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Abstract

We define a quantum operation as a special type of endomorphism
between spaces of matrices. Representations of endomorphisms are
considered and an isomorphism between higher dimensional matrices
and endomorphisms is derived. We then employ this isomorphism
to prove various results for endomorphisms and quantum operations.
For example, an endomorphism is completely positive if and only if
its corresponding matrix is positive. Although a few new results are
proved, this is primarily a survey article that simplifies and unifies
previous work on the subject.
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1 Introduction

Quantum operations play a very important role in quantum computation,
quantum information and quantum measurement theory [2, 3, 5, 8, 11, 14,
15, 16]. They describe discrete quantum dynamics, quantum measurements,
noisy quantum channels, interactions with the environment and error correct-
ing codes. Mathematically, a quantum operation is described by a completely
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positive map which, in finite dimensions, is a special type of endomorphism
between spaces of matrices. In this survey article we derive representations
of endomorphisms and an isomorphism between higher dimensional matrices
and endomorphisms. We then employ this isomorphism to prove various re-
sults concerning endomorphisms and quantum operations. For example, an
endomorphism is hermitian-preserving or completely positive if and only if
the corresponding matrix is hermitian or positive, respectively.

This isomorphism was first suggested by Jamiolkowski [12], later exploited
by Choi [4] and most recently used by Arrighi and Patricot [1]. However, we
believe that our methods are simpler and more direct than previous ones and
we also obtain a new type of isomorphism. Moreover, we shall derive some
results that were not considered in [1]. Although most of our results are not
new, we believe that the study of these endomorphisms provides a unifying
theme for an important physical theory.

2 Matrix Spaces

Although there is a well developed theory of endomorphisms and quantum
operations on infinite dimensional Hilbert spaces, our main concern here is
with quantum computation and information theory which takes place in a
finite dimensional setting. We shall use the notation Md for the set of all
d×d hermitian matrices and Hermd for the set of all d×d hermitian matrices
and Herm+

d for the set of all d × d positive matrices. If V1, V2 are complex
linear spaces an endomorphism Ω: V1 → V2 is a linear map from V1 to
V2. The set of endomorphisms from V1 to V2 is denoted End (V1, V2) and is a
linear space in its own right. The spaces Md are linear in the usual way and
in this work, we are primarily interested in End (Mn, Mn).

Let Cn be the complex n-dimensional linear space of n-tuples of complex
numbers with the usual inner product 〈x | y〉. We assume that 〈x | y〉 is linear
in the second argument and employ Dirac notation |x〉 for “kets” and 〈x| for
“bras.” Throughout the discussion we use a fixed canonical orthonormal
basis |i〉 for Cn, i = 1, . . . , n. In quantum computation and information
theory, {|i〉} is called the computational basis. Any ket a ∈ Cn has a
unique representation a =

∑
ai|i〉 and the corresponding bra a† is given

by a† =
∑

a∗i 〈i| where a∗i is the complex conjugate of ai ∈ C. We denote
the n-dimensional identity matrix in Mn by In. The space End(Cn,Cm) is
identified with the space of complex m×n matrices in the usual way using the
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computational bases. If {|i〉} is the orthonormal basis for Cm and {|k〉} the
orthonormal basis for Cn, then any m×n matrix has the form A =

∑
aij|i〉〈j|

and its adjoint is given by A† =
∑

a∗ij|j〉〈i|. We identify Cmn with the tensor
product Cm ⊗ Cn and write the canonical basis |i〉 ⊗ |j〉 for Cmn as |i〉|j〉,
i = 1, . . . , m, j = 1, . . . , n.

It is well known that the linear space End(Cn,Cm) is an inner product
space under the Hilbert-Schmidt inner product 〈A | B〉 = tr(A†B). For A =∑

aij|i〉|j〉 ∈ Cmn define Â ∈ End(Cn,Cm) by Â =
∑

aij|i〉〈j|.

Theorem 2.1. The map ∧ : Cmn → End(Cn,Cm) is a unitary transforma-
tion.

Proof. It is clear that ∧ is a linear bijection. To show that ∧ preserves inner
products we have〈

Â | B̂
〉

= tr(Â†B̂ =
∑ 〈j|Â†B̂|j〉 =

∑
a∗jkbkj = 〈A | B〉

Notice that (|i〉|j〉)∧ = |i〉〈j| so that ∧ maps the canonical basis for Cmn

to the canonical basis for End(Cn,Cm). It is important to emphasize that
the isomorphism ∧ is basis dependent. However, this is not a big disadvan-
tage because in quantum computation and quantum information theory one
usually sticks with the computational basis. Letting |β〉 =

∑ |j〉|j〉 be the
canonical maximally entangled “state” of Cn ⊗ Cn, the next lemma gives
useful relationships between A and Â.

Lemma 2.2. For A ∈ Cmn we have that

Â = (Im ⊗ 〈β|) (A) (2.1)

and

A = (Â⊗ In)〈β| (2.2)

Proof. To prove (2.1) we have

(Im ⊗ 〈β|) (|i〉|j〉) =
(
Im ⊗

∑
〈k|〈k|

)
(|i〉|j〉)

= |i〉 ⊗
∑
〈k|〈k | j〉 = |i〉〈j| = (|i〉|j〉)∧
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and the result follows by linearity. To prove (2.2) we have(
(|i〉|j〉)† ⊗ In

)
|β〉 = (|i〉〈j| ⊗ In)

∑
|k〉|k〉

=
∑

k

|i〉〈j | k〉|k〉 = |i〉|j〉

and the result follows by linearity.

The next result will be useful in Section 4. If Ai ∈ Cd, notice that∑
AiA

†
i ∈Md

Lemma 2.3. [15] Let Ai, Bi ∈ Cd i = 1, . . . , r. Then
∑

AiA
†
i =

∑
BiB

†
i

if and only if there exists a unitary matrix [uij] such that Bk =
∑

ujkAj,
j, k = 1, . . . , r.

Proof. If Bk =
∑

ujkAj for a unitary matrix [ujk], we have that∑
BiB

†
i =

∑
ujiAju

∗
kiA
†
k =

∑
AjA

†
kδjk =

∑
AjA

†
j

Conversely, suppose that S =
∑

AiA
†
i =

∑
BiB

†
i . Then S ∈Md is a positive

matrix so by the spectral theorem we can write S =
∑

λk|k〉〈k| where |k〉
is an orthonormal system and λk > 0. Letting

∣∣∣k̃〉
=

∣∣√λk k
〉

we have that

S =
∑∣∣∣k̃〉〈

k̃
∣∣∣ where

∣∣∣k̃〉
are mutually orthogonal vectors. Letting |ψ〉 be a

vector that is orthogonal to all the
∣∣∣k̃〉

’s we have that

0 = 〈ψ|S|ψ〉 =
∑
|〈ψ | Ai〉|2

Hence, 〈ψ | Ai〉 = 0, i = 1, . . . , r, so that Ai ∈
{∣∣∣k̃〉}⊥⊥

. It follows that

Ai =
∑

cik

∣∣∣k̃〉
for some cik ∈ C. Hence,

∑ ∣∣∣k̃〉〈
k̃
∣∣∣ =

∑
AiA

†
i =

∑
k,	

(∑
i

cikc
∗
i	

)∣∣∣k̃〉〈
�̃
∣∣∣

Since the
∣∣∣k̃〉

are mutually orthogonal, we conclude that
∑

i cikc
∗
i	 = δk	.

Hence, c = [cik] is a unitary matrix. Similarly, we can find a unitary matrix

d = [dik] such that Bi =
∑

dki

∣∣∣k̃〉
. Thus, Bi =

∑
ujiAj where u = dc† is

unitary.
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Let |i〉, |k〉 be elements of the canonical basis for Cm and |j〉, |�〉 be
elements of the canonical basis for Cn. Then |i〉|j〉〈�|〈k| ∈Mmn, |j〉〈�| ∈Mn

and |i〉〈k| ∈Mm. We define the partial traces tr1 and tr2 by

tr1 (|i〉|j〉〈�|〈k|) = |j〉〈�|δik

tr2 (|i〉|j〉〈�|〈k|) = |i〉〈k|δj	

and extend by linearity to obtain tr1 ∈ End(Mmn, Mn) and tr2 ∈ End(Mmn, Mm).
In general, if A ∈Mmn with

A =
∑

aijk	|i〉|j〉〈�|〈k|

we have that

tr1(A) =
∑

aiji	|j〉〈�|

and

tr2(A) =
∑

aijkj|i〉〈k|

Notice that for B ∈Mm, C ∈Mn we have that tr1(B⊗C) = tr(B)C. Indeed,
if B =

∑
bik|i〉〈k|, C =

∑
cj	|j〉〈�| then

B ⊗ C =
∑

bikcj	|i〉|j〉〈k|〈�|

and we have that

tr1(B ⊗ C) =
∑

biicj	|j〉〈�| = tr(B)C

In fact, tr1 is the unique element of End(Mmn, Mn) satisfying tr1(B ⊗ C) =
tr(B)C. In a similar way tr2(B ⊗ C) = tr(C)B.

When we speak of a state we are actually referring to an unnormalized
state which is an element of Herm+

d . A state of the form |α〉〈α| for |α〉 ∈ Cd,
|α〉 �= 0 is called a pure state. The isomorphism Theorem 2.1 provides some
interesting characterizations for various types of pure states in Cn⊗Cn. We
call |β〉 =

∑ |i〉|i〉 the canonical maximally entangled state. A state
|α〉 ∈ Cn⊗Cn is maximally entangled if tr1 (|α〉〈α|) = In or tr2 (|α〉〈α|) =
In. A state |α〉 ∈ Cn⊗Cn is totally entangled if tr1 (|α〉〈α|) or tr2 (|α〉〈α|)
is invertible.
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Theorem 2.4. Let |α〉 ∈ Cn ⊗ Cn be a state. (i) |α〉 is the canonical maxi-
mally entangled state if and only if |α〉∧ = In. (ii) |α〉 is maximally entangled
if and only if |α〉∧ is unitary. (iii) |α〉 is totally entangled if and only if |α〉∧
is invertible.

Proof. (i) |α〉∧ = In =
∑ |i〉〈i| if and only if |α〉 =

∑ |i〉|i〉 = |β〉.
(ii) Suppose that |α〉 =

∑
aij|i〉|j〉 so that

|α〉〈α| =
∑

aija
∗
k	|i〉|j〉〈�|〈k|

We then have that

tr1 (|α〉〈α|) =
∑

aija
∗
i	|j〉〈�| (2.3)

Thus, tr1 (|α〉〈α|) = In if and only if∑
aija

∗
k	|i〉〈�| =

∑
|i〉〈i|

This latter condition is equivalent to |α〉∧ =
∑

aij|i〉〈j| being unitary. A
similar result holds if tr2 (|α〉〈α|) = In. (iii) As in (i) we have Eqn. (2.3).
Moreover,

|α〉†|α〉 =
∑

a∗ij|j〉〈i|
∑

ak	|k〉〈�|

=
∑

a∗ijak	δik|j〉〈�| =
∑

a∗ijai	|j〉〈�|

Thus, tr1 (|α〉〈α|) is invertible if and only if |α〉†|α〉 is invertible. But |α〉†|α〉
if and only if |α〉∧ is invertible.

We close this section with a result that will be useful in the sequel.

Lemma 2.5. If A, B ∈ Cmn, then tr1(AB†) = (B̂†Â)t and tr2(AB†) = ÂB̂†.

Proof. Let A =
∑

aij|i〉|j〉 and B =
∑

bk	|k〉|�〉. Then

AB† =
∑

aijb
∗
k	|i〉|j〉〈�|〈k|

and we have that

tr2(AB†) =
∑

aijb
∗
k	|i〉〈k| =

(∑
aij|i〉〈j|

) (∑
b∗k	|�〉〈k|

)
=

(∑
aij|i〉〈j|

) (∑
bk	|k〉〈�|

)†
= ÂB̂†
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Moreover, [
tr1(AB†)

]t
=

[∑
aijb

∗
i	|j〉〈�|

]t

=
∑

aijb
∗
i	|�〉〈j|

=
(∑

b∗k	|�〉〈k|
) (∑

aij|i〉〈j|
)

=
(∑

bk	|k〉〈�|
)† (∑

aij|i〉〈j|
)

= B̂†Â

Hence, tr1(AB†) = (B̂†Â)t.

3 Endomorphisms

This section establishes two isomorphism theorems between Mmn and End(Mn, Mm).
As in Section 2, we consider Mmn to be a complex linear space with inner
product 〈S | T 〉 = tr(S†T ), we let |i〉, |k〉 be elements of the canonical basis
for Cm and |j〉, |�〉 be elements of the canonical basis for Cn. Then

{Sijk	 : i, k = 1, . . . , m; j, � = 1, . . . , n}

where Sijk	 = |i〉|j〉〈k|〈�| becomes an orthonormal basis for Mmn and {Ej	 : j, � = 1, . . . , n}
where Ej	 = |j〉〈�| becomes an orthonormal basis for Mn. Moreover, we de-
fine Sijk	 ∈ End(Mn, Mm) by

Sijk	(ρ) = |i〉〈j|ρ|�〉〈k|

Finally, for S, T ∈ End(Mn, Mm) we define

〈S | T 〉 =
∑
r,s

tr
(
S(Ers)

†T (Ers)
)

Lemma 3.1. End(Mn, Mm) is an m2n2 dimensional inner product space
with orthonormal basis Sijk	.

Proof. Clearly End(Mn, Mm) is a linear space with dimension m2n2. It is
also evident that 〈S | T 〉 is sesquilinear and 〈S | S〉 ≥ 0. Suppose that
〈S | S〉 = 0. Then ∑

r,s

tr
(
S(Ers)

†S(Ers)
)

= 0
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so that tr
(
S(Ers)

†S(Ers)
)

= 0, r, s = 1, . . . , n. Hence S(Ers) = 0, r, s =
1, . . . , n, so by linearity S = 0. Therefore, 〈S | T 〉 is an inner product. To
show that {Sijk	} forms a basis we have

〈Sijk	 | Si′j′k′	′〉 =
∑
r,s

tr
(
Sijk	(Ers)

†Si′j′k′	′(Ers)
)

=
∑
r,s

tr
(
(|i〉〈k|)† |i′〉〈k′|

)
δjrδ	sδj′rδ	′s

= δjj′δ		′tr ((|k〉〈i|) (|i′〉〈k′|))
= δjj′δ		′δii′δkk′

Hence, {Sijk	} is an orthonormal system and since there are m2n2 of these
elements, {Sijk	} forms a basis.

Define ∧ : Mmn → End(Mn, Mm) by Ŝijk	 = Sijk	 and extend by linearity.

Corollary 3.2. The map ∧ : Mmn → End(Mn, Mm) is a unitary transfor-
mation.

Proof. Since ∧ maps the orthonormal basis {Sijk	} onto the orthonormal basis
{Sijk	}, it must be unitary.

We denote the inverse of the unitary transformation ∧ by ∨ : End(Mn, Mm)
→Mmn. We now present our two main isomorphism theorems.

Theorem 3.3. (i) If S ∈Mmn has the form S = AB† for A, B ∈ Cmn, then

Ŝ(ρ) = ÂρB̂† for every ρ ∈Mn. (ii) S ∈ End(Mn, Mm) if and only if S has
the form

S(ρ) =
∑

s

ÂsρB̂†s (3.1)

for As, Bs ∈ Cmn.

Proof. (i) Suppose S = AB† for A, B ∈ Cmn. Then for every ρ ∈ Mn we
have that

Ŝ(ρ) = (AB†)∧(ρ) =

[∑
aij|i〉|j〉

(∑
bk	|k〉|�〉

)†]∧
(ρ)

=
∑

aijb
∗
k	 (|i〉|j〉〈k|〈�|)∧ (ρ) =

∑
aijb

∗
k	Ŝijk	(ρ)

=
∑

aijb
∗
k	Sijk	(ρ) =

∑
aijb

∗
k	|i〉〈j|ρ|�〉〈k|

=
(∑

aij|i〉〈j|
)

ρ
(∑

bk	|k〉〈�|
)†

= ÂρB̂†
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(ii) It is clear that if S has the form (3.1) then S ∈ End(Mn, Mm). Con-

versely, if S ∈ End(Mn, Mm) then by Corollary 3.2 S = Ŝ for some S ∈Mmn.
Now S has the form S =

∑
crsDrB

†
s so by (i) and linearity we have that

S(ρ) = Ŝ(ρ) =
∑
r,s

crsD̂rρB̂†s =
∑

s

ÂsρB̂†s

where As =
∑

r crsDr.

Theorem 3.4. (i) If S ∈ Mmn has the form S = A ⊗ B for A ∈ Mm,

B ∈ Mn, then Ŝ(ρ) = tr(Btρ)A for all ρ ∈ Mm. (ii) S ∈ End(Mn, Mm) if
and only if S has the form

S(ρ) =
∑

r

tr(Brρ)Ar (3.2)

for Br ∈Mn, Ar ∈Mm.

Proof. (i) Suppose S = A⊗B for A ∈Mm, B ∈Mn. Then for every ρ ∈Mn

we have that

Ŝ(ρ) = (A⊗B)∧(ρ) =
(∑

aik|i〉〈k| ⊗
∑

bj	|j〉〈�|
)∧

(ρ)

=
∑

aikbj	 (|i〉|j〉〈k|〈�|)∧ (ρ) =
∑

aikbj	|i〉〈j|ρ|�〉〈k|

=
(∑

bj	ρj	

) ∑
aik|i〉〈k| = tr(Btρ)A

(ii) It is clear that if S has the form (3.2), then S ∈ End(Mn, Mm). Con-

versely, if S ∈ End(Mn, Mm) then by Corollary 3.2 S = Ŝ for some S ∈Mmn.
Now S has the form S =

∑
crsAr ⊗ Ds for Ar ∈ Mm, Ds ∈ Mn so by (i)

linearity we have that

S(ρ) = Ŝ(ρ) =
∑
r,s

crstr(D
t
sρ)Ar =

∑
r

tr(Brρ)Ar

where Br =
∑

s crsD
t
s.

Corollary 3.5. S ∈ End(Mn, Mm) if and only if S has the form S(ρ) =
tr2 (D(Im ⊗ ρ)) for some D ∈Mmn.
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Proof. It is clear that if S has the given form, then S ∈ End(Mn, Mm).
Conversely, if S ∈ End(Mn, Mm) then letting D =

∑
Ar ⊗ Br and applying

(3.2) gives

tr2 (D(Im ⊗ ρ)) = tr2

((∑
Ar ⊗Br

)
(Im ⊗ ρ)

)
=

∑
tr2(Ar ⊗Brρ)

=
∑

tr(Brρ)Ar = S(ρ)

The next result gives a different version of Corollary 3.5. We denote the
identity endomorphism from Mn to Mn by In.

Lemma 3.6. For S ∈Mmn we have that

Ŝ(ρ) = tr2 (S(Im ⊗ ρ)) (3.3)

and

S = (Ŝ ⊗ In) (|β〉〈β|) =
∑

Ŝ(Eij)⊗ Eij (3.4)

Proof. Notice that (3.3) holds for S = Sijk	. Hence, (3.3) holds in general by

linearity. To verify (3.4), let S =
∑

sijAiB
†
j for AiBj ∈ Cmn and apply (2.2)

to obtain

(Ŝ ⊗ In) (|β〉〈β|) =
∑

sij(Âi ⊗ In)|β〉〈β|(B̂†j ⊗ In)

=
∑

sijAiB
†
j = S

The last equality follows from |β〉〈β| = ∑
Eij ⊗ Eij.

For S ∈ End(Mn, Mm) define S̃ ∈ End(Mn, Mm) by S̃(ρ) = S(ρ†)†.

Lemma 3.7. The map S �→ S̃ is anti-linear, anti-unitary and S̃ijk	 = Sk	ij.

Proof. Clearly S �→ S̃ is additive and to show it is anti-linear, we have for
all λ ∈ C

(λS)∼(ρ) =
[
(λS)(ρ†)

]†
= λ∗S(ρ†)† = λ∗S̃(ρ)

Hence, (λS)∼ = λ∗S̃. To verify anti-unitary we have〈
S̃ | T̃

〉
=

∑
tr

(
S̃(Ers)

†T̃ (Ers)
)

=
∑

tr
(
S(Esr)T (Esr)

†)
=

∑
tr

(
T (Esr)

†S(Esr)
)

= 〈T | S〉 = 〈S | T 〉∗
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The last statement follows from

S̃ijk	(ρ) =
(
|i〉〈j|ρ†|�〉〈k|

)†
= 〈j|ρ†〈�|∗|k〉〈i|

= 〈�|ρ|j〉〈k|〈i| = Sk	ij(ρ)

Lemma 3.8. (i) For S ∈ Mmn we have (S†)∧(Ers) =
[
Ŝ(Esr)

]†
. (ii) For

S ∈Mmn we have (S†)∧ = (Ŝ)∼.

Proof. (i) For S =
∑

aijk	|i〉|j〉〈�|〈k| we have

S† =
∑

a∗ijk	|k〉|�〉〈j|〈i|

Hence,

(S†)∧(Ers) =
∑

a∗ijk	|k〉〈�|Ers|j〉〈i|

=
∑

a∗ijk	|k〉〈�| (|r〉〈s|) |j〉〈i|

=
∑

a∗iskr|k〉〈i| =
(∑

aiskr|i〉〈k|
)†

=
(∑

aijk	|i〉〈j| (|s〉〈r|) |�〉〈k|
)†

=
(∑

aijk	|i〉〈j|Esr|�〉〈k|
)†

=
[
Ŝ(Esr)

]†
(ii) Let ρ =

∑
crsErs ∈Mn and apply (i) to obtain

(S†)∧(ρ) = (S†)∧
(∑

crsErs

)
=

∑
crs(S

†)∧(Ers)

=
∑

crs

[
Ŝ(Esr)

]†
=

∑
crs

[
Ŝ(E†rs)

]†
=

[∑
c∗rsŜ(E†rs)

]†
=

[
Ŝ

(∑
c∗rsE

†
rs

)]†
=

[
Ŝ(ρ†)

]†
= (Ŝ)∼(ρ)

Hence, (S†)∧ = (Ŝ)∼.

We say that S ∈ End(Mn, Mm) is hermitian-preserving if S(ρ) is her-
mitian whenever ρ is hermitian.
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Lemma 3.9. S is hermitian-preserving if and only if S(Eij)
† = S(Eji) for

all i, j.

Proof. Suppose that S is hermitian-preserving. Since Eij + Eji is hermitian
we have that

S(Eij)
† + S(Eji)

† = [S(Eij + Eji)]
† = S(Eij + Eji)

= S(Eij) + S(Eji)
(3.5)

Since i(Eij − Eji) is hermitian we have that

−iS(Eij)
† + iS(Eji)

† = [S(iEij − iEji)]
† = S(iEij − iEji)

= iS(Eij)− iS(Eji)

Thus,

S(Eij)
† − S(Eji)

† = −S(Eij) + S(Eji) (3.6)

Adding (3.5) and (3.6) gives S(Eij)
† = S(Eji).

Conversely, suppose that S(Eij)
† = S(Eji) for every i, j. If ρ =

∑
aijEij

is hermitian, we have that

S(ρ)† =
[∑

aijS(Eij)
]†

=
∑

a∗ijS(Eij)
† =

∑
ajiS(Eji)

= S(ρ)

Hence, S(ρ) is hermitian so S is hermitian-preserving.

Theorem 3.10. For S ∈ End(Mn, Mm) the following statements are equiv-
alent. (i) S is hermitian-preserving. (ii) S(ρ)† = S(ρ†) for every ρ = Mn.

(iii) S = S̃. (iv) S = Ŝ where S ∈ Hermmn.

Proof. (i) ⇒ (ii) Suppose S is hermitian-preserving and ρ =
∑

cijEij. Then
by Lemma 3.9

S(ρ†) =
∑

c∗ijS(Eji) =
∑

c∗ij [S(Eij)]
† =

[∑
cijS(Eij)

]†
= S(ρ)†

(ii) ⇒ (iii) If (ii) holds, then for every ρ ∈Mn we have that

S̃(ρ) = S(ρ†)† =
[
S(ρ)†

]†
= S(ρ)

12



(iii) ⇒ (iv) By Corollary 3.2 S = Ŝ for some S ∈Mmn. If (iii) holds then by
Lemma 3.8(ii) we have that

(S†)∧ = (Ŝ)∼ = S̃ = S = Ŝ

Since ∧ is injective, S = S† so S is hermitian.
(iv) ⇒ (i) Suppose (iv) holds and ρ ∈ Hermn. Then by Lemma 3.8(ii) we
have that

S(ρ)† = Ŝ(ρ)† = Ŝ(ρ†)† = (Ŝ)∼(ρ) = (S†)∧(ρ) = Ŝ(ρ) = S(ρ)

Hence, S(ρ) is hermitian so that S is hermitian-preserving.

Corollary 3.11. (i) Any S ∈ End(Mn, Mm) has a unique representation
S = S1+iS2 where S1,S2 ∈ End(Mn, Mm) are hermitian-preserving. (ii) Any

S ∈ End(Mn, Mm) has a unique representation S = Ŝ + iT̂ where S, T ∈
Hermmn.

Proof. (i) If S = S1 + iS2 where S1,S2 ∈ End(Mn, Mm) are hermitian-
preserving, then by Lemma 3.7 and Theorem 3.10 we have that

S̃ = S̃1 − iS̃2 = S1 − iS2

We conclude that S1 = (S + S̃)/2 and S2 = (S − S̃)/2i. Since the right
sides of these equations are hermitian-preserving, this proves existence and
uniqueness. (ii) This follows from (i) and Theorem 3.10.

We denote by E(Cd) the set of all S ∈ M+
d with S ≤ Id and call E(Cd)

the set of quantum effects [3, 5, 6, 7, 9, 10, 14]. We have seen in Theo-
rem 3.10(iv) that S is hermitian-preserving if and only if S∨ ∈ Hermmn. The
next result characterizes other properties of S in terms of properties of S∨.

Theorem 3.12. Let S ∈ End(Mn, Mm). (i) S(ρ) =
∑

ÂiρÂ †i with tr(Â †i Âj) =

0, i �= j, if and only if S∨ ∈ Herm+
mn. (ii) S(ρ) =

∑
ÂiρÂ †i with tr(Â †i Âj) =

δij if and only if S∨ is an orthogonal projection. (iii) S(ρ) =
∑

ÂiρÂ †i
with tr(Â †i Aj) = 0, i �= j and tr(Â †i Âi) ≤ 1 if and only if S∨ ∈ E(Cmn).
(iv) S(ρ) = tr(ρ)Im if and only if S∨ = Imn.

Proof. (i) By the spectral theorem S∨ ∈ Herm+
mn if and only if S∨ =

∑
AiA

†
i

where Ai ∈ Cmn and Ai ⊥ Aj for i �= j. Applying Theorem 3.3(i) this is

13



equivalent to S(ρ) =
∑

ÂiρÂ †i with tr(Â †i Âj) = 0, i �= j. (ii) By the
spectral theorem S∨ ∈ Mmn is an orthogonal projection if and only if S∨ =∑

AiA
†
i where Ai ∈ Cmn and 〈Ai | Aj〉 = δij. Applying Theorem 3.3(i) this

is equivalent to S(ρ) =
∑

ÂiρÂ †i where tr(Â †i Âj) = δij. (iii) This is similar
to the proof of (i). (iv) S(ρ) = tr(ρ)Im if and only if

S(ρ) =
∑
|i〉〈j|ρ|j〉〈i| =

∑
Sijij(ρ)

Since Imn =
∑ |i〉|j〉〈i|〈j| we have that∑

Sijij =
∑

Ŝijij =
∑

(|i〉|j〉〈i|〈j|)∧ = Îmn

Hence, S∨ = Imn.

If S ∈ End(Mn, Mm), T ∈ End(Mr, Ms) we define S⊗T ∈ End(Mnr, Mms)
by

S ⊗ T (ρ⊗ σ) = S(ρ)⊗ S(σ)

ρ ∈Mn, σ ∈Mr and extend by linearity.

Lemma 3.13. (i) (S ⊗ T )∼ = S̃ ⊗ T̃ . (ii) If S and T are hermitian-
preserving, then so is S ⊗ T .

Proof. (i) For ρ ∈Mn, σ ∈Mr we have that

(S ⊗ T )∼(ρ⊗ σ) = (S ⊗ T )(ρ† ⊗ σ†)† =
[
S(ρ†)⊗ T (ρ†)

]†
= S(ρ†)† ⊗ T (σ†)† = S̃(ρ)⊗ T̃ (σ)

= (S̃ ⊗ T̃ )(ρ⊗ σ)

The result follows by linearity. (ii) Since S and T are hermitian-preserving,

by Theorem 3.10, S = S̃ and T = T̃ . Applying (i) we obtain

(S ⊗ T )∼ = S̃ ⊗ T̃ = S ⊗ T

and the result follows from Theorem 3.10.

Corollary 3.14. If S ∈ End(Mn, Mm) is hermitian-preserving then so is
S ⊗ Ir ∈ End(Mnr, Mmr).

14



4 Positive-Preserving Endomorphisms

We say that S ∈ End(Mn, Mm) is positive-preserving if S(ρ) ∈ Herm+
m

for every ρ ∈ Herm+
n . Positive-preserving endomorphisms are important

because they map states into state. However, they are not as important in
applications as quantum operations which have the property that S ⊗ Ir is
positive-preserving for every r ∈ N. We shall consider quantum operations
in Section 5. A positive-preserving endomorphism S is hermitian-preserving.
Indeed, any ρ ∈ Hermn has the form ρ1 − ρ2 where ρ1, ρ2 ∈ Herm+

n . Hence,

S(ρ) = S(ρ1 − ρ2) = S(ρ1)− S(ρ2) ∈ Hermm

so that S is hermitian-preserving.
In contrast to Corollary 3.14, if S ∈ End(Mn, Mm) is positive-preserving,

then S⊗Ir ∈ End(Mnr, Mmr) need not be positive-preserving. The standard
example for this is S ∈ End(M2, M2) given by S(ρ) = ρt. It is clear that S
is positive-preserving. To show that S ⊗ I2 ∈ End(M4, M4) is not positive-
preserving, let |0〉, |1〉 be the canonical basis for C2 and let |xy〉 = |x〉|y〉 for
x, y ∈ {0, 1}. Define the entangled states |α〉, |β〉 ∈ C4 by |α〉 = |01〉 − |10〉,
|β〉 = |00〉+ |11〉. Then |β〉〈β| ∈ Herm+

4 and we have that

S ⊗ I2 (|β〉〈β|) = S ⊗ I2 (|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)
= S ⊗ I2 (|0〉〈0| ⊗ |0〉〈0|+ |0〉〈1| ⊗ |0〉〈1|

+|1〉〈0| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1|)
= |0〉〈0| ⊗ |0〉〈0|+ |1〉〈0| ⊗ |0〉〈1|

+ |0〉〈1| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1|
= |00〉〈00|+ |10〉〈01|+ |01〉〈10|+ |11〉〈11|

But then

〈α|S ⊗ I2 (|β〉〈β|) |α〉
= 〈α | 00〉〈00 | α〉+ 〈α | 10〉〈01 | α〉+ 〈α | 01〉〈10 | α〉+ 〈α | 11〉〈11 | α〉
= 0 + (−1) + (−1) + 0 = −2

Hence, S ⊗ I2 (|β〉〈β|) /∈ Herm†4.
We shall need the following two technical results. The first result shows

that tr1 and ∧ commute in a certain sense.
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Lemma 4.1. If S ∈ Mrmn then [tr1(S)]∧ = tr1 ◦ Ŝ, where tr1 is the partial
trace over the r-dimensional system.

Proof. Let |i〉, |k〉 ∈ Cm, |j〉, |�〉 ∈ Cn, |p〉, |q〉 ∈ Cr be elements of the corre-
sponding canonical bases. Letting ρ ∈Mn we have that

Ŝ(ρ) =
∑

Sijk	pq|p〉|i〉〈j|ρ|�〉〈k|〈q| ∈Mrm

Then

(tr1 ◦ Ŝ)(ρ) =
∑

Sijk	pp〈j|ρ|�〉|i〉〈k| ∈Mm

On the other hand

tr1(S) =
∑

Sijk	pp|i〉|j〉〈�|〈k|

so that

[tr1(S)]∧ (ρ) =
∑

Sijk	pp|i〉〈j|ρ|�〉〈k| = (tr1 ◦ Ŝ)(ρ)

Lemma 4.2. For S ∈Mmn, ρ, σ ∈Mn, µ, ν ∈Mm we have that

µŜ(ρσ)ν = tr2

[
(µ⊗ ρt)S(ν ⊗ σt)

]
Proof. We can write

µ⊗ ρt =
∑

µijρ	k|i〉〈j| ⊗ |k〉〈�|

ν ⊗ σt =
∑

νi′j′σ	′k′|i′〉〈j′| ⊗ |k′〉〈�′|

Letting S =
∑

Srstu|r〉|s〉〈t|〈u|, we obtain

(µ⊗ ρt)S(ν ⊗ σt) =
∑

µijρ	kSj	k′i′νi′j′σ	′k′|i〉|k〉〈j′|〈�′|

Hence,

tr2

[
(µ⊗ ρt)S(ν ⊗ σt)

]
=

∑
µijρ	kSj	k′i′νi′j′σkk′|i〉〈j′|

On the other hand, we have that

Ŝ(ρσ) = Ŝ
(∑

ρ	kσkk′|�〉〈k′|
)

=
∑

Sr	k′uρ	kσkk′|r〉〈u|

Hence,

µŜ(ρσ)ν =
∑

µij|i〉〈j|Ŝ(ρσ)
∑

νi′j′|i′〉〈j′|

=
∑

µijρ	kSj	k′i′νi′j′σkk′|i〉〈j′|
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Corollary 4.3. For S ∈Mmn, ρ ∈Mm, µ ∈Mm we have that

tr
(
µŜ(ρ)

)
= tr

(
(µ⊗ ρt)S

)
Proof. In Lemma 4.2 let ν = Im, σ = In and take the total trace to obtain

tr
(
µŜ(ρ)

)
= tr [tr2(µ⊗ ρt)S]

A state ρ ∈ Herm+
mn is separable if it has the form ρ =

∑
λiρi ⊗ σi for

λi ≥ 0, ρi ∈ Herm+
m, σi ∈ Herm+

n .

Theorem 4.4. A map S ∈ End(Mn, Mm) is positive-preserving if and only
if S∨ ∈ Hermmn and tr(ρS∨) ≥ 0 for every separable state ρ.

Proof. By Theorem 3.12, S∨ ∈ Hermmn. Now S is positive-preserving if and
only if tr (µS(ρ)) ≥ 0 for every ρ ∈ Herm+

n , µ ∈ Herm+
m. By Corollary 4.3,

this is equivalent to tr ((µ⊗ ρt)S∨) ≥ 0. But this last inequality is equivalent
to tr(ρS∨) ≥ 0 for every separable state ρ.

A map S ∈ End(Mn, Mm) is trace-preserving if tr [S(ρ)] = tr(ρ) for all
ρ ∈Mn and S is unital if S(In) = Im.

Theorem 4.5. (i) S is trace-preserving if and only if tr1(S∨) = In. (ii) S
is unital if and only if tr2(S∨) = Im.

Proof. (i) Suppose S∨ =
∑

sijAiB
†
j for Ai, Bj ∈ Cmn. Then for every ρ ∈

Mn we have that

tr (S(ρ)) = tr
(∑

sijÂiρB̂†j

)
= tr

(∑
sijB̂

†
jAiρ

)
Hence, tr (S(ρ)) = tr(ρ) for every ρ ∈ Mn if and only if

∑
sijB̂

†
j Âi = In.

Applying Lemma 2.5 this latter condition is equivalent to

In =
(∑

sijB̂
†
j Âi

)t

=
∑

sij(B̂
†
j Âi)

t =
∑

sijtr1(AiB
†
j )

= tr1

(∑
sijAiB

†
j

)
= tr1(S∨)

(ii) Again, suppose that S∨ =
∑

sijAiB
†
j for Ai, Bj ∈ C

mn. Then by
Lemma 2.5, S(In) = Im if and only if

Im =
∑

sijÂiB̂
†
j =

∑
sijtr2(AiB

†
j ) = tr2

(∑
sijAiB

†
j

)
= tr2(S∨)
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5 Quantum Operations

A map S ∈ End(Mn, Mm) is completely positive if for every r ∈ N and
every ρ ∈ Herm+

mr we have S ⊗Ir(ρ) ∈ Herm+
mr. Thus, S is completely posi-

tive if and only if S ⊗ Ir is positive-preserving for every r ∈ N. It follows by
definition that S is positive-preserving if S is completely positive. However,
we have seen in Section 4 that the converse does not hold. A completely pos-
itive endomorphism is also called a quantum operation [2, 3, 5, 14, 15, 16].
We have already mentioned that quantum operations are important in quan-
tum computation, quantum information and quantum measurement theory.
Quantum operations are sometimes assumed to be trace-preserving or unital,
but for generality we shall not make these assumptions here.

Theorem 5.1. If S : Mn → Mm, then the following statements are equiva-
lent. (i) S is a quantum operation (ii) S∨ ∈ Herm+

mn. (iii) S(ρ) =
∑

ÂtρÂ†t ,
Ai ∈ Cmn.

Proof. (i)⇒ (ii) Suppose S is a quantum operation. Since |β〉〈β| ∈ Herm+
m2 ,

applying Lemma 3.6 we have

S∨ = (S ⊗ In) (|β〉〈β|) ∈ Herm+
mn

(ii) ⇒ (iii) Since S∨ ∈ Herm+
mn by Theorem 3.12(i) there exist At ∈ Cmn

such that S(ρ) =
∑

ÂtρÂ†t .
(iii) ⇒ (i) If (iii) holds then clearly S ∈ End(Mn, Mm). If ρ ∈ Herm+

mr we
can write

ρ =
∑

aijk	|i〉|j〉〈k|〈�|

where |i〉, |k〉 are elements of the basis of Cn and |j〉, |�〉 are elements of the
basis of Cr. We then have that

ρ =
∑

aijk	|i〉〈k| ⊗ |j〉〈�| =
∑
j,	

(∑
i,k

aijk	|i〉〈k|
)
⊗ |j〉〈�|

=
∑
j,	

Tj	 ⊗ |j〉〈�|

where Tj	 =
∑

i,k aijk	|i〉〈k| ∈Mn. Hence,

(S ⊗ Ir)(ρ) =
∑
j,	

S(Tj	)⊗ |j〉〈�| =
∑
j,	

∑
t

ÂtTj	Â
†
t ⊗ |j〉〈�|
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Now by the Schmidt decomposition theorem [15, 16] any |ψ〉 ∈ Cmr has the
form |ψ〉 =

∑ |us〉|vs〉 for |us〉 ∈ Cm, |vs〉 ∈ Cr. We then have that

(S ⊗ Ir)(ρ)|ψ〉 =
∑

ÂtTj	Â
†
t〈� | vs〉|us〉〈j|

Defining |ψt〉 =
∑

i A
†
t |ui〉 ⊗ |vi〉 we obtain

〈ψ|(S ⊗ Ir)(ρ)|ψ〉 =
∑
〈ui|ÂtTj	Â

†
t |us〉〈� | vs〉〈vi | j〉

=
∑
i,s,t

〈
Â†tui ⊗ vi

∣∣∣ ∑
j,	

Tj	 ⊗ |j〉〈�|
∣∣∣Â†tus ⊗ vs

〉
=

∑
〈ψt|ρ|ψt〉 ≥ 0

Hence, (S ⊗ Ir)(ρ) is positive so that S is a quantum operation.

Theorem 5.1 shows that any quantum operation S : Mn → Mm has the
form

S(ρ) =
∑

AiρA†i (5.1)

where Ai ∈ End(Cn,Cm). We call (5.1) an operator-sum representa-
tion of S and we call Ai the operation elements for the representation
[13, 14]. We now show that the operation-sum representation (5.1) is not
unique. That is, the operation elements for a quantum operation are not
unique. Let S, T : M2 → M2 be the quantum operations with the operator-
sum representations

S(ρ) = A1ρA†1 + A2ρA†2

T (ρ) = B1ρB†1 + B2ρB†2

where A1 = 2−1/2diag(1, 1) A2 = 2−1/2diag(1,−1), B1 = diag(1, 0), B2 =
diag(0, 1). Although S and T appear to be quite different, they are actually
the same quantum operation. To see this , note that B1 = 2−1/2(A1 + A2)
and B2 = 2−1/2(A1 − A2). Thus,

T (ρ) =
(A1 + A2)ρ(A1 + A2) + (A1 − A2)ρ(A1 − A2)

2
= A1ρA1 + A2ρA2 = S(ρ)
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Notice that in this example we could write Bi =
∑

uijAj where [uij] is the
unitary matrix

1√
2

[
1 1
1 −1

]
In this sense, the two sets of operation elements are related by a unitary
matrix. The next theorem shows that this is a general result.

Theorem 5.2. Suppose {E1, . . . , En} and {F1, . . . , Fm} are operation ele-
ments giving rise to quantum operations S and T , respectively. By appending
zero operators to the shorter list of operation elements we may assume that
m = n. Then S = T if and only if there exist complex numbers uij such that
Fi =

∑
j uijEj where[uij] is an m×m unitary matrix.

Proof. By Theorem 2.1 we may assume that Ei = Âi and Fi = B̂i and by
Lemma 4.1, S = Ŝ, T = T̂ where S =

∑
AiA

†
i and T =

∑
BiB

†
i . Then

S = T if and only if S = T . Applying Lemma 2.3, S = T if and only if there
exists a unitary matrix [uij] such that Bi =

∑
uijAj. The last condition is

equivalent to

Fi = B̂i =
∑

uijÂj =
∑

uijEi

Let S have operation elements {A1, . . . , Ar}. We say that {A1, . . . , Ar}
is orthogonal if 〈Ai | Aj〉 = tr(A†iAj) = 0 for i �= j, and is orthonormal if

〈Ai | Aj〉 = δij, i, j = 1, . . . , r. We use the notation ‖Ai‖ = 〈Ai | Ai〉1/2.

Theorem 5.3. (i) Any quantum operation has an orthogonal set of oper-
ation elements. (ii) If {A1, . . . , Ar} is an orthogonal set of operation ele-
ments with ‖Ai‖ = ‖Aj‖ �= 0, i, j = 1, . . . , r, and {B1, . . . , Bs} is another
set of operation elements for the same quantum operation with s ≤ r, then
{B1, . . . , Bs} is orthogonal, s = r and ‖Bi‖ = ‖Ai‖, i = 1, . . . , r. (iii) If
{A1, . . . , Ar} is an orthonormal set of operation elements and {B1, . . . , Br}
is a set of operation elements for the same quantum operation, then {B1, . . . , Br}
is orthonormal.

Proof. (i) This follows from Theorem 3.12(i). (ii) By Theorem 5.2 there
exists a unitary matrix [uij] such that Bi =

∑
uijAj. We then have that

〈Ak | Bi〉 = tr(A†kBi) = uiktr(A
†
kAk) = uik‖Ak‖2
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Hence, uik = 〈Ak | Bi〉/‖Ak‖2. Since [uij] is unitary, for i �= j we obtain

0 =
∑

k

uiku
∗
jk =

∑
k

〈Ak | Bi〉
‖Ak‖2

〈Bj | Ak〉
‖Ak‖2

=
1

‖A1‖2
∑

k

〈Bj | A′k〉〈A′k | Bi〉

where A′k is the unit norm operator Ak/‖Ak‖. It follows from Parseval’s
equality that 〈Bj | Bi〉 = 0 for i �= j. Moreover,

1 =
∑

k

uiku
∗
ik =

1

‖A1‖2
∑

k

〈Bi | A′k〉〈A′k | Bk〉 =
‖Bi‖2
‖A1‖2

so that ‖Bi‖2 = ‖A1‖2. Notice that s = r because {Bi} and {Ai} form a
basis for the same space. (iii) This follows from (ii).

Examples. The bit flip channel is described by the trace-preserving
quantum operation with operation elements

{
p1/2I2, (1− p)1/2X

}
where 0 <

p < 1 and X is the Pauli matrix

X =

[
0 1
1 0

]
Notice that if p = 1/2 the operation elements are orthonormal and if p �= 1/2
they are orthogonal.

The quantum operation with operation elements{
pI2,

√
p(1− p) X,

√
p(1− p) Z, (1− p)Y

}
where Y, Z are the Pauli matrices

Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
is trace-preserving. The operation elements are orthogonal and if p = 1/2
they all have norm 1/

√
2 .

Theorem 5.4. Let S : Mn → Mm be a quantum operation with operation
elements {A1, . . . , Ar}. (a) The following statements are equivalent. (i) S
is trace-preserving. (ii) tr1(S∨) = In. (iii)

∑
A†iAi = In. (b) The following

statements are equivalent. (i) S is unital. (ii) tr2(S) = Im. (iii)
∑

AiA
†
i =

Im.
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Proof. (a)(i)and (ii) are equivalent by Theorem 4.5. If S is trace-preserving
then for every ρ ∈Mn we have that

tr(ρ) = tr
(∑

AiρA†i

)
= tr

(∑
A†iAiρ

)
which implies that

∑
A†iAi = In. Conversely, suppose that

∑
A†iAi = In.

Then for every ρ ∈Mn we have that

tr (S(ρ)) = tr
(∑

AiρA†i

)
= tr

(∑
A†iAiρ

)
= tr(ρ)

(b) Again (i) and (ii) are equivalent by Theorem 4.5. Now S is unital if and
only if

Im = S(In) =
∑

AiA
†
i

The next result shows the interesting fact that traces and partial traces
are completely positive.

Lemma 5.5. (i) The map tr : Mn → M1 is a trace-preserving quantum op-
eration. (ii) The map tr1 : Mmn →Mn is a trace-preserving quantum opera-
tion.

Proof. (i) We understand M1 to be the set of matrices on a one-dimensional
Hilbert space spanned by a unit vector |0〉. Thus, M1 = {λ|0〉〈0| : λ ∈ C}.
Then

tr(ρ)|0〉〈0| =
n∑

i=1

|0〉〈i|ρ|i〉〈0|

so tr(ρ) is a quantum operation with operation elements |0〉〈i|. Since∑
(|i〉〈0|) (|0〉〈i|) =

∑
|i〉〈i| = In

tr is trace-preserving.
(ii) Define Ai : C

mn → C
n by

Ai

(∑
ck	|k〉|�〉

)
=

∑
	

ci	|�〉 = 〈i|
∑

ck	|k〉|�〉
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In a sense, Ai = 〈i|. Define S : Mmn → Mn by S(ρ) =
∑

AiρA†i . We then
have for every ρ ∈Mn that

S (|i〉〈i′| ⊗ ρ) =
∑

Aj (|i〉〈i′| ⊗ ρ) A†j

= δii′ρ = tr1 (|i〉〈i′| ⊗ ρ)

By linearity of S and tr1 it follows that S = tr1. Hence, tr1 is a quantum
operation with operation elements Ai. To show that S is trace-preserving we
have that ∑

A†iAi =
∑ |i〉〈i| = Imn

In the theory of quantum information, quantum noise is frequently de-
scribed by a trace-preserving quantum operation S : Mn →Mn and quantum
error correction is described by another trace-preserving quantum operation
T : Mn → Mn that satisfies T ◦ S = cIn for c > 0. It is thus important
to find conditions under which S is invertible up to a multiplicative positive
constant. These are called quantum error correction conditions.

Theorem 5.6. Let S : Mn → Mn be a quantum operation with operation
elements Ai ∈ Mn, i = 1, . . . , r. Then there exists a trace-preserving quan-
tum operation T : Mn → Mn such that T ◦ S = cIn, c > 0, if and only if
A†iAj = αijI, i, j = 1, . . . , r, for some αij ∈ C.

Proof. Suppose there exists a trace-preserving quantum operation T such
that T ◦ S = cIn. Then T has the form T (ρ) =

∑
BjρB†j and we have that∑

BjAiρA†iB
†
j = T (S(ρ)) = cρ

for all ρ ∈ Mn. By Theorem 5.2 there exist constants cji ∈ C such that
BjAi = c1/2cjiIn. Hence,

A†iB
†
jBjAk = cc∗jicjkIn

Since
∑

B†jBj = In, summing over j gives

A†iAk = c
∑

j

c∗jicjkIn = αikIn
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Conversely, suppose that A†iAj = αijIn, i, j = 1, . . . , r. Then

α∗ijIn = A†jAi = αjiIn

so that αji = α∗ij. Hence, α = [αij] is a hermitian matrix. By the spectral
theorem there exists a unitary matrix u = [uij] and a diagonal matrix d = [dij]
with real entries such that d = u†αu. Define Bk =

∑
i uikAi. By Theorem 5.2,

S(ρ) =
∑

BiρB†i and since S is trace-preserving
∑

B†i Bi = In. Now

B†kB	 =
∑

u∗kiuj	A
†
iAj =

∑
u∗kiαijuj	In = dk	In

= δk	dkkIn

Hence,

In =
∑

B†i Bi =
∑

diiIn

so that
∑

dii = 1. Since B†i Bi = diiIn, it follows that BiB
†
i = diiIn. Hence,∑

BiB
†
i =

∑
diiIn = In

Define T (ρ) =
∑

B†jρBj we conclude that T is trace-preserving. Finally,

T (S(ρ)) =
∑

B†jBiρB†i Bj =
∑

B†jBjρB†jBj =
(∑

d2
jj

)
ρ

We say that ρ ∈ Herm+
d is pure if ρ = AA† for some A ∈ Cd. A quantum

operation S : Mn →Mm is factorizable if S(ρ) = ÂρÂ† for some A ∈ Cmn.
Notice that S is factorizable if and only if S∨ is pure. The first part of the
next theorem gives the usual characterization of pure states.

Theorem 5.7. (i) ρ ∈ Herm+
d is pure if and only if tr(ρ)2 = tr(ρ2).

(ii) A quantum operation S : Mn →Mm is factorizable if and only if ‖S‖ =
tr (S(In)).

Proof. (i) If ρ is pure, then ρ has at most one nonzero eigenvalue so tr(ρ)2 =
tr(ρ2). Conversely, suppose that tr(ρ)2 = tr(ρ2) and ρ has eigenvalues {λi}.
The purity condition gives (

∑
λi)

2 =
∑

λ2
i which implies that

∑
i	=j λiλj = 0.

Since λi ≥ 0 there is at most one value of i such that λi �= 0. It follows that
ρ has the form ρ = AA†.
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(ii) Let S = Ŝ for S ∈ Herm+
mn. Then S is factorizable if and only if S is

pure which by (i) is equivalent to

tr(ImnS)2 = tr(S2) (5.2)

Now Imn =
∑
k,	

|k�〉|k�〉 so that Îmn(ρ) =
∑

Ek	ρE†k	. Hence, Îmn(Eij) =

δijIm. By Corollary 3.2, (5.2) is equivalent to

‖S‖2 = tr(S2) = tr(ImnS)2 = 〈Imn | S〉2 =
〈
Îmn | S

〉2

=

[∑
i,j

tr
(
Îmn(Eij)

†S(Eij)
)]2

=

[∑
i,j

tr (δijImS(Eij))

]2

=

[∑
i

tr (S(Eii))

]2

= tr (S(In))2

The next result shows that any ρ ∈ Herm+
d is the partial trace of a pure

state and is called a purification.

Lemma 5.8. If ρ ∈ Herm+
d then there is an A ∈ Crd for some r ∈ N such

that ρ = tr1(AA†).

Proof. By the spectral theorem, ρ =
∑r

i=1 AiA
†
i for Ai ∈ Cd. Let

A =
r∑

i=1

|i〉 ⊗ Ai ∈ Crd

where {|i〉} is the basis for Cr. Then

AA† =
∑
|i〉〈j| ⊗ AiA

†
j

and we have that

tr1(AA†) =
∑
〈j | i〉AiA

†
j =

∑
AiA

†
i = ρ

Our next result gives another important characterization of quantum op-
erations
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Theorem 5.9. A map S : Mn → Mm is a quantum operation if and only
if S can be written as S(ρ) = tr1(ÂρÂ†) where Â ∈ End(Cn,Crm) and tr1

traces out the first r-dimensional system. Moreover, if the operation elements

of S are
{

Âi

}
, then we have that Â†Â =

∑
Â†i Âi.

Proof. If S is a quantum operation, then by Theorem 5.1, S = Ŝ for S ∈
Herm+

mn. By Lemma 5.8, S = tr1(AA†) for A ∈ Crmn. Applying Lemma 4.1
we have that

S = Ŝ =
[
tr1(AA†)

]∧
= tr1 ◦ (AA†)∧

Hence, for every ρ ∈ Mn we obtain S(ρ) = tr1(ÂρÂ†). Since S = Ŝ and the

operation elements of S are
{

Âi

}
, we have that S =

∑
AiA

†
i . Letting tr2

be the trace over the second m-dimensional system, by Lemma 2.5 we have
that ∑

(Â†i Âi)
t =

∑
tr2(AiA

†
i ) = tr2

(∑
AiA

†
i

)
= tr2(S)

= tr2tr1(AA†) = (Â†Â)t

Hence, Â†Â =
∑

Â†i Âi.

Conversely, suppose that S(ρ) = tr1(ÂρÂ†). By Lemma 5.5, tr1 is com-
pletely positive. If the operation elements of tr1 are {Ai} we have that

S(ρ) =
∑

AiÂρÂ†A†i =
∑

AiÂρ(AiÂ)†

Hence, S is completely positive with operation elements
{

AiÂ
}

.

In Theorem 5.9, notice that if S is trace-preserving, then Â†Â = In so
that Â is isometric. Moreover, notice that the last part of Theorem 5.9 also
follows from the fact that the composition of two completely positive maps
is completely positive as can be seen from the operator-sum representation.

We close with a characterization of a special type of quantum opera-
tion that has recently appeared in the literature [17]. A quantum operation
S : Mn →Mm is called entanglement breaking if S can be written in the
form

S(ρ) =
∑

r

tr(Brρ)Ar (5.3)
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for Br ∈ Herm+
n and Ar ∈ Herm+

m. We will assume without loss of generality
that tr(Ar) = 1 for all r. Indeed, just replace Ar by Ar/tr(Ar) and Br by
Brtr(Ar) in (5.3). It then follows that S is trace-preserving if and only if∑

Br = I; that is, {Br} is a positive operator-valued measure. Recall that
S ∈ Herm+

mn is separable if S =
∑

crsAr ⊗ Bs for Crs ≥ 0, Ar ∈ Herm+
m,

Bs ∈ Herm+
n .

Theorem 5.10. A map S ∈ End(Mn, Mm) is an entanglement breaking
quantum operation if and only if S∨ ∈ Herm+

mn is separable.

Proof. Suppose that S∨ ∈ Herm+
mn is separable. Then S∨ has the form

S∨ =
∑

crsAr ⊗Ds for crs ≥ 0, Ar ∈ Herm+
m, Bs ∈ Herm+

n . By linearity and
Theorem 3.4(i) we have that

S(ρ) =
∑

crstr(D
t
sρ)Ar =

∑
tr(Brρ)Ar

where Br =
∑

crsD
t
s. Conversely, suppose S ∈ End(Mn, Mm) is an entan-

glement breaking quantum operation. Then by (5.2) and Theorem 3.4(i) we
have that

S(ρ) =
∑

(Ar ⊗Bt
r)
∧(ρ) =

(∑
Ar ⊗Bt

r

)∧
(ρ)

for all ρ ∈Mn. Hence, S∨ =
∑

Ar ⊗Bt
r is separable.
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