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Let f0 (x) be the distance from x to the nearest integer. Formally, f0 is

the periodic extension of the function x 7→
(

x if 0 ≤ x ≤ 1/2
1− x if 1/2 ≤ x ≤ 1

to R.

Figure 1: The graph of f0 on [−2, 2]

For k ≥ 1, let fk(x) = f0(2
kx). For |λ| ≥ 2, define Fλ by Fλ(x) =

∞X
k=0

fk(x)

λk
.

Since |f0 (x)| ≤ 1/2 for all x, this series converges uniformly on R as long as
|λ| > 1, so each Fλ is continuous.

In 1903, Takagi [8] showed that the function (called here) F2 is nowhere

differentiable. The starting point of the present work occurred when the first

author was studying the Takagi function. He plotted the graphs of F2 and

F4 on [0, 1] (see Figures 2 and 3) on his computer, walked into the office of

the second author and said, “The graph of F4 looks like part of a parabola.

Is it?” We prove that it is in Theorem 2. Once we had done this, we began

to wonder about the points of differentiability (if any) of other Fλ’s and this

paper is the result of this investigation. In addition to our result on F4, we

show that if |λ| > 2, λ 6= 4, left and right derivatives of Fλ exist at every

point and Fλ is differentiable except at dyadic rationals.
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Figure 2: F2 Figure 3: F4

There is a considerable literature on the family of functions defined by

G (x) =
P∞

k=0 a
kf0(b

kx) for various parameters a and b. Many of the results

concerning these functions appear to have been discovered and rediscovered

a number of times, at least when |ab| ≥ 1. When a = 1/2 and b = 2, we get

Takagi’s function F2. This function was rediscovered by Hildebrandt [5, 1933]

who based his construction on yet another example of a continuous nowhere

differentiable function discovered by van der Waerden [9] some 27 years later

in 1930. (In van der Waerden’s construction, b = 10 and a = 1/10.) Baouche

and Dubuc [1, 1994] proved that G is continuous and nowhere differentiable

if a ∈ (0, 1) and ab > 1. They generalize the result of Knopp [6, 1918], who

considered the case where a ∈ (0, 1), b is an even integer and ab > 4. Much of
the recent work we found concerns the computation of the fractal dimension

of the graphs of various G’s. It is worth noting that for us, b = 2 and a = 1/λ

with |λ| ≥ 2 so |ab| ≤ 1.
The original continuous nowhere differentiable function is due to Weier-

strass in 1872 (see, for example, Hardy [4, 1916], for a long article on the

Weierstrass function and its properties). Stromberg [7, p. 174] writes “· · ·
that there seems to be good evidence to believe that examples were known to

Bolzano as early as 1830.”

Here is an informal summary of some of the things we discovered and
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some reasons we think these results might be of interest to students and

instructors of real analysis classes.

1. We provide a complete description (in terms of λ, |λ| > 2) of when

Fλ is differentiable and we provide explicit formulas for the left and

right derivatives of Fλ at every number a ∈ R. These left and right
derivatives always exist. Further analysis leads to an explicit formula
for right and left derivatives of Fλ (a) in terms of the binary represen-

tation(s) of a. We also show that term by term right and left differ-

entiability of the series for Fλ is justified even though term by term

differentiability of a uniformly converging series is not generally per-

missible.

2. We show in two ways that F4 (x) = 2x(1 − x) on [0, 1]. Our first

(and original) method uses the contraction mapping theorem. Our

second method is computational and uses equation (F) in the proof of
Theorem 2(3). This computation clearly shows why the cases λ = 4

and λ 6= 4 differ.

3. For the sake of completeness, we include a proof that F2 is not right

or left differentiable at any point. This result is due to Cater [2, 1994].

(Cater proves much more. Our argument seems (to us) simpler because

we can exploit the connections between the binary representation(s) of

a number a and computation of F2 (a). In fact, the argument we present

is a simple extension of the usual parity argument used to prove the

nowhere differentiability of F2.)

4. All of the techniques we employ are elementary. The reader need only

understand continuity, differentiability, uniform convergence of series of

functions, summation of infinite (mostly geometric) series, and binary

representations of real numbers. A slightly more advanced topic is the

contraction mapping theorem. Almost any introductory real analysis

should contain the necessary background. One such is the text by

Goldberg [3].
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The Main Results

Before stating our main results, we need some additional notation. For a

function f and a number a ∈ R, define

D+f (a) = lim
x→a+

f (x)− f (a)

x− a
and D−f (a) = lim

x→a−

f (x)− f (a)

x− a

provided these limits exist. These are (respectively) the right and left deriv-

atives of f at a. We would like to emphasize that the symbols D+f and D−f

refer here to honest to goodness right and left derivatives of f , and not to

Dini derivatives. We use this notation since D+fk looks more natural and

readable to us than, say, f
0
k,+. Whenever a function f has a derivative at a,

we will use the standard notation f 0 (a). We state the following easy result

without proof.

Lemma 1

1. For a ∈ [0, 1), D+f0 (a) = 1 if 0 ≤ a < 1/2 and = −1 if 1/2 ≤ a < 1.

The right derivative D+f0 is periodic with period 1.

2. For a ∈ (0, 1], D−f0 (a) = 1 if 0 < a ≤ 1/2 and = −1 if 1/2 < a ≤ 1.
The left derivative D−f0 is periodic with period 1.

3. D+fk (a) = 2kD+f0
¡
2ka
¢
= 2k if 0 ≤ a < 1/2k+1 and = −2k if

1/2k+1 ≤ a < 1/2k. D+fk is periodic with period 1/2k.

4. D−fk (a) = D+f0
¡
2ka
¢
= 2k if 0 < a ≤ 1/2k+1 and = −2k if 1/2k+1 <

a ≤ 1/2k. D−fk is periodic with period 1/2k.

For example, Figures 4 and 5 show the graphs of f2 and D+f2 on the

interval [0, 1].
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Figure 4: f2
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Figure 5: D+f2

We now state our main result. The proof of this result is postponed until the

final section of this paper.

Theorem 2

1. For 0 ≤ x ≤ 1, F4 (x) = 2x (1− x).

2. Fix |λ| > 2. Then Fλ is right differentiable and left differentiable at

every point. If a ∈ R, then

D+Fλ (a) =
∞X
k=0

D+fk (a)

λk
=

∞X
k=0

εk

µ
2

λ

¶k

where εk = D+f0
¡
2ka
¢
and

D−Fλ (a) =
∞X
k=0

D−fk (a)

λk
=

∞X
k=0

δk

µ
2

λ

¶k

where δk = D−f0
¡
2ka
¢
. In particular, the right (respectively left) deriv-

ative of Fλ can be computed by term by term right (respectively left)

differentiation of the series for Fλ.

3. Fix |λ| > 2, λ 6= 4. Then Fλ is differentiable except at dyadic rationals

(i.e., numbers of the form k/2m, where m = 0, 1, 2, · · · and k ∈ Z).
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4. F2 is not right or left differentiable at any point a ∈ R.

To arrive at concrete formulas for D±Fλ (a) and to set the stage for some

later work (see the proof of Theorem 2(4)) we use the important observation

that fk (a) and D±fk (a) can easily be determined from the binary represen-

tation(s) of a. To see this, let us suppose first that a ∈ [0, 1). (By periodicity,
it is enough to show computations for a ∈ [0, 1) or a ∈ (0, 1].) Pick a binary
representation a = (.a1a2a3 . . .)2 not ending in an infinite string of 1s. Then

(.a1a2a3 . . .)2 ∈

⎧⎪⎨⎪⎩
[0, 1/2) if a1 = 0

[1/2, 1) if a1 = 1.

So, f0 (a) = a if a1 = 0 and f0 (a) = 1 − a if a1 = 0. Similarly, 2ka =

2k ((.a1a2a3 . . . ak)2)+(.ak+1ak+2ak+3 . . .)2 with 2
k ((.a1a2a3 . . . ak)2) ∈ Z. Then

fk (a) =

⎧⎪⎨⎪⎩
(.ak+1ak+2ak+3 . . .)2 if ak+1 = 0

1− (.ak+1ak+2ak+3 . . .)2 if ak+1 = 1.

Also, εk = D+f0
¡
2ka
¢
= D+f0 ((.ak+1ak+2ak+3 . . .)2), so εk = 1 if ak+1 = 0

and = −1 if ak+1 = 1. Said another way,

D+f0
¡
2ka
¢
= 1− 2ak+1

for each k.

Similarly, if b ∈ (0, 1], consider a binary representation of b, say b =

(.b1b2b3 . . .)2 where each bj = 0 or 1 and the binary representation of b does

not end in an infinite string of 0s, we find that δk = D−f0
¡
2kb
¢
= 1 if

bk+1 = 0 and = −1 if bk+1 = 1. So,

D−f0
¡
2kb
¢
= 1− 2bk+1

for each k. We have proven (assuming Theorem 2(2)) the following.
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Corollary 3 Fix |λ| > 2. Then Fλ is right differentiable and left differen-

tiable at every point. If a ∈ R, z1 ∈ Z and a = z1 + (.a1a2a3 . . .)2 where the

binary representation of a does not end in an infinite string of 1’s, then

D+Fλ (a) =
λ

λ− 2 − 2
∞X
k=0

ak+1

µ
2

λ

¶k

.

If a ∈ R, z2 ∈ Z and a = z2 + (.b1b2b3 . . .)2 where the binary representation

of a does not end in an infinite string of 0’s, then

D−Fλ (a) =
λ

λ− 2 − 2
∞X
k=0

bk+1

µ
2

λ

¶k

.

Examples and Additional Diagrams

This brief section contains some consequences of Theorem 2 and Corollary

3. Following this, we provide some additional diagrams.

Examples We first use Corollary 3 to compute F
0
λ (1/3) for |λ| > 2. Since

1/3 =
¡
.01
¢
2
is not a dyadic rational, we get that ak = bk = 0 if k is odd and

= 1 if k is even. So

F
0
λ

µ
1

3

¶
=

λ

λ− 2 − 2
∞X
j=0

µ
2

λ

¶2j+1
=

λ

λ− 2 − 2
µ

2λ

λ2 − 4

¶
=

λ

λ+ 2
.

When λ = 4, we get F
0
4 (1/3) = 2/3, which agrees with the direct computation

d

dx
(2x (1− x))

¯̄̄̄
x=1/3

= (2− 4x)|x=1/3 =
2

3

Next, let us computeD±Fλ (1/2) for |λ| > 2 using Corollary 3 again. The two
binary representations of 1/2 are (.10̄)2 and (.01̄)2. In the first representation

a1 = 1 and ak = 0 if k ≥ 2. A simple computation yields

D+Fλ

µ
1

2

¶
=

λ

λ− 2 − 2a1 = −
λ− 4
λ− 2 .
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Similarly, in the second representation, b1 = 0 and bk = 1 if k ≥ 2. So

D−Fλ

µ
1

2

¶
=

λ

λ− 2 − 2
∞X
k=1

µ
2

λ

¶k

=
λ− 4
λ− 2 .

We see (as we would expect from visual evidence once we know that both

D+Fλ (1/2) and D−Fλ (1/2) exist) that D+Fλ (1/2) = −D−Fλ (1/2). We

also see computationally that D+Fλ (1/2) 6= D−Fλ (1/2) unless λ = 4.

Let us examine these derivatives when λ = −4. Then F−4 (1/3) = 2,

D+F−4 (1/2) = −4/3 and D−F−4 (1/2) = 4/3. These results are supported

by the graph of F−4 which is the first of our additional diagrams.

Additional Diagrams Routine computations using the definition of Fλ

and the formula for F
0
λ (1/3) are summarized in the following table.

λ Fλ (1/3) F 0
λ (1/3)

−6 2/7 3/2

−4 2 4/15

2.5 5/9 5/9

6 2/5 3/4

Figures 6, 8, 10 and 12 show the graph of Fλ for these λ on [0, 1] and and

the tangent line to the graph at (1/3, Fλ (1/3)), plotted as a dashed line.

Figures 7, 9, 11 and 13 show the corresponding right derivative of Fλ on

[0, 1]. (These graphs are not fine enough to distinguish between the right
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and left derivatives of Fλ, which differ only at dyadic rationals.)

Figure 6: F−6 Figure 7: D+F−6

Figure 8: F−4 Figure 9: D+F−4

Figure 10: F2.5 Figure 11: D+F2.5
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Figure 12: F6 Figure 13: D+F6

These graphs suggest the following problem.

Problem: For |λ| > 2 it follows from Corollary 3 that |D+Fλ (a)| ≤
¯̄̄̄

λ

λ− 2

¯̄̄̄
.

Investigate the possible values of D+Fλ (a). In particular, let

A =

½
λ : D+Fλ (R) ⊇

µ
−
¯̄̄̄

λ

λ− 2

¯̄̄̄
,

¯̄̄̄
λ

λ− 2

¯̄̄̄¶¾
and B =

n
λ : D+Fλ (R) is a Cantor set

o
. (In this context, a Cantor set K

is an uncountable compact subset of R which is perfect, i.e. every point of
K is a limit of a sequence of other points from K. The closure of the set O

is denoted O.)

1. For what values of λ is λ ∈ A? We know that 4 ∈ A and Figure 11

suggests that 2.5 ∈ A. Is −4 ∈ A? Figure 9 is inconclusive.

2. For what values of λ is λ ∈ B? Figures 7 and 13 suggest that−6, 6 ∈ B.

3. If λ ∈ A, does D+Fλ have the intermediate value property?
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Finally, we show the graph of F−2 on [0, 1].

Figure 14: F−2

Problem: Does F−2 have points of right or left differentiability? (We’d

suggest consulting the proof of Theorem 2(4)) first.)

Proof of Theorem 2

This section is devoted to the proof of Theorem 2. We begin by using the

contraction mapping theorem to show that F4 (x) = 2x(1− x) on [0, 1] . We

will indicate a completely computational approach to this result following

the proofs of parts (2) and (3) of Theorem 2.

Proof of Theorem 2(1). Let C denote the the set of continuous (real

valued) periodic functions on R with period 1. It is well known that with
the metric d (f, g) = maxx∈R |f (x)− g (x)|, C is a complete metric space.

Also, a sequence (gn) converges to g in the metric space (C, d) if and only

if the sequence (gn) converges to g uniformly on R. Completeness of C is

just a combination of the facts that a uniformly Cauchy sequence (gn) in C

converges uniformly to some period 1 function g, and g ∈ C since a uniform

limit of continuous functions is continuous (see, for example, Goldberg [3,
p. 260]).
Let Φ : C → C be defined by

ΦF (x) = f0(x) + F (2x) /4.
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The following are easily checked.

1. ΦF ∈ C if F ∈ C.

2. If H is the periodic extension of the function 2x(1− x) on [0, 1], then

ΦH = H.

Indeed, if x ∈ [0, 1/2], then

ΦH (x) = f0 (x) +
H (2x)

4
= x+

2 (2x) (1− 2x)
4

= 2x (1− x) = H (x) .

If x ∈ [1/2, 1), then 2x− 1 ∈ [0, 1) and H (2x) = H (2x− 1). So,

ΦH (x) = f0 (x)+
H (2x)

4
= (1− x)+

2 (2x− 1) (1− (2x− 1))
4

= H (x) .

3. The map Φ is a contraction on C. To see this observe that if F,G ∈ C,

then

d(ΦF,ΦG) = max
x∈R

|ΦF (x)−ΦG(x)| = max
x∈R

1

4
|F (2x)−G(2x)| = 1

4
d(F,G).

4. Let us iterate the Φ function starting at f0. Then, denoting the nth

iterate of Φ by Φn, an easy induction argument shows that

Φnf0(x) = f0(x) +
f0(2x)

4
+

f0(4x)

16
+ · · ·+ f0(2

nx)

4n
=

nX
k=0

fk(x)

4k

which is the nth partial sum of F4(x). So Φnf0 → F4 uniformly on R.

By the contraction mapping theorem (see, for example, [3, pp 158-9]),

Φnf0 → H, where H is the unique fixed point of Φ determined in step 2. But

by step 4, Φnf0 → F4 so F4 = H, as claimed.

We next turn to the proof of Theorem 2(2). Lemmas 4 and 5 are used

to provide important bounds that we use to compute lim
x→a±

Fλ (x)− Fλ (a)

x− a
.

Here and in the rest of the paper, we concentrate on the arguments for right

derivatives whenever possible.
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Lemma 4 Given any n ∈ N there is a δn > 0 such that, if 0 < x − a < δn

then

fk(x)− fk(a) = D+fk(a) · (x− a)

for all k = 0, · · · , n.
Proof. Without loss of generality, assume that 0 ≤ a < 1. Partition the

nonnegative real numbers into half open intervals [β, β + 1/2) where β ∈
{m/2 : m = 0, 1, 2, · · · }. For each k, there is a unique βk so that 2ka ∈
[βk, βk + 1/2). For each k let

dk =
βk +

1
2
− 2ka
2k

Notice that dk > 0, since βk + 1/2 > 2ka. Let δn = mink=0,··· ,n{dk}. Clearly,
δn > 0. Let a < x < a + δn and fix k ∈ {0, · · · , n}. Then 0 < 2kx − 2ka <

2kdk = βk +
1

2
− 2ka, so

2ka < 2kx < βk +
1

2
.

So, 2kx and 2ka are in the same half intervals [βk, βk + 1/2) and since D+f0

is constantly 1 or −1 in these intervals, we get

fk(x)− fk(a) = f0
¡
2kx
¢
− f0

¡
2ka
¢
= ε · 2k · (x− a)

where ε = 1 if βk is an integer and−1 if βk = m+1/2 for somem = 0, 1, 2, · · · .
Similarly,

D+fk(a) · (x− a) = 2kD+f0(2
ka) · (x− a) = ε · 2k · (x− a) .

Problem: Supply a second proof of Lemma 4 using the binary representation
of a which does not terminate in an infinite string of 1s.

Lemma 5 For each k = 0, 1, 2, · · · , for each x, a ∈ R

|fk(x)− fk(a)| ≤ 2k|x− a|
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Remark: This lemma has this simple geometrical interpretation: The max-
imum absolute value of the slope of any chord joining two points on the graph

of fk is 2k. Shown in Figure 15 is the graph of f2 (x) on [0, 1] and the chord

joining (.3, f2 (.3)) and (.6, f2 (.6)).

Figure 15:

Even though the lemma is geometrically clear, we provide a short proof.

Proof. First observe that the result for arbitrary k follows from the result

for k = 0. For then, if x, a ∈ R,

|fk(x)− fk(a)| =
¯̄
f0
¡
2kx
¢
− f0

¡
2ka
¢¯̄
≤
¯̄
2kx− 2ka

¯̄
= 2k |x− a| .

To establish the result for k = 0, assume x > a. If x − a ≥ 1, then, since
the range of f0 is [0, 1/2], we have that |f0(x) − f0(a)| ≤ 1 ≤ x − a. If

x − a ≤ 1, we consider cases. Because of the periodicity of f0 we may

assume (without loss of generality) that a, x ∈ [0, 1/2), or a ∈ [0, 1/2) and
x ∈ [1/2, 1), or a ∈ [−1/2, 0) and x ∈ [0, 1/2) or a, x ∈ [1/2, 1). In the first
case, |f0(x)−f0(a)| = |x−a|. In the second case, observe that a ≤ 1−a and

1− x ≤ x. So

f0(x)− f0(a) = (1− x)− a

and

a− x ≤ (1− a)− x = (1− x)− a ≤ x− a

giving |f0(x)− f0(a)| ≤ |x− a| as desired. The last two cases are similar to
the first two.
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We now turn to the proofs of parts 2 and 3 of Theorem 2. As mentioned

above, we restrict our attention to right derivatives whenever possible.

Proof of Theorem 2(2). Fix |λ| > 2. Let ε > 0. Pick n so that

4

|λ|− 2 ·
µ
2

|λ|

¶n

< ε

and pick δ = δn from Lemma 4. Routine computations and the use of the

triangle inequality gives¯̄̄̄
Fλ(x)− Fλ(a)

x− a
−
P∞

k=0

D+fk (a)

λk

¯̄̄̄
≤

¯̄̄̄
¯

nX
k=0

1

λk
·
µ
fk(x)− fk(a)

x− a
−D+fk (a)

¶¯̄̄̄
¯

+
∞X

k=n+1

1

|λ|k
·
¯̄̄̄
fk(x)− fk(a)

x− a

¯̄̄̄

+
∞X

k=n+1

|D+fk (a)|
|λ|k

.

Name these three terms as I, II and III (respectively). Let 0 < x−a < δn.

Then

• Lemma 4 gives that term I = 0.

• Lemma 5 gives that term II ≤
µ
2

|λ|

¶n
2

|λ|− 2 .

• Lemma 1(3) gives that term III ≤
µ
2

|λ|

¶n
2

|λ|− 2 .

Combining these, we conclude that if 0 < x− a < δn then¯̄̄̄
¯Fλ(x)− Fλ(a)

x− a
−

∞X
k=0

D+fk (a)

λk

¯̄̄̄
¯ < ε.

We have shown that F4 is differentiable on (0, 1) and that for all |λ| > 2
that Fλ is left differentiable and right differentiable on [0, 1]. We now show

15



that if |λ| > 2, λ 6= 4, Fλ is differentiable except at the dyadic rationals.

So, these Fλ’s are both differentiable and non differentiable at dense sets of

points.

Lemma 6 Let a = m/2n for integers m,n where m is odd. Then

1. D−fk (a) = D+fk (a) for k = 0, · · · , n− 2.

2. D−fk (a)−D+fk (a) = 2
k+1 for k = n− 1.

3. D−fk (a)−D+fk (a) = −2k+1 for k ≥ n.

This works with n = 0, 1 as well, in which case properties (1) and possibly

(2) are vacuous.

Proof. For 1 ≤ k ≤ n − 2, fk(a) = f0(2
ka) = f0(

m

2n−k
) and

m

2n−k
6= j

2
for

any integer j. So, fk is differentiable at a , which establishes (1). For (2),

2n−1a =
m

2

where m is odd, so D−fk (a) = 2
k and D+fk (a) = −2k. For (3) observe that

if k ≥ n, then 2ka is an integer, so D−fk (a) = −2k and D+fk (a) = 2
k.

Proof of Theorem 2(3). Fix λ, |λ| > 2, λ 6= 4, and let a = m

2n
be as in

Lemma 6.

Assume n ≥ 2. (The argument in case n = 0 or n = 1 requires obvious
minor modifications.) Then

D+Fλ (a)−D−Fλ (a) =
∞X
k=0

D+fk (a)−D−fk (a)

λk
(F)

=
¡
D+fn−1 (a)−D−fn−1 (a)

¢
+

∞X
k=n

D+fk (a)−D−fk (a)

λk

= 2

Ãµ
2

λ

¶n−1
−
Ã ∞X

k=n

µ
2

λ

¶k
!!

= 2

µ
2

λ

¶n−1
λ− 4
λ− 2 6= 0
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since λ 6= 4.
Now assume that a is not a dyadic rational. Then a has only one binary

representation, which contains both infinitely many 0’s and 1’s. By Corollary

3, D+f0
¡
2ka
¢
= D−f0

¡
2ka
¢
for every k = 0, 1, 2, · · · and so D+Fλ (a) =

D−Fλ (a).

Equation (F) also yields that if λ = 4 and a is a dyadic rational, then

D+F (a) = D−F (a). This allows us to give a second proof that F4 (x) =

2x (1− x) on [0, 1].

Second Proof of Theorem 2(1). Suppose that a ∈ (0, 1) and that the
binary representation of a not terminating in infinitely many 1’s is a =

(.a1a2 . . . an . . .)2. Then by Corollary 3,

D+F4 (a) =
4

2
− 2

∞X
k=0

ak+1

µ
2

4

¶k

= 2− 2
∞X
k=0

ak+1
2k

= 2− 4
∞X
k=0

ak+1
2k+1

= 2− 4 ((.a1a2 . . . an . . .)2) = 2− 4a.

Now, if a is not a dyadic rational, we already know from the proof of Theorem

2(3) that F4 is differentiable at a. If a is a dyadic rational, then equation

(F) in that proof shows that

D+F4 (a)−D−F4 (a) = 0

so F4 is differentiable at a as well. In all cases, then F 0
4 (a) = D+F4 (a) =

2−4a. A simple integration (and the fact that F4 (0) = 0) shows that F4 (x) =
2x (1− x) on (0, 1).

Proof of Theorem 2(4). We sketch the proof that F2 is not right or left
differentiable at any point. The argument is similar to the classical proofs

that F2 is nowhere differentiable, so we just provide a sketch of the details. It

is clearly enough to present the argument for nowhere right differentiability.

To this end assume that 0 ≤ a < 1, and let us pick a binary representation
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for a containing infinitely many 0’s. So for infinitely many n we may write

a = (.a1a2 . . . an0)2 +
d

2n+1
= (.a1a2 . . . an)2 +

d

2n+1

where 0 ≤ d < 1. Put

b = (.a1a2 . . . an1)2 +
1− d

2n+1
= (.a1a2 . . . an)2 +

2− d

2n+1

Notice that b > a since b − a =
1− d

2n
> 0. A routine computation shows

that, for k = 0, · · · , n− 1

fk (b)− fk (a) = εk2
k (b− a)

where εk = 1 if ak+1 = 0 and −1 if ak+1 = 1. For k = n, we get that

2na =
d

2
while 2nb =

2− d

2
= 1 − d

2
, so fn (b) − fn (a) = 0. For k > n,

fk (b)− fk (a) = 0 as well. It follows that

F2 (b)− F2 (a)

b− a
=

n−1X
k=0

±εk.

Notice that these difference quotients are even integers if n is even and odd if

n is odd. If there happen to be 0’s in infinitely many even and infinitely many

odd positions in the binary representation of a, then we are already done. If

not, then, past some position N , the bit 0 occurs only at even positions or

at odd positions. If we label these positions as n1 < n2 < · · · , then we are
done unless these sums are all eventually the same, so we may assume, by

relabeling the sequence (nj) if necessary, that there is a fixed number A such

that
nj−1X
k=0

εk = A

for all j. In this case, we must have (since the nj’s occur only in even positions

or odd positions) that nj+1 ≥ nj + 2, that anj+1 = 1 and that

nj+1−1X
k=nj

εk = 0
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for j = 1, 2, · · · . It follows immediately that nj+1 = nj + 2. (If there are two

consecutive 1’s between nj and nj+1 − 1, then there are at least two 1’s and
just one 0 in this interval of integers.)

We have shown that F2 is not right differentiable at a unless a has a

representation of the form

a =
¡
.a1a2 . . . an01

¢
2
= (.a1a2 . . . an)2 +

1

3 · 2n .

We finish the argument by showing that F is not right differentiable at these

a’s. Take m > n with am+1 = 0, consider

c = a+
1

2m+1
= (.a1a2 . . . am)2 +

1

2m+1
+

1

3 · 2m = (.a1a2 . . . am)2 +
5

6 · 2m .

Note that c > a and that c− a =
5

6 · 2m . Computation shows that

F2 (c)− F2 (a)

c− a
=

m−1X
k=0

±εk − 1/3 = A− 1/3.

To summarize this final case, given δ > 0, we can find two numbers

b, c > a with b− a < δ, c− a < δ and¯̄̄̄
F2 (c)− F2 (a)

c− a
− F2 (b)− F2 (a)

b− a

¯̄̄̄
=
1

3
.

This completes the proof that F2 is not right differentiable at any a.
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