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An Algebra of Effects in the Formalism
of Quantum Mechanics on Phase Space∗

F. E. Schroeck Jr.1,2

Defining an addition of the effects in the formalism of quantum mechanics on phase
space, we obtain a new effect algebra that is strictly contained in the effect algebra of
all effects. A new property of the phase space formalism comes to light, namely that
the new effect algebra does not contain any pair of noncommuting projections. In fact,
in this formalism, there are no nontrivial projections at all. We illustrate this with the
spin-1/2 algebra and the momentum/position algebra. Next, we equip this algebra of
effects with the sequential product and get an interpretation of why certain properties
fail to hold.
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1. INTRODUCTION

An effect in quantum mechanics on a Hilbert space H is an operator A on
H such that 0 ≤ A ≤ I .

In the standard quantum mechanics, two effects, A and B, are added to get
A ⊕ B iff 0 ≤ A ⊕ B ≤ I, where A ⊕ B is the operator addition. But if we have
effects given with a complete interpretation of how to measure A and how to
measure B, then the problem of how to measure A ⊕ B is vague or nonexistant,
especially when A and B do not commute. The best we can say is that, statistically,
T r(ρ[A ⊕ B]) = T r(ρA) + T r(ρB), ρ a density operator. In this paper we will
give a definition of A, B, and A ⊕ B in the formalism of quantum mechanics on
phase space (Schroeck, 1996) in which an interpretation of ⊕ is transparent.

We begin with two situations: First, we take H = C
2 for a spin-1/2 system,

and A = S+
z , B = S+

(z+x)/21/2 where S±
u is the projection onto the set of vector

states, ψ, such that S±
u ψ = ψ. Note that {S+

u , S−
u } is a projection valued measure,

and thus contains only effects. What does A ⊕ B mean in this case? Note that
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0 ≤ A ⊕ B ≤ 2I ; so, we can take aA ⊕ bB, a + b ≤ 1, a, b ≥ 0. Then we still
ask what measurement do we perform to measure aA ⊕ bB?

For our second situation, take H = L2(R), A = EP (�1), EP being the spec-
tral measure for P, the momentum, �1 a Borel set in R, and B = EQ(�2),
EQ being the spectral measure for the position, Q, etc. (Note: E(�) = ∫

�
dEλ.)

Thus, these two operators do not commute either, but they are effects, since they
are both projections. We have again only A ⊕ B ≤ 2I, and to get anywhere in the
usual formalism we would have to take aA ⊕ bB, a + b ≤ 1, a, b ≥ 0. But what
experiment would we have to perform to measure aA ⊕ bB?

2. THE FORMALISM OF QUANTUM MECHANICS
ON PHASE SPACE

In the formalism of quantum mechanics on phase space (Schroeck, 1996),
an observable (a self-adjoint operator on H) is associated with a positive operator
valued measure as follows:

i) Take all the generating observables of the theory. (Say, take Sx, Sy, Sz

if the system has spin, take Px, Py, Pz,Qx,Qy,Qz if the system has
momentum and position, etc.) Form them into a Lie algebra. This may
require that additional observables such as I may be needed in the Lie
algebra in the case of the P ’s and Q’s, etc. Let these observables be
labelled B1, B2, . . . , Bn. Then, for αi ∈ R, α1B1 + · · · + αnBn is also in
the Lie algebra.

ii) From the Lie algebra, form the (connected) Lie group by obtaining

W (α1, . . . , αn) = W (α) = exp{i(α1B1 + · · · + αnBn)}, αi ∈ R.

W (α) is a unitary operator in H since Bi is self-adjoint for each i.
iii) Take an η ∈ H, ‖η‖ = 1, and form

T η(α) = |W (α)η〉〈W (α)η | .

Note the important property

T η(α)T η(β) 
= 0, for α 
= β,

as

〈W (α)η | W (β)η〉 
= 0 for α 
= β

in general. The η is fixed, represents how you are going to do the mea-
surement, and may satisfy additional constraints to get special properties
for the T η′s. For an interpretation, if ψ is a unit vector in H, then

T r(PψT η(α)) = 〈ψ,W (α)η〉〈W (α)η,ψ〉
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is the transition probability to the vector state given by W (α)η. We are
choosing an η and then translating, thereby getting an interpretation of
what we are doing here.

Notice that if we had an I in our Lie algebra, then if αn+1 corre-
sponded to I = Bn+1 in the general form of an element of the Lie algebra,
we would have

T r(PψT η(α1, . . . , αn, 0)) = T r(PψT η(α1, . . . , αn+1)).

Thus, we may drop αn+1 from further consideration. Alternatively, we can
use a “Borel section,” σ , of the group, and denote the relevant αi’s by, for
example when αn+1 is irrelevant,

σ (α) = (α1, . . . , αn, 0).

We can choose the σ (α) so that they form coordinates for a general
phase space, 	 = {x = σ (α) | α ∈ group parameter space}. See Schroeck
(1996).

iv) Define

T η(�) =
∫

�

T η(x) dx,� a Borel set in 	.

Then � → T η(�) is a positive operator valued measure (Schroeck, 1996)
called a localization operator for the phase space 	.

Next take

Aη(F ) =
∫

	

F (x)T η(x) dx

for any measurable function F on 	. Note that Aη(χ�) = T η(�). Also
note that Aη(1) = I. From this, we get

‖Aη(F )‖≤ sup
x∈	

| F (x) |

and

0 ≤ Aη(F ) ≤ I for 0 ≤ F (x) ≤ 1, a.e. x.

A function only of the observable B1 in the Lie algebra is given by

Aη(f ) =
∫

	

f (x1)T η(x) dx,

f a function of x1 only. Similarly for Bi. In fact, for each i,

Bi = ci

∫
	

xiT
η(x) dx, 0 < ci ≤ 1,
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and for each measurable function f on Bi , there is a function F such that

f (Bi) =
∫

	

F(xi)T
η(x) dx = Aη(F).

(See the proof in Schroeck, 1996. It depends on the “informational completeness”
of the Aη—that we can distinguish between all states with the T r(ρAη(f )).
This is equivalent to the condition on η that 〈W (α)η | W (β)η〉 
= 0 for α 
= β.
The proof holds in the sense of being in the limit of the Aη(F).) Note that if
f (Bi) = EBi (�i), then f (Bi) 
= Aη(χI×�i×I ) although for η “sharply peaked” it
will be approximately equal. We shall return to this later, in Sec. VI.

Definition 1. We take as the definition of the set of (the relevant) effects, the
set {Aη(F ) | F is measurable, 0 ≤ F (x) ≤ 1 a.e. x}. Also define, with + denoting
operator addition,

Aη(F ) ⊕ Aη(G) = Aη(F ) + Aη(G) = Aη(F + G), (1)

which in turn is an effect in our sense if and only if (F + G)(x) ≤ 1, a.e. x.

We then have the following:

T r(ρAη(F )) =
∫

	

F (x)T r(ρT η(x)) dx =
∫

	

F (x)
∑

i

diT r(Pψi
T η(x)) dx

where ρ = ∑
diPψi

is a general density matrix. In this fashion we obtain the
statistical agreement for ⊕ that we had before. Furthermore, we have the interpre-
tation that when we measure Aη(χ�) in density state ρ we get the probability that
ρ will be in the state PW (x)η for some x ∈ �.

We note that we could have alternatively defined the set of effects as the set of
Aη(F )’s with ‖Aη(F )‖≤ 1, but that may not have the nice properties forthcoming.

We should also note that what we will prove about the algebra of effects in
our formalism is, in fact, true about any image in any Hilbert space of the set of
fuzzy sets! The setting of the formalism of quantum mechanics in phase space is
just an example.

3. EXAMPLES

We will work out the example of spin- 1
2 explicitely. See (Schroeck, 1982

and 1996, Chap. II.3.A.). In C
2 there is only one form of a non trivial projection,

namely

T (x) = 1

2
(I + x·σ ), x ∈ R

3, ‖x‖ = 1, σ = (σ1, σ2, σ3)
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a representation of the Pauli spin algebra. Thus, the only freedom in choosing an η

is in the direction it “points” on the unit sphere S2. We have S2 as a homogeneous
space of the rotation group. With the invariant measure µ on S2, normalized so
that µ(S2) = 2, and with η chosen to point in the direction of the North Pole, then
we have

Aη(1) =
∫
S2

T (x) dµ(x) = I,

and

Aη(xi) =
∫
S2

xiT (x) dµ(x) =
∫
S2

xi

1

2
(I + x·σ ) dµ(x) = 1

3
σi.

Hence, we get all the generators σi of the rotation group on S2. Furthermore, we
can get all effects in the set {Aη(F ) | F is measurable}. The set is informationally
complete in C

2.

Take the example of momentum and position in L2(R). Then {P,Q, I } are
the elements of the Lie algebra for the Heisenberg group. Now take η to stand for
a vector state that has

〈η, Pη〉 = 0, 〈η,Qη〉 = 0.

Then, for σ (p, q) = (p, q, 0),

〈W (σ (p, q))η, PW (σ (p, q))η〉 = p and 〈W (σ (p, q))η,QW (σ (p, q))η〉 = q;

that is, T η(p, q) is the state that corresponds to moving η by (p, q) in the phase
space. Aη(χ�) corresponds to a measurement of a particle by asking if it would
transist to any of the states T η(p, q) for (p, q) ∈ �. Similarly for Aη(F ). We next
take B = f (P ) = Aη(F) and C = h(Q) = Aη(H) for some F and H between 0
and 1. (Note that F(p, q) = F(p, 0) and H(p, q) = H(0, q).) Thus

B ⊕ C = Aη(F + H)

as long as (F + H)(x) ≤ 1. It corresponds to the experiment in which you will
describe the particle transisting to the state T η(p, q) located in the fuzzy set
F + H.

Thus, for the examples, we have answered the question of “what experiments
do we perform when we measure A + B” for A and B in our effect algebra.

4. THE EFFECT ALGEBRA FOR THE FORMALISM
OF QUANTUM MECHANICS ON PHASE SPACE

To obtain an effect algebra, we have only to check if, for F, G, H, F + G,

G + H, and F + G + H between 0 and 1,

1) Aη(F ) ⊕ Aη(G) = Aη(G) ⊕ Aη(F ),
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2) [Aη(F ) ⊕ Aη(G)] ⊕ Aη(H ) = Aη(F ) ⊕ [Aη(G) ⊕ Aη(H )],
3) Aη(1) = I,

4) Aη(F ) has a supplement Aη(F )′, namely Aη(1 − F ).

These are valid since Aη(F ) ⊕ Aη(G) = Aη(F + G) and Aη is a (normalized)
positive operator valued measure. Thus, we obtain an effect algebra in terms of
this addition.

We have the following general

Definition 2. Let A and B be effects in H. Then A and B are comeasurable iff we
can write A = A1 ⊕ C, B = B1 ⊕ C, for A1, B1, and C effects and A1 ⊕ B1 ⊕ C

is an effect.

In particular, for A = Aη(F ), and B = Aη(H ), then A1 = Aη(F −
min(F,H )), C = Aη(min(F,H )), and B1 = Aη(H − min(F,H )).

Theorem 3. In the phase space approach, every pair of effects, Aη(F ) and
Aη(G), is comeasurable.

Proof: Let H (x) = min(F (x),G(x)) a.e. x. Then Aη(F ) = Aη(F − H ) ⊕
Aη(H ), Aη(G) = Aη(G − H ) ⊕ Aη(H ), and Aη(F − H ) ⊕ Aη(G − H ) ⊕
Aη(H ) = Aη((F − H ) + (G − H ) + H ). Thus, we must show that, for fuzzy sets
F and G, then (F − H ) + (G − H ) + H is located between 0 and 1. But F − H,

G − H, and H are ≥0, and hence so is their sum. To get the sum ≤1, consider
the sum pointwise: first suppose F (x) ≥ G(x) for some x. Then H (x) = G(x),
so, (F − H )(x) + (G − H )(x) + H (x) = (F − G)(x) + G(x) = F (x) ≤ 1. Sim-
ilarly if G(x) ≥ F (x). Thus, (F − H ) + (G − H ) + H ≤ 1. �

Next, we present a well-known theorem from a general Hilbert space ap-
proach which asserts that there are noncomeasurable effects. See, for example
Busch et al. (1995).

Theorem 4. In Hilbert space, two projections are comeasurable iff they
commute.

We have an immediate corollary of the two theorems:

Theorem 5. In the formalism of quantum mechanics on phase space, the set
{Aη(F ) | 0 ≤ F ≤ 1, F measurable} does not contain any two projections that do
not commute.
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As an example, we return to the case of spin-1/2. With the nota-
tion previously established, we have Aη(F (x)) = Aη( 1

2 (1 + 3b·x)) = T (b). But
F (x) = 1

2 (1 + 3b · x) is not a fuzzy set function. In fact −1 ≤ F (x) ≤ 2. There
are other forms of F that will also give T (b), but they are worse in that the corre-
sponding F has a larger range. Consequently, I and 0 are the only projections in
{Aη(F ) | 0 ≤ F (x) ≤ 1}. None-the-less, we have an effect algebra quite different
from the algebra of all effects in C

2. Thus, we have a proper subset of the set of
all effects, one that contains no noncommuting projections.

Now in general, if we have informational completeness for the Aη, as we
also do for the nonrelativistic spinless quantum mechanics with η = a Gaussian
for example, we have a curious situation: From the informational completeness,
we can approximate every (bounded, self-adjoint) operator by an operator of the
form Aη(F ), for some measurable F, in a topology that comes from the trace. (See
Schroeck (1996) Section III.3.D, and Healy and Schroeck (1995).) But, we can
never get all the operators directly from the effect algebra in which 0 ≤ F ≤ 1.

Conclusion 6. We conclude from the theorem that there are noncomeasurable ef-
fects, and all other similar theorems that are based on noncommuting projections,
perhaps come from an idealization that may not hold in the laboratory.

We can make this last theorem stronger by applying the Naimark dilation
theorem (Schroeck, 1996) [Chap. II.11.F.] to the {Aη(F ) | 0 ≤ F ≤ 1} by con-
verting from the positive operator valued measure to a projection valued measure
on phase space. From this point of view, the {Aη(F ) | 0 ≤ F ≤ 1} will be repre-
sented by a host of projections via the spectral theorem, but these projections will
all commute.

We can make this theorem even stronger:

Theorem 7. In the formalism of quantum mechanics on phase space with the
covariance condition with respect to group G, the set of effects {Aη(F ) | 0 ≤ F ≤
1, F measurable} does not contain any projections other than the trivial ones.

Proof: Suppose Aη(F ) was a nontrivial projection and W is a representation of
G. Then we have

W (g)Aη(F )W (g)−1 = Aη(g·F ),

g.F (x) = F (g·x),

for any g in the symmetry group of the system (Schroeck, 1996). Pick a g that
is not accidentally a symmetry for F . Then you get another nontrivial projection
that does not commute with Aη(F ). �
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We have separated this theorem from the previous one because it depends
explicitly on the covariance condition.

5. THE SET OF EFFECTS FOR THE FORMALISM OF QUANTUM
MECHANICS ON PHASE SPACE AS AN M. V. EFFECT ALGEBRA

While we are considering E = the set of effects for the formalism of quan-
tum mechanics on phase space with respect to η, we may consider exactly what
structure E has within the chain: effect algebra—interpolation algebra—Riesz de-
composition algebra—lattice ordered effect algebra—distributive algebra—M. V.
effect algebra—Heyting effect algebra—Boolean algebra. [See Foulis (2000) for
the definitions.] We will show in a subsequent paper that E satisfies the axioms of
an M. V. effect algebra, and in fact a Heyting effect algebra, so that it also satisfies
the axioms of all the intermediate algebras as well. It is not a Boolean algebra.

6. AN ALGEBRA OF EFFECTS WITH THE SEQUENTIAL PRODUCT

There also must be a multiplication in the effect algebra for it to be an algebra
in the sense of mathematics. This can be accomplished in several ways to yield
a nonassociative algebra. We will take a physically motivated definition of our
product and then interpret it physically from the standpoint of quantum mechanics
on phase space.

A Hilbert space effect A, 0 ≤ A ≤ 1, is related to a state in the following
way: For any state ρ in H, and any positive operator valued measure (POVM) A,

(an observable), defined on the elements � of some σ -field, then the probability
that a measurement of A on this system will lead to a result in � is

pA
ρ (�) = T r(ρA(χ�)).

Given a POVM A and a state ρ and assuming that T r(ρA(χ�)) 
= 0, then the
probability that when measuring POVM B in �′ is

pB
A(�)ρ(�′) = T r(A(χ�)1/2ρA(χ�)1/2B(χ�′))

T r(ρA(χ�))
,

whereby A(χ�)1/2 we mean the unique positive square root of A(χ�). A(χ�)1/2

is again a Hilbert space effect (Gudder and Nagy, 2001). Thus we define a multi-
plication by

A(χ�) ◦ B(χ�′) = A(χ�)1/2B(χ�′)A(χ�)1/2.

This multiplication takes two Hilbert space effects into a Hilbert space effect.
More generally, the product A ◦ B ≡ A1/2BA1/2 is called the sequential product
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of Hilbert space effects. It has the property that

(A ◦ B) ◦ C 
= A ◦ (B ◦ C)

in general. In this fashion, we can hope to get a nonassociative algebra for the
effect algebra (of all effects). But we have a subeffect algebra in the phase space
approach to quantum mechanics. What will happen in this case?

Take A = Aη(F ) = ∫
	

F (x)T η(x). Notice that T η(x) = PW (x)η for ||η|| = 1.

Then T η(x)T η(y) = | W (x)η〉 〈W (x)η | W (y)η〉 〈W (y)η |; i.e., the T η(x)’s are
projections, but not orthogonal projections because 〈W (x)η | W (y)η〉 is not zero
in general for x 
= y and never zero in the case of informational completeness. So,
the transform Aη(F ) �−→ Aη(F )1/2 is not given by Aη(F )1/2 “ = ”Aη(F 1/2) or any
Aη(H ), H any measurable function, in general. (We do have the approximation

Aη(F )1/2 ≈ Aη(H )

in the case of informational completeness, H being some measurable function.
For a vector η that is highly peaked in the sense that

〈W (x)η | W (y)η >≈ δx
y ,

then we would have H ≈ F 1/2. This “highly peaked” phenomena may not occur
in the limit, as it violates the uncertainty principle, for example.)

Even if Aη(F )1/2 = Aη(H ), we would next be concerned with

Aη(F ) ◦ Aη(G) = Aη(F )1/2A(G)A(F )1/2

≈
∫

	×	×	

H (x)G(y)H (z)T η(x)T η(y)T η(z)dxdydz.

We are again faced with the same difficulty, and the same impossible resolution
in terms of the highly peaked phenomena. (In the case of “highly peaked η,” we
have

Aη(F ) ◦ Aη(G) ≈ Aη(FG) = Aη(GF ) ≈ Aη(G) ◦ Aη(F ),

which means that they “almost commute.”
We next check the distributive properties between our ⊕ and the sequential ◦.

We have

Aη(F ) ◦ [Aη(G) ⊕ Aη(H )] = Aη(F )1/2[Aη(G) + Aη(H )]Aη(F )1/2

= Aη(F )1/2Aη(G) Aη(F )1/2+Aη(F )1/2Aη(H ) Aη(F )1/2

= Aη(F ) ◦ Aη(G) ⊕ Aη(F ) ◦ Aη(H ).

Thus, it is right distributive. For the left distributive property, we have

[Aη(F ) ⊕ Aη(G)] ◦ Aη(H ) = Aη(F + G) ◦ Aη(H )

= Aη(F + G)1/2Aη(H )Aη(F + G)1/2
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which we compare with [Aη(F ) ◦ Aη(H )] ⊕ [Aη(G) ◦ Aη(H )].
These two expressions will fail to be equal on two counts:

i) Aη(F + G)1/2 
= Aη(F )1/2 + Aη(G)1/2 since the T η’s are not orthogonal
(and the freshman’s dream is false);

ii) Aη(F )1/2Aη(H )Aη(G)1/2 
= 0 since the T η’s are not orthogonal.

Thus, in all cases everything boils down to essentially the same reason (mod-
ulo the freshman’s dream), the T η’s are not orthogonal. This is the price you pay
for having a nonlocal theory.

Conclusion 8. The effect algebra in phase space is not an algebra in the sense of
mathematics with respect to the sequential product, the failure being a consequence
of the nonlocal nature of the formalism.
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