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Abstract. A Bing space is a compact Hausdorff space whose every component is a heredi-
tarily indecomposable continuum. We investigate spaces which are quotients of a Bing space
by means of a map which is injective on components. We show that the class of such spaces
does not include every compact space, but does properly include the class of compact metric
spaces.

Our entire development is based on Krasinkiewicz’s penetrating notions of folding and
double pairs. In section 1, we provide the definitions of double pairs and folding and show
how these concepts are related to hereditarily indecomposable continua. Section 2 is the
heart of this paper. We begin with a fixed compact space X. In Proposition 2.4, a simple
two dimensional construction of a subspace Y of X × [−1, 1] and the properties of Y are
presented. In Lemma 2.8 the components of Y are characterized in terms of components of
X and certain subspaces of X. In section 3, we use the machinery developed in section 2 to
describe when a selection of components from Y , one for each component in X, can be made
in such a way that their union Z is compact (see Theorem 3.5 and Corollary 3.7). This leads
rather quickly to Theorem 3.17 and Corollary 3.18, which give classes of spaces (including
compact metric spaces and connected spaces) which are guaranteed to be quotients of a
Bing space by means of a map which is injective on components. We conclude by showing
(Theorem 3.21) that there are spaces which are not such quotients of the above sort.
Throughout this paper, all topological spaces will be assumed to be Hausdorff without

further mention. Since our development focuses on compact Hausdorff spaces, spaces not
otherwise specified will be assumed to be compact.

1. Double pairs, folding and continua

We begin with a review of some of the basic notions. This section owes a particularly
heavy debt to Krasinkiewicz [3] where the notion of a “double pair” is fundamental. The
pairs used in the current paper are composed of open sets (rather than closed sets as in [3]),
but we do not change the terminology and continue to call them double pairs.
Throughout this section, X and Y denote compact spaces.

Definition 1.1. A double pair is an ordered pair ((A−1, B−1) , (A1, B1)) of ordered pairs
(Ai, Bi) of open subsets of X such that Ai ⊆ Bi and Ai ∩ Bj = ∅ for i, j ∈ {−1, 1}, i 6= j.
Throughout this paper, we adopt the convention that i ∈ {−1, 1} and j = −i. For technical
reasons (see Lemma 3.2 below) we allow the Ai’s and Bi’s to be empty. Of course, A denotes
the closure of A.
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We recall that disjoint closed sets C−1 and C1 in X are completely separated, i.e., for any
real numbers ri we may find some f ∈ C (X) such that f has value ri on Ci. See [1]. (We
use C (X) to designate the set of continuous real-valued functions on the compact space X.)

Proposition 1.2. The following are equivalent for a double pair ((Ai, Bi)).
(1) There exists f ∈ C (X), −1 ≤ f ≤ 1, such that f (Ai) ⊆ {i} and

f−1 (−1, 0) ∩B−1 = f−1 (0, 1) ∩B1 = ∅.
(2) There exist disjoint clopen subsets Fi of Bi such that Ai ⊆ Fi.

Proof. To show that (1) implies (2) take a function f satisfying (1) and set F1 ≡ f−1 [1/3, 1]
and F−1 ≡ f−1 [−1,−1/3]. For the reverse implication, consider sets Fi satisfying (2). Then
find fi ∈ C (X), −1 ≤ fi ≤ 1, such that fi is i on Fi and j on

¡
Bi r Fi

¢
∪ Fj. Clearly

f ≡ 1
2
(f−1 + f1) satisfies (1). ¤

Definition 1.3. We say that a double pair ((Ai, Bi)) is folded if it satisfies either of the
equivalent conditions in Proposition 1.2. In this case we say that subsets Fi satisfying (2)
fold ((Ai, Bi)), and that a function f satisfying (1) is a folding function for ((Ai, Bi)).

Definition 1.4. A continuum is a compact connected space. (To emphasize, a continuum
is not assumed to be a metric space.) A subcontinuum of a space is a subset which is
a continuum. A component of a space is a maximal connected subset. Components are
subcontinua. A space is decomposable if it is the union of two proper subcontinua. A
space is indecomposable if it is not decomposable. A space is hereditarily indecomposable if
every subcontinuum is indecomposable. A space is Bing if every component is hereditarily
indecomposable.

We now begin to make the connections between continua and double pairs.

Definition 1.5. A double pair ((Ai, Bi)) detects subcontinua Ci provided that Ci ⊆ Bi and
Ci ∩Ai 6= ∅.
Remark 1.6. Observe the following.
(1) Two subcontinua detected by a double pair are nonempty and distinct. If they intersect

then their union is a decomposable subcontinuum.
(2) Every decomposable subcontinuum is the union of two subcontinua detected by some

double pair.
(3) X is Bing iff no double pair detects intersecting subcontinua.

We remind the reader that if E−1 and E1 are disjoint closed sets such that E−1 is a union
of components, then there exists a clopen set F such that E−1 ⊆ F and F ∩ E1 = ∅. The
next result is a reformulation of Lemma 2.2 of [3].

Proposition 1.7. A double pair is folded iff it detects no intersecting subcontinua.

Proof. Let P be a double pair. If P detects intersecting subcontinua Ci then P certainly
cannot be folded, for sets Fi folding P would have to satisfy Fi ⊇ Ci. Conversely, suppose
P = ((Ai, Bi)) does not detect intersecting subcontinua, and let Ei be the union of the
components of Bi which meet Ai. Note that the Ei’s are closed sets which are disjoint by
hypothesis. Since E−1 is a union of components of B−1 disjoint from the closed set B−1∩E1,
there exists a clopen subset F−1 of B−1 such that E−1 ⊆ F−1 and F−1 ∩ E1 = ∅. Since E1
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is a union of components of B1 disjoint from the closed set B1 ∩ F−1, there exists a clopen
subset F1of B1 such that E1 ⊆ F1 and F1 ∩ F−1 = ∅. That is, the Fi’s fold P . ¤

The following corollary is a reformulation of Theorem 2.4 of [3].

Corollary 1.8. A space is Bing iff every double pair is folded.

We close this section with a collection some standard facts about components of compact
spaces.

Definition 1.9. Let bX : X → bX designate the quotient map which collapses each compo-
nent of X to a point of bX. (If no confusion will arise, we will often denote bX by b.) We
refer to bX as the Boolean reflection of X. For any compact Y and X and continuous map
θ : Y → X there is a unique continuous map bθ : bY → bX such that (bθ) bY = bXθ. In fact,
bθ simply maps each component C of Y to the unique component of X which contains θ (C).
This terminology is motivated by categorical considerations. Formally, the category bK of
Boolean spaces with continuous maps constitutes a reflective subcategory of the category K
of compact Hausdorff spaces and continuous maps. We shall not use categorical notions in
the sequel.

Lemma 1.10. Let X be a compact space.

(1) Let D be a closed subset of X. The union of components of X which intersect D is
a closed set.

(2) Let C be a component of the space X which is a subset of an open set U . Then there
is a clopen set A such that C ⊆ A ⊆ U.

(3) Let X be a connected space and let A ⊆ X be open and nonempty. Then every
component of the set X r A intersects A. (This is a “boundary bumping theorem.”
See Nadler [5, Ch. 20] for a more complete discussion.)

(4) Suppose that τ : Y → X is a continuous onto map and that X is connected. If for
all x ∈ X, τ−1 {x} is a subset of a component of Y , then Y is connected.

Proof. To prove (1), let K be the union of components C of X which intersect D. Let
bX : X → bX be the Boolean reflection of X. Then K = b−1X (bXD) is closed since X is
compact, D is closed and bX is continuous.
To establish (2), recall ([4, p. 169]) that in a compact space, every component is a quasi-

component. That is, every component is the intersection of the clopen sets that contain
it. An easy compactness argument yields a finite number of clopen sets, each containing C,
whose intersection A is a subset of U .
For (3), let A, X be as in the hypothesis. Let us assume that C is a component of X rA

which does not intersect A. By (2), there is a clopen set U in the space X r A containing
C and disjoint from A. Since U is a closed subset of the closed in X set X rA, U is closed
in X. Since U is an open subset of the open in X set X r A, U is open in X. But X is
connected, so it cannot contain a proper clopen set.
Finally we establish (4). Suppose that Y is not connected. Then there are nonempty

disjoint clopen sets A and B whose union is Y . By the assumption, τ (A) and τ (B) are
disjoint closed sets whose union is X. Therefore τ (A) and τ (B) are both clopen and so X
is not connected, a contradiction. ¤



4 RICHARD N. BALL, JAMES N. HAGLER, AND NICHOLAS ORMES

2. Folding preimages

Regarding non-folded double pairs as defects in X, we propose to remove such defects by
passage to a preimage. But we require that the preimage should have no more components
than X, i.e., we hope to fold double pairs in a “conservative” preimage.
Recall that a space Y is called Boolean or totally disconnected if the Boolean algebra of its

clopen sets, ClopY , serves as a base for the open sets, and in the presence of the assumption
that Y is compact, this is equivalent to Y being homeomorphic to the Stone space of ClopY .
The proof of the following proposition is routine.

Proposition 2.1. The following are equivalent for a continuous surjection τ : Y → X.
(1) Every clopen subset of Y is a union of τ fibers. That is, y ∈ A ∈ ClopY implies

τ−1τ (y) ⊆ A.
(2) The map A 7→ τ−1 (A) is a Boolean isomorphism from ClopX onto ClopY .
(3) The map bτ : bY → bX is a homeomorphism.

Definition 2.2. A conservative map is a function which satisfies the conditions of Propo-
sition 2.1. A preimage of X is a space Y for which there exists a continuous surjection
τ : Y → X, called the quotient map. If τ is conservative we refer to Y as a conservative
preimage of X, and we refer to X as a conservative quotient of Y .

Definition 2.3. We say that a double pair P ≡ ((Ai, Bi)) is folded in a preimage Y of
X if τ−1 (P ) ≡ ((τ−1 (Ai) , τ

−1 (Bi))) is folded in Y , where τ is the quotient map. In this
case we refer to Y as a folding preimage of X for P . A universal folding preimage for P
is a pair (Y, f), where Y is a preimage of X with surjection τ : Y → X, f ∈ C (Y ) is a
folding function for τ−1 (P ), and the following universal property holds. For any preimage Z
with quotient map ψ, and for any folding function g ∈ C (Z) for ψ−1 (P ), there is a unique
continuous function θ : Z → Y such that τθ = ψ and fθ = g.

[−1, 1] Z

Y X

¾

-

6

?

¡
¡

¡
¡ª

g

τ

f ψ
θ

A universal folding preimage for P must be unique when it exists. That is, if (Yj, fj),
j = 1, 2, are universal folding preimages for P , with surjections τj : Yj → X, then there is
a homeomorphism θ : Y1 → Y2 such that τ2θ = τ1 and f2θ = f1.The existence of θ follows
from the usual abstract nonsense.

Proposition 2.4. For every double pair P there is a unique universal folding preimage for
P .

Proof. For P = ((Ai, Bi)) let Y consist of those points (x, r) ∈ X× [−1, 1] with the following
properties.
(1) If x ∈ Ai then r = i, i = ±1.
(2) If r ∈ (−1, 0) then x /∈ B−1, and if r ∈ (0, 1) then x /∈ B1.
Now Y is a closed subset of X × [−1, 1] and is therefore compact. Let τ : Y → X be

the projection map on the first coordinate, and let f ∈ C (Y ) be the projection map on the
second coordinate. Then f folds P by construction.
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Consider a folding preimage Z for P , say ψ : Z → X has g ∈ C (Z) folding ψ−1 (P ).
Define θ : Z → Y by the rule

θ (z) ≡ (ψ (z) , g (z)) , z ∈ Z.

Clearly τθ = ψ and fθ = g, and θ is unique with respect to these properties. ¤

Example 2.5. Throughout the paper, we will provide diagrams that we hope will motivate
and explain the concepts. It is almost a theorem to say that "the pictures tell the truth." In
fact, many/most of the results of this paper arose from looking at pictures, then verifying
that what appeared to be true in two dimensions was true in general.

Let X = [0, 1] ∪
£
11
4
, 13

4

¤
∪
£
2, 21

2

¤
,

A−1 =
¡
1
5
, 2
5

¢
B−1 =

£
0, 3

5

¢
∪
£
11
4
, 13

4

¤
∪
£
2, 21

2

¤
A1 =

¡
3
4
, 1
¤

B1 =
¡
1
2
, 1
¤
∪
¡
11
2
, 13

4

¤
∪
£
2, 21

2

¤
Figure 1 illustrates the construction of Y is from X and the double pair. Later, after stating
Proposition 2.8, we will classify the components of Y . Here, X × [−1, 1] is shown as the
union of three large gray rectangles. Representations of A±1 and B±1 are shown above and
below X × [−1, 1] as an aid to understanding the construction. (The Ai’s are light gray
rectangles, the Bi’s are darker gray.) The subspace Y of X × [−1, 1] is shown in solid black.

−1

0

1

A ,B
−1 −1

A ,B
+1 +1

Figure 1

In future diagrams, we will leave out this level of detail and visualize this same example as
shown in Figure 2. (Here, we show X below Y , and not representations of the Ai’s and
Bi’s.)
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Y

X

τ

|

Figure 2

Corollary 2.6. A double pair P is folded if and only if X is a retract of the universal folding
preimage Y for P . That is, P is folded iff there is a continuous injection θ : X → Y such
that τθ is the identity function on X, where Y is the universal folding preimage for P from
Proposition 2.4 and τ is the quotient map.

Proof. If a function θ exists as above then one readily checks that fθ folds P . Now suppose
that P is folded, choose a folding function g ∈ C (X), and let θ : X → Y be the map given
by the universal property of Y . ¤

In most instances the map τ : Y → X given in Proposition 2.4 is not conservative. (This
is the case in Example 2.5 above.) This raises a natural question. When does a double pair
have a conservative folding preimage? We answer this question in Theorem 3.5. A key to
this result is Proposition 2.8, which gives a description of the components of the universal
folding preimage of a double pair.
Let us establish a small amount of notation before characterizing components of Y. Put

I = [−1, 1], I−1 = [−1, 0] and I1 = [0, 1] . For a set B ⊆ X, Bc denotes the complement of B
in X. The following lemma is crucial in Proposition 2.8.

Lemma 2.7. Let P = ((Ai, Bi)) be a double pair in X and let C be a component of
X contained in neither B−1 nor B1. For i = ±1 let UCi be the union of components of
C r Aj which intersect Bc

j . Let UC0 be the union of components of C r (A−1 ∪A1) which
intersect both Bc

−1 and B
c
1.

Then

(1) UC0 = UC−1 ∩ UC1.
(2) C = UC−1 ∪ UC1.

Proof. (1) Let x ∈ UC0. Let K0 denote the component of x in Xr (A−1 ∪A1), and let Ki be
the component of x in X rAj. Clearly, K0 ⊆ Ki. Since K0 meets Bc

j , so does Ki, showing
that x ∈ UCi.
Next suppose that x ∈ UC−1 ∩ UC1. Then x /∈ A−1 ∪ A1 and we define Kk, k = −1, 0, 1

as above. For i = ±1, we will show that K0 ∩ Bc
j 6= ∅ so x ∈ UC0. For concreteness, let

i = −1 and j = 1. If K−1 ∩ A−1 = ∅ then K0 = K−1 and, since x ∈ UC−1, we have
K0 ∩Bc

1 = K−1 ∩Bc
1 6= ∅. If K−1 ∩A−1 6= ∅, we apply Lemma 1.10(3) to the space K−1 and

the nonempty, open in K−1 set A−1 ∩K−1. We conclude from the lemma that K0 contains
a point of A−1 ⊆ Bc

1. So in either case, K0 intersects Bc
1. Similarly, using the fact that

x ∈ UC1, we conclude that K0 intersects Bc
−1.

(2) follows easily from boundary bumping. Let x ∈ C. If x ∈ Ai then the component
of x in X r Aj meets Aj so x ∈ UCi. If x /∈ A−1 ∪ A1 then the component K of x in
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Cr (A−1 ∪A1) meets at least one of A±1. If K meets Ai then the component of x in CrAj

contains K and meets Ai ⊂ Bc
j so x ∈ UCi. ¤

Proposition 2.8. Let P = ((Ai, Bi)) be a double pair, and let Y be the universal folding
preimage for P .
(1) Every component D of Y satisfies exactly one of the following descriptions. (The

components are named so that a type n component intersects exactly n of the “hor-
izontal slices” X × {−1, 0, 1} in Y .)
Type (1, i): Let C be a component of X contained in Bi. Then D = C × {i}.
Type (1, 0): D = C × {0}, where C is a component of X contained in B−1 ∩B1.
Type 2: Let C be a component of X rAj contained in Bj but not Bi. Then

D = C × {i, 0} ∪ (C rBi)× Ii.

(We say that D is a type 2 component spanning 0 and i.)
Type 3: Let C be a component of X contained in neither B−1 nor B1. Then

D = (UC−1 × {−1}) ∪ (UC0 × {0}) ∪ (UC1 × {1})
∪ ((UC−1 rB−1)× I−1) ∪ ((UC1 rB1)× I1)

(2) In all cases τ maps D onto C, which is a component of X when D is type 1 or 3.

Definition 2.9. We will say that a connected subset C of X generates a type n component
(n = 1, 2, 3) if C = τ (D) where D is a type n component. Note that the same C can
generate more than one type of component in Y.

Example 2.5 (continued). Before proving this proposition, we can now identify the compo-
nents of Y .

• The type (1,i) components are [11
4
, 13

4
]× {−1},

£
2, 21

2

¤
× {−1} and

£
2, 21

2

¤
× {1}.

• The only type (1, 0) component is
£
2, 21

2

¤
× {0}.

• The type 2 components are [0, 1
5
]× I1 and

¡
[11
4
, 11

2
]× I1

¢
∪
¡
[11
4
, 13

4
]× {0, 1}

¢
. Note

that the first of these components is not mapped by τ onto a component of X while
the second is.

• The only type 3 component is the “S”—shaped component over the interval [0, 1].
We now turn to the proof of Proposition 2.8.

Proof. It is routine, but tedious, to check that Y is a disjoint union of sets of the above
types. (To do this, assume (y, r) ∈ Y and then consider cases depending on the value of r.)
We continue by showing that all sets described above are components of Y .
Type (1, i): Let i = ±1 and x ∈ C. Clearly, D is a closed, connected subset of Y

containing (x, i). Now let (y, r) ∈ Y rD. If y /∈ C, then the points (y, r) and (x, i) cannot
be in the same component of Y since τ is continuous and the points τ(y, r) and τ(x, i)
are in different components of X. If y ∈ C, and (y, r) ∈ Y r D then |i − r| ≥ 1 since
C ⊆ Bi. Let U ⊆ Bi be any clopen subset of X containing C. We note that since U ⊆ Bi,
U × {i} =

¡
U ×

¡
i− 1

2
, i+ 1

2

¢¢
∩ Y , so U × {i} is a clopen subset of Y . This set contains

(x, i) but not (y, r) and we conclude that D is a component.
Type (1, 0): Note that the set D is a subset of Y since C ⊆ B−1∩B1 and therefore cannot

intersect A−1 ∪A1. The above proof works with i = 0 and B0 = B−1 ∩B1.
Type 2: Let i = ±1, j = −i. Then C is a component of X r Aj contained in Bj but not

Bi. The sets C ×{0}, C ×{i} are both connected subsets of Y . The set C \Bi is nonempty
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and for every x ∈ C \ Bi, the set {x} × Ii is a connected subset of Y which intersects both
C × {0} and C × {i}. Therefore D is connected.
To show that D is a component, let (y, r) ∈ Y rD. The point y is either in C, in another

component of X \ Aj or in Aj. If y 6∈ C let U be a clopen set in X \ Aj such that U ⊂ Bj,
and U contains C but not y. Otherwise let U be any clopen subset of X \ Aj inside Bj.
Note that if y ∈ C or y ∈ Aj we have r = j and |r − i| = 2. So in any case the set
(U × Ii)∩ Y =

¡
U ×

¡
i− 3

2
, i+ 3

2

¢¢
∩ Y is a clopen subset of Y containing D but not (y, r).

Type 3: The set D is closed since (by Lemma 1.10(1)) it is a finite union of closed sets.
It follows immediately from Lemma 2.7(2) that τ (D) = C. We now use Lemma 1.10(4) to
show that D is connected. To do this, we need only show that for any x ∈ C, τ−1 {x} ∩D
is a subset of a connected component of D. If |τ−1 {x}| = 1 then we are done. Suppose
|τ−1 {x}| > 1. It follows (Lemma 2.7(1)) that x ∈ UC0. Since x ∈ UC0, there are points
ai ∈ Bc

i for i = ±1 which are both in the same component of X \ (A−1 ∪A1) as x. Again let
K denote this component. The sets K × {−1}, {a−1} × I−1, K × {0}, {a1} × I1, K × {1}
are all connected, nonempty subsets of D, with each intersecting the next on the list. This
connected set contains τ−1 {x} ∩D. Therefore, by Lemma 1.10(4), D is connected.
To show that D is a component, take (y, s) ∈ Y r D. If y /∈ C then (y, r) is not in

the same component as any point in D since the point τ(y, r) is in a component of X
different from C = τ (D). Now assume y ∈ C, but (y, r) 6∈ D. Note that Ai ∩ C ⊂ UCi so
y ∈ X r (A−1 ∪A1). Also note that (y, 0) /∈ D since this forces (y, r) ∈ D for any r ∈ [0, 1]
such that (y, r) ∈ Y . Let L denote the component of y in X r (A−1 ∪A1), we know that L
intersects Bc

j for exactly one j ∈ {±1}. Since L ∩Bc
j 6= ∅, the component of y in X \ Aj, a

superset of L, intersects Bc
j as well. This puts y ∈ UCi, and (y, i) ∈ D. Therefore, r 6= i.

Since L ∩ Bc
i = ∅, L × {s} ∩ Y = ∅ for all s strictly between 0 and i which means s ∈ Ij.

Further, L ⊂ Bi implies L does not intersect Aj which means that L is the component of y
in X \ Ai. Thus we have y in a component of X \ Aj which is contained in Bj but not Bi

and s ∈ Ij. That is, (y, s) is in a type 2 component of the space Y . Since D is disjoint from
this component, we are done. ¤

3. Existence and nonexistence of Conservative Bing Preimages

At last, we turn to existence and nonexistence of conservative preimages which fold spec-
ified double pairs. To this point, given X and a double pair P , we have constructed the
universal folding preimage Y of X in which P is folded. This issue is to select from Y , if
possible, a conservative preimage Z of X. The example given above (Example 2.5) has only
a finite set of components in Y . The following slightly more complicated example shows
what issues must be confronted if there is an infinite set of components in Y .

Example 3.1. Take X = [0, 1] ∪ {xn : n = 1, 2, · · · } where xn → 0 as shown. Let A−1 =¡
1
5
, 2
5

¢
, A1 =

¡
3
4
, 1
¤
, B−1 =

£
0, 3

5

¢
∪{xn} and B1 =

¡
1
2
, 1
¤
∪{xn}. Since xn ∈ B−1∩B1 for all

n, each of these points generates three type 1 components in Y , as pictured in Figure 3. It is
clear that to select a conservative preimage of X, we must select the type 3 component over
[0, 1]. To end up with a compact space Z we must eventually select all of the type (1,−1)
components {(xn,−1)} in Y . So some care must be taken in selecting components from Y .
With the possible exception of a finite number of points above the sequence (xn), we end
up with a conservative preimage Z as in Figure 4. We will show formally how to build Z
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following the proof of Theorem 3.5 and Corollary 3.7.
...

...

...

...

Figure 3

...

...

Figure 4

Our main theorem of this section (Theorem 3.5) requires some additional discussion, mo-
tivation and notation. Let P = ((Ai, Bi)) be a double pair in X. For an open subset U of
X let X 0 = XÂU and P 0 = ((A0i, B

0
i)), where A

0
i = Ai ∩ X 0 and B0

i = Bi ∩ X 0. It is clear
that P 0 is a double pair in X 0. It will always be clear from context what X, P and U are, so
no confusion should arise. Consistent with this notation, we let Y 0 be the universal folding
preimage for P 0, τ 0 : Y 0 → X 0 the quotient map and f 0 : Y 0 → I the folding function for Y 0.
We will denote a conservative preimage of X 0 which folds P 0 (if one exists) by Z 0.
We collect relevant information into the following lemma.

Lemma 3.2. Let P = ((Ai, Bi)) be a double pair in X. Let U be an open subset of X and
let X 0, P 0 and Y 0 be as defined above. Then
(1) Y 0 = Y \ τ−1 (U) = Y ∩ τ−1 (X 0), τ 0 = τ |Y 0 and f 0 = f |Y 0.
(2) Every component D0 of Y 0 is contained in a component D of Y .
(3) If D is a component of Y which is contained in Y 0, then D is a component of Y 0.
(4) If D0 is a component of Y 0 not meeting τ−1

¡
Ū
¢
then D0 is a component of Y .

Proof. We first consider (1). Let x ∈ X, r ∈ [−1, 1]. The proof easily from the definitions
of Y and Y 0 by considering cases depending on r. We only give one case as the others are
similar.

(x,−1) ∈ Y ∩ τ−1 (U)⇔ x /∈ A1 and x /∈ U ⇔ x ∈ X 0 and x /∈ A01 ⇔ (x,−1) ∈ Y
0
.

Property (2) follows from the fact that if V is an open subset of X and C 0 is a component of
X 0 r V , then there is a unique component C of X r V containing C 0. We apply this when
V = ∅, V = Ai (in which case X 0 r V = X 0 r A0i) and V = A−1 ∪A1. The argument again
proceeds by considering the type of a component D0 of X 0. The argument parallels the proof
of Proposition 2.8, by considering an exhaustive set of cases. Since most of these cases are
similar, we give only two of them (when D0 is a type 1 or type 2 component) and leave the
other cases to the reader.
First suppose that D0 is a type 1 component of the form C 0×{i} where C 0 is a component

of X 0 contained in B0
i. Note that C

0 is disjoint from both A0j and U so (regarded as a subset
of X) C 0 is disjoint from Aj. Let C be the component in X r Aj which contains C 0. Then
C ×{i} is a subset of a component D of Y which contains D0. Note that (C rAj)×{i}. If
D0 is a type (1, 0) component of X 0, the argument is similar.
Next suppose that D0 = C 0 × {i, 0} ∪ (C 0 rB0

i) × Ii is a type 2 component of Y 0. Then
C 0 is a component of X 0 rA0j contained in B0

j but not in B0
i and C 0 ∩A0i = ∅. Let C be the
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component in XÂAj containing C 0. Then C is not contained in Bi. If C is contained in Bj

then
D = C × {i, 0} ∪ (C rBi)× Ii

is a type 2 component of X containing the type 2 component D0. If C is not contained in
Bj then the component K of X r (A−1 ∪A1) containing C 0 generates a type 3 component
D of Y . Then (using the notation in the proof of Proposition 2.8) C 0 ⊆ UCi and C 0 ⊆ UC0
so C × {i, 0} ⊆ D. Also C 0 rB0

i = C 0 rBi ⊆ (K rBi) so

(C 0 rB0
i)× Ii ⊆ D.

Property (3) is true generally. Property (4) is a direct consequence of boundary bumping
(Lemma 1.10(3)). ¤
Corollary 3.3. Suppose that P = ((Ai, Bi)) is a double pair in X and Z ⊆ Y is a conserv-
ative preimage of X which folds P. Put A = A−1 ∪A1 and Z 0 = ZÂτ−1 (A). Then

bτ 0 : bZ 0 → bX 0

is a homeomorphism. (That is, Z 0 is a conservative preimage of X 0 folding P 0.)

Example 3.4. Easy examples show that Corollary 3.3 fails for an arbitrary open subset U
of X. Put X = [0, 1] , A−1 =

¡
1
5
, 2
5

¢
, A1 =

¡
3
4
, 1
¤
, B−1 =

£
0, 3

5

¢
and B1 =

¡
1
2
, 1
¤
. This is just

Example 2.5 restricted to the subspace [0, 1]. Figure 5 shows a diagram of X and Z, where
we make the only possible choice for Z, the type 3 component mapping onto [0, 1]. Since
each of bX and bZ are singletons, bτ : bZ → bX is a homeomorphism. Put U1 =

¡
1
2
, 3
5

¢
.

Then, as illustrated in the Figure 6, b (XÂU) has two points, each of whose preimages in
b (ZÂτ−1 (U)) has two points. So bτ : b (ZÂτ−1 (U))→ b (XÂU) is not a homeomorphism.
On the other hand Figure 7 shows XÂA and ZÂτ−1 (A) where A = A−1 ∪A1. In this case,
bτ : b (ZÂτ−1 (A)) → b (XÂA) is a homeomorphism. Corollary 3.3 asserts that this is the
case for any A = A−1 ∪A1.

Figure 5 Figure 6 Figure 7

Proof of Corollary 3.3. The issue here is to show that the map bτ 0 = bτ |ZÂτ−1(A) is injective.
Let C 0 be a component of X 0, and let D be the component in Z satisfying τ (D) ⊃ C 0. We
will be done if we can show that τ−1 (C 0) ∩D is connected. The argument splits into cases
depending upon the type of the component D.
The statement is clear if D is type 1 since τ−1 (C 0) ∩D = C 0 × {k} for some k ∈ {0,±1}.

If D is type 2 then, since D ⊂ Z 0, τ(D) is a subset of X 0, so τ−1 (C 0) ∩D = D.
Finally suppose that D is a type 3 component and τ (D) = C ⊃ C 0. From Lemma 2.7,

C = UC−1 ∪ UC1, UC0 = UC−1 ∩ UC1 and, since each UCk is a union of components and
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C 0 ⊂ X\(A−1 ∪A1) , it follows that if C 0 meets UCk thenC 0 ⊂ UCk (k = 0,±1). If C 0 ⊂ UC0
then τ−1 (C 0) is a union of the sets C 0 × {−1}, (C 0 \B−1) × I−1, C 0 × {0}, (C 0 \B1) × I1,
and C 0×{1}. Each C 0×{k} is connected for k = 0,±1, and for each x ∈ (C 0 \Bi), {x}× Ii
(i = ±1) is a connected set intersecting both C 0 × {i} and C 0 × {0}. (That is τ−1 (C 0) ∩D
is a type 3 component of Y 0.) If C 0 is not a subset of UC0, then for one i, C 0 ⊂ UCi and
C 0 ∩ UCj = ∅. So by the definition of D in Proposition 2.8, τ−1 (C 0) ∩D = C 0 × {i}, which
is connected. ¤
Recall that if X is a compact space bX : X → bX is the map which collapses components

of X into singletons in its Boolean reflection bX. For clarity of exposition in the next result,
components in a space will be denoted by capital letters (say C or C 0), and their image in
the Boolean reflection will be denoted by the corresponding lower case letter (say c or c0).
Formally, for c, c0 ∈ bX, we have C = b−1X (c) and C 0 = b−1X (c0).

Theorem 3.5. Suppose that P = ((Ai, Bi)) is a double pair in X, A = A−1 ∪ A1, and
X 0 = XÂA. Then the following are equivalent:
(1) There is a conservative preimage Z ⊆ Y of X folding P .
(2) In bX0X 0, there are disjoint open sets U−1, U1 and open sets V−1, V1 satisfying the

following conditions:
(a) Ui ⊆ Vi \ Vj,
(b) For every c0 ∈ bX0X 0, if C 0 ⊆ Bi then c0 ∈ Ui or c0 ∈ Vj; (Recall that C 0 =

b−1X0 (c0).)
(c) For every c0 ∈ bX0X 0, if C 0 ⊆ Bi and C 0 ∩Ai 6= ∅ then c0 ∈ Ui.

Proof. (1⇒ 2) First assume that Z ⊆ Y is a conservative preimage for X folding P . Then
the following diagram commutes and by Corollary 3.3, bτ 0 : bZ 0 → bX 0 is a homeomorphism.

Y ⊃ Z ⊃ Z 0 bZ 0

X ⊃ X 0 bX 0

-

-
?? ?

bZ0

bX0

τ 0τ bτ 0
S
S
S
Sw

τ

Recall (Definition 1.3) that f : Y → I is the folding function for τ−1 (P ). For i = ±1
put eUi = {d0 ∈ bZ 0 : D0 ⊆ f−1 (i)}, put gV−1 = {d0 ∈ bZ 0 : D0 ⊆ f−1 (−3/2, 1/2)} and eV1 =
{d0 ∈ bZ 0 : D0 ⊆ f−1 (−1/2, 3/2)}. Since bZ0 is an open map, each of the eUi’s and eVi’s is open
in bZ 0. It is clear thatgV−1∪ eV1 is the set of all components of Z 0 with the exception of type 3
components. For i = ±1 put Ui = (bτ

0) eUi and Vi = (bτ
0) eVi. Since bτ 0 is a homeomorphism,

each of these sets is open in bX 0.
We now show that the Ui’s and Vi’s satisfy (a), (b) and (c) by showing that the eUi’s andeVi’s satisfy analogous conditions in bZ 0 and then applying the homeomorphism bτ 0. It is

clear that eUi ⊆ eVi \ eVj which proves (a).
For (b) assume that C 0 is a component of X 0 contained in Bi. Then by the construction

in Proposition 2.8, C 0 generates a type (1, i) component in Y 0, and may also generate a type
(1, 0) and a type (1, j) component, or a type 2 component spanning 0 and j. So, any choice
of a component D0 in Y 0 with τ 0 (D0) = C 0 puts d0 in eUi or eVj.
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For property (c), assume that C 0 is a component ofX 0 with C 0 ⊆ Bi and C 0∩Ai 6= ∅. Then
D0 is either the type (1, i) component C 0×{i} or a type 2 component over C 0 spanning 0 and
j. But since τ−1 (Ai) = Ai × {i}, it follows that for any point x ∈ Ai, τ−1 {x} ∩ Z = (x, i).
This implies that D0 ∩ (Z × {i}) 6= ∅ so D0 = C 0 × {i}. That is, d0 ∈ eUi.
(2⇒ 1) For the converse, we assume that conditions (a)-(c) hold and use them to construct

Z. We think of this construction as selecting, for each x ∈ X, a subset of τ−1 {x} so that
the union Z of the selected points is a conservative preimage.
For each a ∈ A the set τ−1 {a} is a singleton. Clearly, we put all such points {τ−1 {a} : a ∈ A}

into Z.
Now let c0 ∈ bX 0. We will select a component D0 of Y 0 which maps onto C 0.

Case 1: If C 0 * B−1 and C 0 * B1, then there is only one choice, since there is only
one component (a type 3 component) of Y 0 which maps onto C 0.

Case 2: If C 0 ⊆ Bi and C 0 * Bj, then there are two possibilities - the type (1, i)
component C 0 × {i} and a type 2 component spanning levels 0 and j. Choose the
type (1, i) component if c0 ∈ Ui and the type 2 component spanning 0 and j if c0 ∈ Vj.

Case 3: If C 0 ⊆ Bi and C 0 ⊆ Bj there are three possibilities, the type 1 components
C 0 × {k} , k = 0,±1. Choose C 0 × {i} if c0 ∈ Ui for some i and select C 0 × {0}
otherwise, i.e., if c0 ∈ V−1 ∩ V1.

This completes the process of constructing Z. It remains to show that τ−1 (C) ∩ Z is
connected for every component C of X, and that Z is compact.
For the first, let C be a component of X. If C∩A = ∅ then C is a component of X 0 and we

know that τ−1(C 0)∩Z is connected for every component C 0 ofX 0. So let us supposeC∩A 6= ∅.
Observe that there is a unique component D of Y which contains {τ−1 (x) : x ∈ C ∩A} and
therefore D is the unique component of Y such that τ (D) = C. We will show that for any
component C 0 of C \A, τ−1 (C 0)∩Z ⊆ D. Each set of the form τ−1(C 0)∩Z is connected, so
we will be done if we can show τ−1(C 0)∩Z ∩D 6= ∅. But now, using the boundary bumping
property, C∩A 6= ∅ implies C 0∩Ai 6= ∅ for some i = ±1. Let x ∈ C 0∩Ai. The component D
is a closed set which contains all of (C ∩Ai)×{i}. Therefore, D contains (x, i). If C 0∩Bc

i 6= ∅
then C 0 generates a type 3 component of Y 0 and (x, i) ∈ τ−1 (C 0)∩Z. If not, c0 ∈ Ui and by
our construction procedure for Z, τ−1 (C 0)∩Z = C 0×{i}, so (x, i) ∈ τ−1 (C 0)∩Z. Therefore,
(x, i) ∈ τ−1 (C 0) ∩ Z ∩D.
To show that Z is compact, we show that Zc is open in Y . Let D be a component of Zc.

Since every type 3 component is automatically in Z, D must be a component of type 1 or
2. Further, note that τ (D)∩A = ∅, so τ (D) is a component of X 0. We now consider cases.
Suppose first that D is a type (1, i) component for i = ±1. Then τ (D) ⊆ Bi and, by the

construction procedure for Z, D ⊆ Zc if and only if bX0τ (D) ∈ Vj. The set

W = {D : τ (D) ⊆ Bi} ∩ bX0τ−1 (Vj)

is open in Y and D ⊂W ⊂ Zc.
Next, suppose that D is a type (1, 0) component. Then τ (D) ⊆ B−1 ∩B1 and D ⊆ Zc if

and only if bX0τ (D) ∈ U−1 ∪ U1. The set

W = {D : τ (D) ⊆ B−1 ∩B1} ∩ bX0τ−1 (U−1 ∪ U1)

is open in Y and D ⊂W ⊂ Zc.
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Finally, suppose that D is a type 2 component spanning levels 0 and j. Then τ (D) ⊆ Bi

and D ⊆ Zc if and only if bX0τ (D) ∈ Ui. The set

W = {D : τ (D) ⊆ Bi} ∩ bX0τ−1 (Ui)

is open in Y and D ⊂W ⊂ Zc.
Therefore Zc is open and Z is compact. ¤
We will see in Theorems 3.20 and 3.21 that conservative preimages of X folding P contain-

ing type 2 components of Y can create an obstacle to building a conservative Bing preimage
of X. So it is crucial to know when type 2 components can be avoided. We would also like to
avoid type (1, 0) components as well. The following lemma shows that if type 2 components
can be avoided, then so can type type (1, 0) components.

Lemma 3.6. Suppose that P = ((Ai, Bi)) is a double pair in X. Suppose also there is a
conservative preimage Z ⊆ Y of X folding P consisting of type 1 and type 3 components of
Y . Then there is a conservative preimage W ⊆ Y of X folding P consisting of type (1,−1),
type (1, 1) and type 3 components of Y .

Proof. Suppose that Ẑ is a conservative preimage of X, folding P , and containing only type
1 and type 3 components. Let T be the union of the type 3 and the types (1,−1) and (1, 1)
components of Ẑ. It is clear that T is closed in Y . Let S0 be the union of the type (1, 0)
components in Ẑ and let S1 be the set obtained by replacing each point (x, 0) ∈ S0 by (x, 1).
Let Z = T ∪ S1. That is, Z is the space obtained from Ẑ by replacing each type (1, 0)
component in Ẑ by the corresponding type (1, 1) component in Y .
We claim that Z is a conservative preimage of X. To prove that Z is closed, it suffices

to prove that any cluster point of S1 is in Z. To this end, let (x, 1) be such a point. But
then (x, 0) is a cluster point of S0, hence is in Ẑ. If (x, 0) ∈ S0, then (x, 1) ∈ S1 ⊂ Z.
If (x, 0) /∈ S0, then (x, 0) ∈ D where D is a type 3 component of Ẑ, hence of Z. By the
characterization of type 3 components in the proof of Proposition 2.8 (x, 1) ∈ D ⊂ W as
well. So, Z is closed. It is now easy to see that Z is conservative preimage of X. ¤
Corollary 3.7. Suppose that P = ((Ai, Bi)) is a double pair in X, A = A−1 ∪ A1, and
X 0 = XÂA. Then the following are equivalent:
(1) There is a conservative preimage Z ⊆ Y of X folding P consisting of type 1 and type

3 components of Y .
(2) There is a conservative preimage Z ⊆ Y of X folding P consisting of type (1,−1),

type (1, 1) and type 3 components of Y . (That is, type (1, 0) components can be
avoided.)

(3) In bX0X 0, there are disjoint open sets U−1 and U1 satisfying the following conditions:
(a) U−1 ∪ U1 = {c0 ∈ bX0X 0 : C 0 ⊆ B−1 or C 0 ⊆ B1}.
(b) For every c0 ∈ bX0X 0, if C 0 ⊆ Bi and C 0 ∩Ai 6= ∅ then c0 ∈ Ui.

Proof. We have already (Lemma 3.6) established the equivalence of (1) and (2). We now show
that (2⇒ 3). To this end let Z be as in (2). (We continue with the notation introduced in the
argument of Theorem 3.5.) For i = ±1, put eUi = {d0 ∈ bZ 0 : D0 ⊆ f−1 (i)} and Ui = (bτ

0) eUi.
Each of these sets is open. Since Z contains no type 2 components, neither does Z 0. It is
now straightforward to check that conditions 3(a) and 3(b) hold.
For (3 ⇒ 2) we first apply the construction in the proof of Theorem 3.5 with Vi = Ui to

form a conservative preimage Ẑ of X. The space Ẑ may contain type 2 components (from
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case 2) but it contains no type (1, 0) components, since these are built only in case 3 and
only when V−1 ∩ V1 6= ∅.
Let Z be the space formed by by exchanging each type 2 component spanning 0 and j

in Ẑ 0 (or Ẑ) with the corresponding type (1, i) component in Y 0. Specifically, let C 0 be a
component of X 0 and D0 a type two component over C 0 spanning 0 and j. Then remove D0

from Ẑ and add C 0×{i} to Z. Note that C 0 ∩Ai = ∅. So the components of Z are precisely
the types 3 and 1 components of Ẑ and these new exchanged type (1, i) components. We
are done once we show that the space Z formed in this way is closed. (The argument is
similar to that in Lemma 3.6.) Let T denote the union of the type 2 components in Ẑ and
S the union of the corresponding (1, i) components (the replacements) in Z. If (x, i) is a
cluster point of S, then some (x, r) (where r is between 0 and j) is a cluster point of T . Now,
since the union of the points in type 2 and type 3 components is closed, either (x, r) ∈ T or
(x, r) ∈ D, where D is a type 3 component in Z. In the former case, (x, i) ∈ S ⊂ Z. In the
latter case, (x, i) ∈ D, again by the characterization of type 3 components in the proof of
Proposition 2.8. In either case, (x, i) ∈ Z and Z is closed. ¤
Example 3.1 (continued). Let us show how Corollary 3.7 leads to the construction of the
conservative preimage Z as discussed in the first part of this example. The space bX 0 =
{xn : n = 1, 2, · · · } ∪ {c1, c2} is shown in Figure 8.

Figure 8
In bX 0, xn → c1 and C1 is the component of X 0 meeting A−1 and contained in B−1, C2
meets both A−1 and A1. Let us build U±1. By condition 2(b), c1 ∈ U−1 and since U−1
must be open, there is an N so that {xn : n ≥ N} ⊂ U−1. Our construction process gives
{xn} × {−1} ⊂ Z for n ≥ N . The component C2 is a type 3 component, so it must be a
subset of Z as well. The remaining points {xn} for n < N are also isolated, so they may
distributed into U±1 in any way whatsoever.
We arrive at the following critical result, which gives a sufficient condition for folding

every double pair in X. The condition states that every open subspace W of bX satisfies
the following strong normality property.

Definition 3.8. A totally disconnected compact space K is strongly hereditarily normal if
it satisfies the following property:
Let W be an open set in K and let E−1 and E1 be two disjoint closed inW subsets. Then

there are two disjoint clopen in W sets U−1 and U1 such that Ei ⊂ Ui and W = U−1 ∪ U1.
Theorem 3.9. Suppose that P is a double pair in X. Suppose also that bX 0 is strongly
hereditarily normal. Then there is a conservative preimage Z ⊆ Y of X folding P consisting
of type (1,−1) type (1, 1) and type 3 components of Y .

Proof. Let P be a double pair inX. FormX 0 and Y 0 from P . Let Ẑ = {c0 ∈ bX0X 0 : C 0 ⊆ B−1
or C 0 ⊆ B1}. For i = ±1 let Ei =

©
c0 ∈ bX0X 0 : C 0 ∩Ai 6= ∅

ª
. By 1.10(1), each Ei is closed

in Ẑ and the Ei’s are disjoint, since if C 0 ∩ Ai 6= ∅ for i = ±1, then c0 /∈ Ẑ. Select Ui ⊃ Ei

so that the Ui’s are clopen in Ẑ and partition Ẑ. A direct application of Corollary 3.7 gives
a conservative preimage Z of X folding P in the stated form. ¤
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To show that this class of spaces is interesting and to set the stage for showing that
every metric space has a conservative Bing preimage, we show here that totally disconnected
compact metric spaces K are strongly hereditarily normal. In addition, we show that the
ordinal space [1,Ω] with the order topology is strongly hereditarily normal. (Ω denotes the
first uncountable ordinal.)

Lemma 3.10. Suppose thatK is a totally disconnected compact space in which every open set
is an Fσ set. Then K is strongly hereditarily normal. In particular, every totally disconnected
compact metric space is strongly hereditarily normal.

Proof. Let W be an open subset of M and E−1, E1 disjoint, closed in W sets. Write
W = ∪∞n=1Wn where each Wn is clopen in M and Wn ∩Wm = ∅ if n 6= m. For n = 1, 2, . . .
and i = ±1 put Fn,i = Wn ∩ Ei. Since Fn,−1 and Fn,1 are disjoint closed sets in Mn, there
are disjoint clopen sets Un,−1 and Un,1 in Mn so that Fn,i ⊆ Un,i and Un,−1 ∪ Un,1 =Wn.
Now for i = ±1 let Ui = ∪∞n=1Un,i. It is immediate that U−1 and U1 have the desired

properties. ¤
Lemma 3.11. Let K = [1,Ω] where Ω is the first uncountable ordinal. Then K is strongly
hereditarily normal.

Proof. The proof is a standard exercise, essentially the same as proving that the space [1,Ω)
is normal so we provide only a sketch. Assume first that W = [1,Ω). The key is the fact
that if E−1 and E1 are two disjoint closed in W sets, then at most one of them can have
Ω as a cluster point. Taking the closures of these sets in [1,Ω], it follows that E−1 and E1
are disjoint. So, E−1 and E1 can be separated in [1,Ω] by disjoint clopen sets V−1 and V1.
Letting Ui = Vi ∩W gives the desired clopen partition of W . The case for arbitrary open
W is now similar. The case where Ω /∈W is similar to the above. The case where Ω ∈W is
essentially the same as [1,Ω]. ¤
Definition 3.12. Suppose that Q = ((A−1, B−1), (A1, B1)) and P = ((U−1, V−1), (U1, V1))
are double pairs in the space X.We say that P covers Q if Ai ⊂ Ui and Bi ⊂ Vi for i = ±1.
We call a family P of double pairs of X a covering family if for every double pair Q in X,
there is a P ∈ P which covers Q.
The importance of covering families is indicated in the next result.

Lemma 3.13. Suppose that X is a compact space and P is a covering family of double pairs.
Suppose that every double pair P ∈ P is folded in X. Then every double pair in X is folded.

Proof. Given a double pairQ = ((A−1, B−1), (A1, B1)) inX, find P = ((U−1, V−1), (U1, V1)) ∈
P as assumed. Let f : X → [−1, 1] fold P . Then f folds Q as well. ¤
Lemma 3.14. Suppose that X is a compact space and U a base for the topology of X which
is closed under finite unions. Then {((A−1, B−1), (A1, B1)) : Ai, Bi ∈ U for i = ±1} is a
covering family.

Proof. This is a standard compactness exercise. ¤
We now begin a construction to show that if X is any compact metric space, then X has

a conservative Bing preimage. The first step is Lemma 3.15, which produces a conservative
metric preimage Z of X in which every double pair in X (but perhaps not in Z) is folded.
This lemma provides the central step in an inductive process that we use in the proof of
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Theorem 3.17 to produce a Bing preimage of X. The machinery we have developed makes
the arguments fairly straightforward. We use repeatedly the fact that if X is a metric space,
then so is any subspace X 0 of X. In particular, bX 0 is metric, so it is strongly hereditarily
normal and Lemma 3.10 may be applied.

Theorem 3.15. Let K be a compact metric space. Then X has a metric conservative
preimage Z in which every double pair in X is folded.

Proof. The proof proceeds via an inductive construction. Observe that X has a countable
covering family {Pn : n = 1, 2, . . .} of double pairs. (Such a family exists since each of the
sets in a double pair may be covered by a finite union of sets from a countable base.)
Put Z0 = X. Let τ1,0 : Z1 → Z0 be the quotient map where Z1 is a conservative preimage

of Z0 folding P1. (The space Z1 exists because bZ 00 is strongly hereditarily normal.)
Now suppose that the sets Z0, . . . , Zn, bonding maps τk,m : Zk → Zl for all 0 ≤ m ≤ k ≤ n

such that
(1) τk,m maps Zk conservatively onto Zm. (In particular, bZk = bZ0 = bX for all 0 ≤

k ≤ n.)
(2) If 0 ≤ m ≤ p ≤ k ≤ n then τk,m = τp,m ◦ τk,p.
(3) For all k = 0, . . . n, Pk is folded in Zn.
We now construct Zn+1 and τn+1,k : Zn+1 → Zk so that 1—3 are satisfied.
Let Zn+1 be a conservative preimage of Zn folding Pn+1. Let τn+1,n : Zn+1 → Zn be the

quotient map. For k ≤ n put τn+1,k = τn,k◦τn+1,n. This completes the inductive construction.
Put Z = lim←−{Zn : n = 0, 1, 2, . . .} and for n = 0, 1, 2, . . . let τn : Z → Zn be the natural

projection onto Zn. It is clear that every double pair in X is folded in Z.
To show that Z is a conservative preimage of each Zn, we need only show that bτn : bZ →

bZn is a homeomorphism. But this is easy, since each bonding map bτm,n : bZm → bZn is a
homeomorphism for each m ≥ n.
Since Zn ⊂ Zn−1 × [−1, 1]ℵ0 for all n ≥ 1, each Zn is also metric. Since the inverse limit

Z = lim←−{Zn : n = 0, 1, 2, . . .} of compact metric spaces is again compact metric, we obtain
a metric conservative preimage Z of X folding each double pair in X. ¤
Remark 3.16. Suppose we know the following: X is a compact space and P is a covering
family of open double pairs in X such that for every P ∈ P, bX 0 is strongly hereditarily nor-
mal. Then a transfinite induction similar to the induction process above gives a conservative
preimage Z of X which folds every double pair in X. We omit the details.

Theorem 3.17. Let X be a compact metric space. Then X has a metric conservative Bing
preimage Z.

Proof. The argument uses Lemma 3.15 and a standard induction. Put Z0 = X and induc-
tively construct a sequence Zn of spaces and quotient maps τn : Zn → Zn−1 so that
(1) Every double pair in Zn−1 is folded in Zn.
(2) Zn is a conservative preimage of Zn−1 with quotient map τn : Zn → Zn−1.
Let Z = lim←−{Zn : n = 0, 1, 2, . . .} and τ : Z → X be the natural projection onto X = Z0.

As in the proof of Lemma 3.15, it is easy to see that τ is conservative. To show that every
double pair in Z is folded, consider the family of setsÃ

O0 ×O1 ×O2 × · · ·On ×
Y
m>n

Zm

!\
Z



QUOTIENTS OF BING SPACES 17

where each Oj is open in Zj. Let U be the family of finite unions of these open sets. The
construction shows that if P ∈ U , then P is folded in Z. Also, U is a base of open sets
satisfying Lemma 3.14. By Lemma 3.13, such a family is covering and so every double pair
in Z is folded. Since Zn ⊂ Zn−1 × [−1, 1]ℵ0 for all n ≥ 1, each Zn is also metric. Since the
inverse limit Z = lim←−{Zn : n = 0, 1, 2, . . .} of compact metric spaces is again compact metric,
we obtain a metric conservative Bing preimage Z of X. ¤

Theorem 3.18. Let X be a connected compact space. Then X has a connected conservative
Bing preimage Z.

Proof. If X is connected, then for each double pair P in X, there is a type 1 or type 3
component D in Y such that τ (D) = X. Put Z = D. In particular, Z is connected, the
transfinite induction argument discussed in Remark 3.16 gives a hereditarily indecomposable
continuum mapping onto X. ¤

Open Problem. If bX is metric or strongly hereditarily normal, does X have a conservative
Bing preimage Z? The distinction between this and the results of Theorem 3.15 is that for
subspaces X 0 of X, bX 0 need not be metric and so the construction discussed in Remark 3.16
does not work.

We now show (Theorem 3.20) the existence of a space X and double pair P in X for which
a conservative preimage Z folding P exists, but where any conservative preimage must have
type 2 components. In Theorem 3.21 we exhibit a space X1 and double pair Q in X1 for
which no conservative preimage Z folding Q exists. The first step is showing that there is a
totally disconnected compact space which is not strongly hereditarily normal.

Lemma 3.19. Let X = [1,Ω]×[1,Ω]where Ω is the first uncountable ordinal and each factor
has the order topology. Then X is not strongly hereditarily normal.

Proof. Put R = {Ω} × [1,Ω] and W = XÂR. Let E−1 = {(α,Ω} : α < Ω} and E1 =
{(α, α} : α < Ω}. Observe that W is open in X, and E−1 and E1 are disjoint closed in W
subsets of W . It is well known and easy to establish ([2, problem E, p131]) that E1 and E−1
cannot be separated by disjoint open in W sets. (This is a standard example that shows
that the product [1,Ω]× [1,Ω) of two normal spaces need not be normal.) ¤

Lemma 3.19 shows that the next two results are not vacuously true.

Theorem 3.20. Let X be any totally disconnected compact space which is not strongly
hereditarily normal. Then there is a double pair P in X so that if Z ⊆ Y is any conservative
preimage of X folding P , then Z has type two components.

Proof. Let W be an open subset of X and E−1 and E1 disjoint closed in W subsets of
W which cannot be separated by disjoint clopen sets. Let A−1 = A1 = ∅, B−1 = WÂE1,
B1 =WÂE−1 and P = ((∅, Bi)). SinceX is totally disconnected, components are singletons.
Since A = A−1∪A1 = ∅, X = X 0 = bX = bX 0 and we do not distinguish among them. Also,
B−1 and B1 are open both in W and in X and B−1 ∪B1 =W .
Now form Y and observe that

• If x /∈W , then x /∈ B−1 ∪B1, so x generates a type 3 component {x} × I.
• If x ∈ B−1 ∩ B1, then x generates three type 1 components {(x,−1)}, {(x, 0)} and
{(x, 1)}.
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• If x ∈ E−1 then x ∈ B−1ÂB1, giving the type 1 component {(x,−1)} and the type
2 component {x} × I1.

• If x ∈ E1 then x ∈ B1ÂB−1, giving the type 1 component {(x, 1)} and the type 2
component {x} × I−1.

We now produce a conservative preimage X1 ⊂ Y which folds P . (We call it X1 because
we will show in Theorem 3.21 that there is a double pair Q in X1 which cannot be folded
in any conservative preimage.) To do this, use the type 3 components {{x} × I : x ∈ R},
the type 2 components {{x} × I1 : x ∈ E−1} and {{x} × I−1 : x ∈ E1}. Finally, use the type
(1, 0) components {{(x, 0)} : x ∈ B−1 ∩B1}. It is routine to verify that X1 is a closed,
conservative preimage of X.
In the construction of X1 in Theorem 3.5, this corresponds to letting U−1 = U1 = ∅,

V−1 = B1 and V1 = B−1. It is immediate that conditions (a)-(c) are satisfied. Indeed, (a) is
clear, (c) is vacuous, and if c ∈ Bi, then c ∈ Vj, establishing (b).
We showed above that if X is metric, we can always construct Z using only types 1 and

3 components. We now show that any conservative preimage Z of X folding P must have
type 2 components.
So let us suppose by way of contradiction that another conservative preimage Z of X

exists with no type 2 components. Then included in Z must be the type 3 components
{{x} × I : x /∈W} and the sets of type 1 components E1 × {1} and and E−1 × {−1}. For
i = ±1, let

Ui = {x ∈ X : {(x, i)} is a type (1, i) component in Z} .
The Ui’s are disjoint clopen sets inW , partitionW , and Ui ⊇ Ei for i = ±1. This contradicts
the fact that E−1 and E1 cannot be separated by disjoint clopen sets in W . We have shown
that condition 3 in Theorem 3.7 doesn’t hold, so no conservative preimage without type 2
components can exist. ¤
Theorem 3.21. Let X be any totally disconnected compact space which is not strongly
hereditarily normal. Then there is a space X1 with bX1 = X and a double pair Q in X1 that
cannot be folded in any conservative preimage of X1. In particular, X1 has no conservative
Bing preimage.

Proof. Let X, P , X1, and τ : X1 → X be as in Theorem 3.20. We will show that there is a
double pair Q in X1 which cannot be folded in any conservative preimage of X1. Let

A1−1 =

½
(x, r) ∈ X1 : x ∈W and r >

1

2

¾
and

A11 =

½
(x, r) ∈ X1 : x ∈W and r < −1

2

¾
.

Let B1
i = τ−1 (Bi) = {(x, r) ∈ X1 : x ∈ Bi}. It is readily checked that Q = ((A1i , B

1
i )) is a

double pair in X1.
Form Y1 from X1 and Q as usual. For purposes of notational clarity, let us denote the

natural projection from Y1 ontoX1 by σ. We will show that there is no closed Z1 in Y1 so that
σ maps Z1 conservatively onto X1 and folds Q. This follows from a number of observations.
Since X1 may be thought of as arising from X by replacing certain point components

(points in E1 ∪ E−1) by intervals, it is clear that bX1 = X and that the map b : X1 → bX1

coincides with the quotient map τ : X1 → X given by τ (x, r) = x for (x, r) ∈ X1. If



QUOTIENTS OF BING SPACES 19

x ∈ E−1 then the interval {x} × I1 is a component in X1 and its preimage in Y1 under σ
consists of a type (1,−1) component and a type 2 component, as shown in Figure 11. (A
similar statement/picture holds for components mapping into {x} × I−1 for x ∈ E1.)

Figure 11

Note that no type 2 component in Y1 maps under σ onto a component of X1 so it cannot be
selected as part of any conservative preimage of X1. (Precisely, the only type 2 components
in Y1 are those of the form {x}× [0, 1/2]×I1 for x ∈ E−1 or {x}× [−1/2, 0]×I−1 for x ∈ E1.)
So by Lemma 3.6, we may assume that Z1 consists of type (1,−1), type (1, 1) and type 3
components of Y1.
In particular there exist disjoint open sets U1 and U−1 in bX0

1
X 0
1 satisfying conditions (3a)

and (3b) in Corollary 3.7. The argument is completed by interpreting these conditions in
the current setting.
The components of X

0
1 are as follows:

(1) {x} × I for x /∈W.
(2) {x} × [0, 1/2] for x ∈ E−1 and {x} × [−1/2, 0] for x ∈ E1.
(3) (x, 0) for x ∈WÂ (E−1 ∪E1).

So bX
0
1 = X and the Boolean reflection b : X

0
1 → bX 0

1 = X is just τ |X0
1
.

Condition (3a) is U−1 ∪ U1 = W . For condition (3b), observe that the components of X 0
1

which are contained in B1
−1 and meet A

1
−1 are precisely those of the form {x} × [0, 1/2] for

x ∈ E−1. So E−1 ⊂ U−1. Similarly, E1 ⊂ U1.
The assumption that a conservative preimage of X1 folding Q gives the following: Two

disjoint open in W sets U−1 and U1 with Ui ⊇ Ei. This is again a contradiction. ¤
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