π)/n for a fixed n
cannot cover the interval [0, 1/2]. However, we can get arbitrarily close to any value in
[0, 1/2] if we allow n to be sufficiently large; as we are going to show.

The idea is to leave π identical on a certain proportion of N and displace the remaining
points as much as possible.

Proposition 2.7. Let d be such that 0 ≤ d ≤ 1/2. Then there is a sequence of permu-
tations πn ∈ Sn such that limn→∞ d(πn)/n = d.

Proof. Let δ =
√

2d, and let un = bδn/2c. Define πn ∈ Sn as follows:

π(i) =





i + un, 1 ≤ i ≤ un,
i− un, un + 1 ≤ i ≤ 2un,
i, i > 2un.

Then d(πn)/n = 2unun/n2 = 2bδn/2c2/n2. Since both 2(δn/2)2/n2 and 2(δn/2+1)2/n2

tend to δ2/2 = d when n approaches ∞, we are done by the Squeeze theorem. ¤

3. Stretching with additive formula

In this section, we answer the following question: For which permutation π ∈ Sn is
s+B (π) maximal, where B = {{i, i + 1}; 1 ≤ i < n}? Note that with this choice of B we
have

s+B (π) = (n− 1)−1 · (|π(1)− π(2)|+ |π(2)− π(3)|+ · · ·+ |π(n− 1)− π(n)|).
For two subsets A, B of N , we say that π ∈ Sn oscillates between A and B if for

every 1 ≤ i < n we have either π(i) ∈ A, π(i + 1) ∈ B, or π(i) ∈ B, π(i + 1) ∈ A.

Theorem 3.1. The maximum value of s+B (π) among all π ∈ Sn is

(2m2 − 1)/(2m− 1) when n = 2m, and

(2m2 + 2m− 1)/(2m) when n = 2m + 1.

When n = 2m, the maximum is attained by π if and only if π oscillates between
{1, . . . ,m}, {m + 1, . . . , n} and (π(1), π(n)) ∈ {(m,m + 1), (m + 1,m)}. When n =
2m+1, the maximum is attained by π if and only if either π oscillates between {1, . . . , m},
{m+1, . . . , n} and (π(1), π(n)) ∈ {(m+1,m+2), (m+2,m+1)}, or π oscillates between
{1, . . . ,m + 1}, {m + 2, . . . , n} and (π(1), π(n)) ∈ {(m,m + 1), (m + 1,m)}.
Proof. Let n = 2m. Consider the sum |π(1)− π(2)|+ · · ·+ |π(n− 1)− π(n)|. It consists
of 2n− 2 integers from N , n− 1 with positive and n− 1 with negative signs. Now, upon
deleting 2 integers out of the 2n integers 1, 1, . . . , n, n, and upon assigning n−1 positive
and n− 1 negative signs to the remaining 2n− 2 integers, their sum is maximized by

(5) −1− 1− · · · − (m− 1)− (m− 1)−m + (m + 1) + (m + 2) + (m + 2) + · · ·+ n + n,

which equals 2m2 − 1. Is there a permutation π such that |π(1) − π(2)| + · · · + |π(n −
1)− π(n)| = 2m2 − 1? The fact that m, m + 1 appear just once in (5) means that the
permutation must start at m and end at m+1, or vice versa. Moreover, the distribution
of signs implies that π must be oscillating between {1, . . . , m} and {m + 1, . . . , n}. Any
such permutation will do.

When n = 2m+1, we proceed similarly. The two maximal sums analogous to (5) are

−1− 1− · · · − (m− 1)− (m− 1)−m− (m + 1) + (m + 2) + (m + 2) + · · ·+ n + n,

and

−1− 1− · · · −m−m + (m + 1) + (m + 2) + (m + 3) + (m + 3) + · · ·+ n + n,
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since deleting both occurrences of m + 1 would not correspond to any permutation. ¤

4. Stretching with multiplicative formula

We answer the following question: For which permutations π ∈ Sn is s∗B(π) maximal,
where B = {{i, i + 1}; 1 ≤ i < n}? Note that with this choice of B we have

s∗B(π) =

(
n−1∏

i=1

|π(i)− π(i + 1)|
)1/(n−1)

.

4.1. Maximizing products of n integers of given sum. We obviously have:

Lemma 4.1. Let x ≤ y be positive integers. Then (x− 1)(y + 1) < xy.

For positive integers n ≤ s, let Dn,s = {(x1, . . . , xn); xi ∈ Z, xi > 0, x1+· · ·+xn = s}.
Denote by Mn,s the maximum of x1 · · ·xn over all (x1, . . . , xn) ∈ Dn,s. The following
result is certainly well-known. We offer a short proof:

Theorem 4.2. Let n ≤ s be positive integers, a = s/n. Then

Mn,s = bacm · daen−m,

where m = ndae − s. Moreover, Mn,s < Mn,s+1.

Proof. Let −→x = (x1, . . . , xn) be the unique point in D such that x1 ≤ · · · ≤ xn and
xn − x1 ≤ 1. It is easy to see that x1 = · · · = xm = bac, xm+1 = · · · = xn = dae, where
m = ndae − s.

Let −→y = (y1, . . . , yn) ∈ D be such that yi ≤ yi+1 and −→y 6= −→x . Let di = yi − xi and
note that d1 < 0, dn > 0, d1 + · · ·+ dn = 0. Assume for a while that di > 0 and dj < 0
for some i < j. Then xi < yi ≤ yj < xj shows that xi, xj differ by more than 1, which
is impossible. Hence there is k such that di ≤ 0 for every i ≤ k, and di ≥ 0 for every
i > k.

The integers di count how many times do we have to add or subtract 1 to obtain yi

from xi. Since d1 + · · ·+ dn = 0, we can reach −→y from −→x by repeatedly decreasing one
coordinate by 1 and increasing other coordinate by 1 at the same time. Moreover, we
have just shown that we can do this in such a way that only the first k coordinates will
possibly decrease, and only the remaining n−k coordinates will possibly increase. Since
xk ≤ xk+1, Lemma 4.1 implies that the product will diminish with every step.

It remains to show that Mn,s < Mn,s+1. When (x1, . . . , xn) ∈ Dn,s then (x1 + 1, x2,
. . . , xn) ∈ Dn,s+1, and, clearly, x1 · · ·xn < (x1 + 1)x2 · · ·xn. ¤

4.2. The even case. Let n = 2m. Theorem 3.1 shows that (n − 1)s+B (π) ≤ 2m2 − 1,
and that the equality holds if and only if π oscillates between {1, . . . , m}, {m+1, . . . , n}
and (π(1), π(n)) ∈ {(m,m + 1), (m + 1,m)}. By Theorem 4.2, the product of 2m − 1
positive integers with sum 2m2 − 1 is maximized by m ·m + (m− 1)(m + 1).

Lemma 4.3. Let n = 2m. Let π ∈ Sn be a permutation oscillating between {1, . . . , m},
{m + 1, . . . , n} such that π(1) = m, π(n) = m + 1 and such that |π(i) − π(i + 1)| ∈
{m,m+1} for every 1 ≤ i < n. Then π is uniquely determined, namely: π(2i) = n−i+1,
π(2i− 1) = m− i + 1.

Proof. We must have π(2) = 2m. Then π(3) = m− 1 since π(1) = m, etc. ¤

Dually:
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Lemma 4.4. Let n = 2m. Let π ∈ Sn be a permutation oscillating between {1, . . . , m},
{m + 1, . . . , n} such that π(1) = m + 1, π(n) = m and such that |π(i) − π(i + 1)| ∈
{m,m + 1} for every 1 ≤ i < n. Then π is uniquely determined, namely: π(2i) = i,
π(2i− 1) = m + i.

Theorem 4.5. Let n = 2m. Then the maximum of s∗B is (mm(m+1)m−1)1/(2m−1), and
it is attained precisely by the two permutations of Lemmas 4.3, 4.4.

Proof. Let π ∈ Sn. Let xi = |π(i)− π(i + 1)|, s = x1 + · · ·+ x2m−1. Then s ≤ 2m2 − 1
by Theorem 3.1. If s < 2m2 − 1 then s∗B(π)n−1 ≤ Mn,s−1 < Mn,s by Theorem 4.2. If
s = 2m2 − 1, we have s∗B(π)n−1 ≤ Mn,s = mm · (m + 1)m−1, and the equality holds only
for the two permutations of Lemma 4.3, 4.4. ¤
4.3. Local improvements. When n = 2m + 1, we are going to see that the maximum
of (s∗B)n−1 is M = mm(m + 1)(m + 2)m−1, which is far less than M2m,2m2+2m−1 (cf.
Theorems 3.1 and 4.2). In fact, it can happen that M < M2m,s even if s < 2m2 + 2m−
1. A more detailed understanding of permutations π with maximal s∗B(π) is therefore
needed.

There is a one-to-one correspondence between the permutations in Sn and the n-cycles
of Sn with designated beginning. To see this, identity π ∈ Sn with the n-cycle ρ defined
by ρ(π(i)) = π(i + 1) if i < n, ρ(π(n)) = π(1), and designate π(1) as the beginning of ρ.
Therefore, to find the maximum of s∗B on Sn is equivalent to finding the maximum of s∗
over all n-cycles ρ in Sn, where

s∗(ρ) = max





∏

i 6=j

|i− ρ(i)|; 1 ≤ j ≤ n



 .

In this subsection we show that a number of conditions on ρ must hold should s∗(ρ)
be maximal.

The following terminology will allow us to communicate more efficiently. We say that
two jumps a 7→ ρ(a), b 7→ ρ(b) of a cycle ρ have distinct endpoints if |{a, ρ(a), b, ρ(b)}| =
4. The two jumps are disjoint if the intervals [a, ρ(a)], [b, ρ(b)] do not intersect. The
jump a 7→ ρ(a) skips over the jump b 7→ ρ(b) if [b, ρ(b)] ⊆ [a, ρ(a)]. (Note that a jump
skips over itself.) The jump a 7→ ρ(a) bridges b 7→ ρ(b) if it skips over it and the two
jumps have distinct endpoints. Two jumps intersect nontrivially if they are not disjoint,
one does not skip over the other, and they have distinct endpoints. A jump a 7→ ρ(a)
is short if |a − ρ(a)| ≤ |b − ρ(b)| for all b. All other jumps are called long. Finally, the
jumps have the same direction if (a− ρ(a))(b− ρ(b)) > 0, otherwise they have opposite
direction.

Given a cycle ρ and two jumps i 7→ ρ(i), j 7→ ρ(j) with distinct endpoints, let ρi,j

denote the cycle depicted in Figure 3.

¾

-
µI

j

i

j

ρi,jρ

i

Figure 3. The cycles ρ and ρi,j .
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Lemma 4.6. Let ρ ∈ Sn be an n-cycle. Let i 7→ ρ(i), j 7→ ρ(j) be jumps with distinct
endpoints such that i 7→ ρ(i) is a short jump and |i−j| > |j−ρ(j)|. Then s∗(ρi,j) > s∗(ρ).

Proof. Since i 7→ ρ(i) is short, s∗(ρ) =
∏

k 6=i |k−ρ(k)|. Now, s∗(ρi,j) ≥ |i−j|∏k 6=i, k 6=j |k−
ρ(k)| > ∏

k 6=i |k − ρ(k)|. ¤

Lemma 4.7. Let ρ ∈ Sn be an n-cycle such that one of the following properties holds:
(i) there are disjoint jumps in the same direction,
(ii) a short jump nontrivially intersects a jump in opposite direction,
(iii) a short jump is disjoint from a jump in opposite direction,
(iv) there are disjoint jumps in opposite direction (generalizing (iii)),
(v) a jump bridges a long jump in opposite direction.

Then there is an n-cycle σ ∈ Sn such that s∗(σ) > s∗(ρ).

Proof. In case (i), write a < ρ(a) < b < ρ(b) without loss of generality, and let σ = ρa,b.
Note that the two old jumps a 7→ ρ(a), b 7→ ρ(b) have been replaced by two longer jumps
a 7→ b, ρ(a) 7→ ρ(b), respectively.

In case (ii), let a 7→ ρ(a) be a short jump, and let b be such that a < ρ(b) < ρ(a) < b.
Let σ = ρa,b and note that the new jump a 7→ b is longer that the old jump b 7→ ρ(b).
We are done by Lemma 4.6.

In case (iii), let a 7→ ρ(a) be a short jump and a < ρ(a) < ρ(b) < b. Let σ = ρa,b.
The new jump a 7→ b is then longer than the old jump b 7→ ρ(b), and we are again done
by Lemma 4.6.

In case (iv), we can assume that none of the two jumps a 7→ ρ(a), b 7→ ρ(b) in question
is short, else (iii) applies. Let c 7→ ρ(c) be a short jump. We can assume that c 7→ ρ(c)
is not disjoint from a 7→ ρ(a) nor b 7→ ρ(b), otherwise either (i) or (iii) applies. Without
loss of generality, assume max{a, ρ(a)} < max{b, ρ(b)}. Since the two jumps are in
opposite directions, c 7→ ρ(c) cannot intersect both jumps trivially. Again without loss
of generality, assume c 7→ ρ(c) intersects a 7→ ρ(a) nontrivially. If a 7→ ρ(a), c 7→ ρ(c) are
in opposite direction, then (ii) applies. So suppose that they are in the same direction.
Then c 7→ ρ(c) and b 7→ ρ(b) are in opposite direction, and we can assume that they
intersect trivially, else (ii) applies. But that is impossible.

In case (v), let ρ(b) < a < ρ(a) < b and σ = ρa,b. Let x, y, z be the lengths a− ρ(b),
ρ(a)−a and b−ρ(a), respectively. Then we have lost the factor (x+y+z)y = xy+y2+yz
and gained the factor (x+ y)(y + z) = xy +xz + y2 + yz while comparing s∗(ρ) to s∗(σ).
Hence s∗(σ) > s∗(ρ). ¤

4.4. Short jumps. We say that a jump a 7→ ρ(a) is a right jump if a < ρ(a), else it is
a left jump.

Proposition 4.8. Let ρ ∈ Sn be an n-cycle with maximal s∗(ρ). Assume that ρ has a
short jump c 7→ c + t, t > 0. Then one of the following scenarios holds:

(i) t = 1, all jumps skip over c 7→ c + 1, n = 2m, c = m, there are m left and m
right jumps in ρ,

(ii) t = 1, the only jump not skipping c 7→ c + 1 is the right jump following it,
n = 2m + 1, c = m, there are m + 1 right and m left jumps in ρ,

(iii) t = 1, the only jump not skipping c 7→ c + 1 is the right jump preceding it,
n = 2m + 1, c = m + 1, there are m + 1 right and m left jumps in ρ,

(iv) t = 2, precisely two jumps do not skip over c 7→ c + 2 and these jumps are right,
n = 2m + 1, c = m, there are m + 1 right and m left jumps in ρ.
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Proof. If there is d such that c < d < c + t, consider a such that d = ρ(a). By
Lemma 4.7(ii), a < c. Similarly, ρ(c) < ρ(d). The three jumps c 7→ ρ(c), a 7→ ρ(a),
ρ(a) 7→ ρ(ρ(a)) = ρ(d) are thus all right.

If ρ(c)− c > 2, there are c < d < e < ρ(c). As above, there are jumps a 7→ d 7→ ρ(d),
b 7→ e 7→ ρ(e), all right. But then Lemma 4.7(i) applies to a 7→ ρ(a) and e 7→ ρ(e), a
contradiction. Hence ρ(c)− c ≤ 2.

Assume ρ(c) − c = 2 and let a 7→ ρ(a) = c + 1 7→ ρ(c + 1) be the two jumps found
above. Let b 7→ ρ(b) be a right jump different from a 7→ c+1, c+1 7→ ρ(c+1), c 7→ c+2.
Then b < c, else a 7→ c + 1, b 7→ ρ(b) are disjoint and Lemma 4.7(i) applies. If ρ(b) ≤ c,
the jump b 7→ ρ(b) is disjoint from ρ(a) 7→ ρ(ρ(a)), a contradiction with Lemma 4.7(i).
If ρ(b) > c, we must have ρ(b) > ρ(c), and so b 7→ ρ(b) skips over c 7→ ρ(c). Now let
b 7→ ρ(b) be any left jump. If b < c + 2 then, in fact, b < c, thus b 7→ ρ(b) and c 7→ c + 2
are disjoint, a contradiction by Lemma 4.7(iii). Thus b ≥ c + 2. If ρ(b) > c + 1 then
b 7→ ρ(b), a 7→ ρ(a) are disjoint and Lemma 4.7(iv) applies. If ρ(b) ≤ c + 1, we must
have ρ(b) ≤ c, and b 7→ ρ(b) skips over c 7→ ρ(c). The rest of (iv) is easy.

The case ρ(c)− c = 1 can be analyzed similarly, with help of Lemma 4.7. ¤

In view of Theorem 4.5, we are only interested in scenarios (ii), (iii) and (iv) of
Proposition 4.8.

4.5. Long jumps. The following Lemma follows immediately from Lemma 4.7(iv), (v),
and we point it out only for quicker reference.

Lemma 4.9. Let ρ be an n-cycle with maximal s∗(ρ). Let a 7→ ρ(a), b 7→ ρ(b) be two
long jumps of opposite directions. Then at least one of the endpoints of b 7→ ρ(b) is in
the interval [a, ρ(a)].

Proposition 4.10. Let ρ ∈ Sn be an n-cycle with maximal s∗(ρ) and with a short cycle
c 7→ c + t, t > 0, where n = 2m + 1. Then every long jump of ρ is of length m, m + 1
or m + 2.

Proof. Let k 7→ k + t, 0 < t < m, be a long right jump of ρ. By Proposition 4.8, m+1 is
the unique point at which 2 right jumps are consecutive, and , moreover, m+1 ∈ [k, k+t].
By the same Proposition, there are m left jumps, no two consecutive. By Lemma 4.9,
each of these left jumps has an endpoint in [k, k + t]. Then there are not enough points
in [k, k + t] for m nonconsecutive left jumps to start or end.

Let k 7→ k − t, 0 < t < m, be a left jump of ρ. By Proposition 4.8 and Lemma 4.9,
there are m long right jumps and each of them has an endpoint in [k− t, k]. In scenario
(ii) of Proposition 4.8, m ∈ [k − t, k], no long right jump starts or ends at m, and no
two long right jumps are consecutive. In scenario (iii), m + 2 ∈ [k − t, k], no long right
jump starts or ends at m, and no two long right jumps are consecutive. In scenario (iv),
m, m + 2 ∈ [k − t, k], no long right jump starts or ends at m, m + 2, and precisely two
long right jumps are consecutive. In any case, there are not enough points in [k − t, k]
to accommodate all long right jumps.

Consider a jump a 7→ ρ(a) of length at least m + 3. Then there are at most 2m +
1 − (m + 2) = m − 1 points outside of [a, ρ(a)]. Hence one of the m left jumps, no
two of which are consecutive, must have both endpoints in (a, ρ(a)). Moreover, no two
consecutive long right jumps meet at a point outside of [a, ρ(a)], and thus one of the m
long right jumps must have both endpoints in (a, ρ(a)). Consequently, whether a 7→ ρ(a)
is left or right, we have reached a contradiction by Lemma 4.7(v). ¤
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Lemma 4.11. Let ρ be as in scenario (ii) of Proposition 4.8, and assume that every
long jump is of length m, m + 1, or m + 2. Then ρ is uniquely determined and s∗(ρ) =
mm · (m + 1) · (m + 2)m−1. When m is odd, we have

ρ(i) =





i + 1, i = m,
i− (m + 1), i = m + 2,
i + m, i even, i < m + 2,
i + (m + 2), i odd, i < m,
i−m, i even, i > m + 1,
i− (m + 2), i odd, i > m + 2.

When m is even, we have

ρ(i) =





i + 1, i = m,
i + (m + 1), i = 1,
i + m, i odd, 1 < i < m + 2,
i + (m + 2), i even, i < m,
i−m, i even, i > m + 1,
i− (m + 2), i odd, i > m + 2.

Proof. We work out two examples, one for m = 3 and one for m = 4. It will then
become clear that the cycle ρ is unique, that its structure is determined by the parity
of m, and that the formulae in the statement of the Lemma are correct. We will build
the cycle from the shortest jump m 7→ m + 1 by alternatively extending it by one jump
forward and one jump backwards.

Let m = 3. By our assumption, ρ(3) = 4. We now determine ρ(4) (building the cycle
forward) and ρ−1(3) (building the cycle backwards). Since ρ(4) > 4 by assumption, we
must have ρ(4) = 7 (else the jump is too short). Then ρ−1(3) = 6, since ρ−1(3) = 7
would result in a short cycle, and all other values yield a jump that is too short. We
next determine ρ(7) and ρ−1(6). We must have ρ(7) = 2, since ρ(7) = 1 would be
too long. Then ρ−1(6) = 1 follows, avoiding a short cycle. Now we obviously have
ρ(2) = 5 = ρ−1(1).

Let m = 4. By our assumption, ρ(4) = 5. Proceeding as in the case m = 3, we
have ρ(5) = 9, ρ−1(4) = 8, ρ(9) = 3, ρ−1(8) = 2, ρ(3) = 7, ρ−1(2) = 6, ρ(7) = 1, and
ρ−1(6) = 1. ¤

Similarly:

Lemma 4.12. Let ρ be as in scenario (iii) of Proposition 4.8, and assume that every
long jump is of length m, m + 1, or m + 2. Then ρ is uniquely determined and s∗(ρ) =
mm · (m + 1) · (m + 2)m−1. The formulae for ρ are similar to those of Lemma 4.11.

Lemma 4.13. Let ρ be as in scenario (iv) of Proposition 4.8. Then there are at least
m− 1 jumps of length m in ρ.

Proof. We use Proposition 4.10 without reference throughout this proof.
For i ∈ {1, . . . ,m − 1}, let L(i) denote the length of the left jump ending at i, and

R(i) the length of the right jump starting at i. Note that we cannot have L(i) = R(i),
else a 2-cycle arises. We claim that in at most one case among 1, . . . , m− 1 both L(i),
R(i) are bigger than m, hence proving the Lemma (since m + 1 7→ 2m + 1 is also of
length m).

For a contradiction, let i < j be the two smallest integers in {1, . . . , m − 1} such
that L(i), R(i), L(j), R(j) > m. Assume that L(i) = m + 1, R(i) = m + 2. (The case
L(i) = m + 2, R(i) = m + 1 is similar.) Let k = j − i.
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Assume k = 1. Since R(i + 1) 6= m + 1, we have L(i + 1) = m + 1, R(i + 1) = m + 2.
Since R(i + 2) 6= m, R(i + 2) 6= m + 1, we have R(i + 2) = m + 2. Since L(i + 2) 6= m,
we have L(i + 2) = m + 1. Continuing in this fashion, we arrive at R(m− 1) = m + 2,
contradicting m + 1 7→ 2m + 1.

Assume k = 2. Since L(i + 1) 6= m, we have R(i + 1) = m. If L(i + 1) = m + 1, we
have a 4-cycle. Hence L(i + 1) = m + 2. Since j = i + 2, none of L(i + 2), R(i + 2)
equals m. Since L(i + 2) 6= m + 1, we have L(i + 2) = m + 2 and R(i + 2) = m + 1. But
then no jump can possibly end at m + i + 2, a contradiction.

Assume k = 3. Then R(i + 1) = m, and thus L(i + 1) = m + 2 else we have a
4-cycle. Then L(i + 2) = m, and thus R(i + 2) = m + 2 else we have a 6-cycle. As
R(i + 3) 6= m + 1, we have R(i + 3) = m + 2. But then no jump can possibly end at
m + i + 3, a contradiction.

This pattern continues for larger k. ¤

4.6. The odd case.

Theorem 4.14. When n = 2m + 1 > 1, the maximum of s∗B is (mm · (m + 1) · (m +
2)m−1)1/n−1, and it is attained precisely by the two permutations of Lemmas 4.11 and
4.12, and by their mirror images.

Proof. Let ρ be a permutation obtained in scenario (iv) of Proposition 4.8. Its m left
jumps start in positions m+2, . . . , 2m+1, and its m long right jumps start in positions
1, . . . , m− 1, m + 1. It is then easy to see that the sum of the lengths of the 2m long
jumps of ρ is 2m2 + 2m− 2. By Proposition 4.10, each long jump is of length m, m + 1
or m+2, and by Lemma 4.13, there are at least m−1 jumps of length m. If x1, . . . , x2m

are positive integers such that m ≤ xi ≤ m+2, x1 + · · ·+x2m = 2m2 +2m−2 and such
that at least m− 1 of them are equal to m, then Theorem 4.2 implies that the product
x1 · · ·x2m cannot exceed mm−1(m+1)4(m+2)m−3. However, mm−1(m+1)4(m+2)m−3

is less than mm(m + 1)(m + 2)m−1 if and only if (m + 1)3 is less than m(m + 2)2, which
is true for every positive m. We are done by Lemmas 4.11, 4.12 and their mirrored
versions. ¤
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