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Abstract. It is proven that the phase space localization operators on the
Hilbert spaces of ordinary quantum mechanics provide a set of operators that
are physically motivated and form a C* algebra. Then, it is proven that the
set of localization operators, when extended, are informationally complete in
the original Hilbert space.

1. Introduction

In 1972, "Algebraic Methods in Statistical Mechanics and Quantum Field The-
ory" was published by Gerard Emch [8], giving the axioms for a physical system
in an algebraic setting using the language of Irving Segal [19], and then going on
to obtain the C*-algebraic formalism for a physical system. Of these axioms, only
the fifth contained an assumption that was questionable in its physical content.
Bearing in mind that for each observable A and state φ, one obtains a distribution
of values for the observed results of measurement, we have:
Axiom 5: For any element A in the set of observables A and any non-negative

integer n, there is at least one element, denoted An, in A such that (i) the set of
dispersion-free states for An is contained in the set of dispersion-free states for A,
(ii) < φ;An > = < φ;A >n for all φ in the set of dispersion-free states for A. (Here
< φ;B > is the expectation of observable B in state φ.)
This axiom is nessessary in order to define the product of two or more observables

as a member of A. Our objective here is to justify that claim (as well as all the
other axioms of the C* approach) for a set of observables that are physically
motivated as well as informationally complete in the Hilbert spaces of ordinary
quantum mechanics. In this way, we will obtain a completely physically motivated
basis for the C* formalism for quantum mechanics. Then, the C* formalism may
be used for more general physical situations, with an additional restriction that we
will place on the algebra of observables in the phase space formalism.
It is first incumbent upon us to justify why this is a problem at all. We take

the position operator, Q, or the momentum operator, P , as examples. They are
unbounded self-adjoint operators with a purely continuous spectrum on any of the
non-relativistic Hilbert spaces in quantum mechanics. We first treat them as being
generated by their spectral projections onto compact sets of their spectrum, each
being a bounded self-adjoint operator. But you have a problem; each of these
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has a piecewise continuous spectrum, and thus has no purely discrete spectrum
(eigenvalues) associated with it, much less a complete basis of eigenvectors. The
same problem appears for any operator with a purely continuous spectrum in any
Hilbert space. We, next, may use a theorem [22] that says that if T is a self-
adjoint, bounded operator on a separable Hilbert space, then there exists a self-
adjoint compact operator K such that T +K has eigenvectors that span the space.
Moreover, by a theorem of von Neumann [21], k K k may be made arbitrarily small
and T doesn’t have to be bounded. But there is no physical interpretation for what
K is!
A way to circumvent this came from considering the phase space formalism for

quantum mechanics. [16] In this formalism, the Hilbert spaces in which quantum
mechanics is done are the usual ones and on each one we may define a phase space
localization operator; we shall investigate the properties of such a phase space
localization operator. It will have all the properties we want.
In Section 2, we define the phase space representations for any locally com-

pact Lie group and obtain the phase space localization operators on them. In the
next section, we define the usual quantum mechanical representation spaces for
the Galilei and Poincaré groups, obtain an embedding of these spaces into the ap-
propriate phase space representation spaces, and then pull back the phase space
localization operators. We also discuss the previously known informational com-
pleteness of such phase space localization operators. In Section 4, we investigate in
detail the spectral properties of these pulled back phase space localization opera-
tors. We find that for any function that is Lp in the phase space, these operators
have a purely discrete spectrum. In Section 5, we show that they comprise a set
of operators that are physically observable and form a C* algebra. Finally, in Sec-
tion 6, we show that we may construct a Hilbert space in which the localization
operators form an informationally complete set.

2. Phase space representations of a locally compact group

The majority of this section has been discussed in [6].
From classical experiments, one learns that classical (Newtonian) equations of

motion are invariant under translations, boosts (relative velocity transformations
between inertial [Galileian] reference frames), and rotations. Prior to 1887, these
were viewed to generate the group of Galilean transformations on spacetime. Since
the Michelson-Morley[14] experiment, and the subsequent analysis of numerous lu-
minaries, these spacetime translations, boosts and rotations were interpreted as
the generators of the group of Lorentz (or Poincaré) transformations on either
energy-momentum space or on spacetime. These transformations generate the en-
tire group from those transformations acting on an arbitrarily small neighborhood
of any point. Transformations infinitesimally near the identity transformation form
a vector space (the Lie algebra of the group) on which a non-associative operation
(the Lie bracket) is defined. Thus, classical experiments reveal the kinematical
groups of relevance.
The lesson learned through the efforts of mathematicians over the last 250 years

is that we may use a space with a Poisson bracket, a phase space, to describe a
classical conservative mechanics. A phase space is mathematically a (symplectic)
manifold which possesses a closed, non-degenerate 2-form on it. Furthermore, the
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relevant Galilei or Poincaré group acts on this space in such a way as to preserve
the Poisson bracket (acts "symplectically"). The phase space is thus a "G space",
G the kinematical group. As a consequence of this set-up, "conjugate variables" are
coordinates on the phase space which realize the canonical skew-symmetric form of
the Poisson bracket, etc. With the experience of the Galilei and Poincaré groups,
one may abstract this formulation to the setting of the action of a Lie group G on
any phase space on which G acts symplectically.
A Lie group G generates, as above, a Lie algebra g; we may think of g as the

collection of all left-invariant vector fields on G. This process is invertable by
exponentiation that associates an element of the group (near the identity) to any
element of the Lie algebra sufficiently near the origin (zero). One may thus go from
the Lie group to the Lie algebra, and vice versa.
In the following, it is essential that g is a finite-dimensional vector space. If ∧

designates the anti-symmetric tensor product on g then one may form the skew-
symmetric tensor algebra ∗(g) over g consisting of R, g, g ∧ g, g ∧ g ∧ g, etc. Let
their duals be denoted by g∗, etc. and note that g∗ may be thought of as the
collection of all left-invariant 1-forms on G, (g ∧ g)∗ as the left-invariant 2-forms on
G, and so on. We then define the coboundary operator δ

R −→δ0 g∗ −→δ1 (g ∧ g)∗ −→ · · ·
as follows: Let {Ai} be a basis of g and let {ωi} be the associated dual basis of
g∗ so that ωi(Aj) = δij . The structure constants C

k
ij ∈ R of g, defined relative to

the basis {Ai}, are determined by the Lie bracket relations: [Ai, Aj ] =
X
k

Ck
ijAk.

The R in the sequence above can be considered to be the collection of left-invariant
functions on the group G, which is assumed to be connected, so that the R may be
thought of as the left-invariant 0-forms f on the group. We define δ0f = 0 as an
element of g∗. Next, thinking of the ωi as left-invariant 1-forms, we find that the
Maurer-Cartan equations hold: dωk = −12

X
i,j

Ck
ijω

i ∧ ωj . We then define

δ1ω
k = −1

2

X
i,j

Ck
ijω

i ∧ ωj

recognizing that this 2-form is actually in (g∧ g)∗. One extends this expression for
δ1 linearly, obtaining g∗ −→δ1 (g∧g)∗. Making use of the skew-derivation property
for δ2

δ2(λ ∧ µ) ≡ (δ1λ) ∧ µ− λ ∧ (δ1µ),
for λ, µ ∈ g∗, one defines δ2 and proceeds inductively to define δ.
Next, let

Z2(g) ≡
©
ω ∈ (g ∧ g)∗ | δ2(ω) = 0

ª
denote the space of closed, left-invariant 2-forms on G, and, for ω ∈ Z2(g), define

hω ≡ {ξ ∈ g | ω(ξ, ·) = 0}.
It turns out that hω is a Lie sub-algebra of g; so by exponentiation, hω determines
a subgroup Hω of G. We must assume that Hω is a closed subgroup of G to obtain
a manifold:

Γ ≡ G/Hω.
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It is a symplectic manifold as the 2-form ω, when factored by its kernel, is the
pull-back of a non-degenerate closed 2-form on G/Hω. That Γ is a symplectic
G space follows because G acts on G/Hω by left multiplication on left cosets:
gx = g(g1Hω) = (gg1)Hω, where x = g1Hω for some g1 in G. Since Γ ≡ G/Hω

is a symplectic manifold, it naturally possesses a left-invariant Liouville measure µ
equal to the m-th exterior power of ω, where the dimension of Γ is equal to 2m for
some integer m.
The following result (Theorem 25.1 of [10]) captures the essence of the need for

the construction outlined above and is sufficient for our purposes, but only in the
context of single-particle kinematics.

Theorem 1. Any symplectic action of a connected Lie group G on a symplectic
manifold M defines a G morphism, Ψ : M → Z2(g). Since the map Ψ is a G
morphism, Ψ(M) is a union of G orbits in Z2(g). In particular, if the action of G
on M is transitive, then the image of Ψ consists of a single G orbit in Z2(g).

For the Galilei group and the Poincaré group, elements of Z2(g) are fixed by a
choice of mass and spin. Consequently, one obtains all the single-particle symplec-
tic spaces on which G acts symplectically and transitively, and one has a unified
mathematical picture of kinematics in the two (Galileian and Lorentzian) cases of
relevance to one-particle physics. Using the "méthode de fusion" [20], we describe
multi-particle kinematics by a phase space that is a Cartesian product of the single-
particle phase spaces with symplectic form equal to the "sum" of the symplectic
forms on each of the single-particle factors. Thus we may start from the symplectic
action of a group on a classical single-particle phase space, and obtain all the phase
spaces (single- or multi-particle) on which G acts symplectically, in a physically
meaningful way.

One may form L2µ(Γ), a Hilbert space on which one may represent G by unitary
operators V α(g)

[V α(g)Ψ](x) ≡ α(h(g−1, x))Ψ(g−1x)

for Ψ ∈ L2µ(Γ), x ∈ Γ, g ∈ G, h a generalized cocycle, and α a one-dimensional rep-
resentation of H; i.e., incorporate a phase factor in the left-regular representation.
Then, define an operator A(f), for all µ-measurable f , by

[A(f)Ψ](x) ≡ f(x)Ψ(x).

When the f are characteristic functions χ(∆), these operators on L2µ(Γ) have a
clear classically-motivated interpretation of localization observables in the phase
space region ∆. The A(f) form a commuting set, reflecting the classical property
that the operators of position, momentum, etc. are all obtainable with precision
simultaneously. For this reason and others, it will become evident that L2µ(Γ)
is not a Hilbert space of fundamental importance to the description of quantum
mechanical models of elementary (i.e., irreducible) single-particle systems. It will
turn out that it is reducible into a direct sum (or integral) of such irreducible spaces.

3. Quantum Mechanical Representation Spaces

This section is also largely taken from [6].
In the case where G is one of the inhomogeneous Galilei and Lorentz groups, we

know that all continuous, irreducible, unitary Hilbert space representations are ob-
tained through the "Mackey Machine" [13] and the earlier Wigner classification [23]
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and that these representations are characterized by the Casimir invariants in the
universal enveloping algebra of the Lie algebra. These Casimir elements are identi-
fiable as the physical quantities of rest mass and spin (or helicity in the mass-zero
case) in the case G = the inhomogeneous Lorentz group. For the inhomogeneous
Galilei group, the analysis of Lévy-Leblond [12] achieved a similar picture physically
characterized by mass and spin.
In what follows, U will denote an irreducible unitary representation of G on an

irreducible representation space, denoted H, with inner product denoted < ·, · >.
We wish to encode the entire content of the state vector ϕ ∈ H into a complex-

valued function on the phase space Γ in a manner that is reversible. The goal is
to be able to reconstruct the state from the complex numbers [W η(ϕ)](x) which
encode it. Hence, to intertwine H with L2µ(Γ), we perform the following: we define
a linear transformation W η from H to L2µ(Γ) by

[W η(ϕ)](x) ≡ < U(σ(x))η, ϕ >

for x ∈ Γ = G/Hω, for all g ∈ G, and for all ϕ ∈ H, where η is a vector in H and
where σ is a (Borel measurable) section

σ : G/Hω −→ G.

To ensure that the image of W η actually lies in L2µ(Γ) we rely on our choice
of η. One first selects and fixes, once and for all, a (Borel measurable) section
σ : G/Hω −→ G. Now, one says that η is admissible with respect to the section σ
if Z

Γ

|< U(σ(x))η, η >|2 dµ(x) <∞.

Assuming that η is admissible with respect to σ, one says that η is α-admissible
with respect to σ if in addition to admissibility of η one also has

U(h)η = α(h)η

for all h in Hω, where α is a one-dimensional representation of Hω. If η is α-
admissible with respect to σ then we may define the mapping W η from H to
L2µ(Γ).[16] As we shall see, this is also enough to describe states ϕ ∈ H by their
images W η(ϕ) in L2µ(Γ).
To illustrate that these conditions are achievable for all representations indexed

by mass and spin of the Galilei and Poincaré groups, consider, for example:
(1) the case of a massive, spinless, relativistic particle (G = Poincaré group)

in which one finds [1] that η must be rotationally-invariant under Hω = SU(2),
and square-integrable over Γ ≡ G/Hω

∼= R6 ∼= R3position ×R3momentum, the classical
phase space of a massive, relativistic spinless particle.
(2) the case of a massive, relativistic particle with non-zero spin (G = Poincaré

group) in which one finds [3, 5] that η must be rotationally invariant about the "spin
axis" (but not necessarily invariant under all rotations in SU(2)), i.e., invariant
under Hω = double covering of O(2) ∼= stabilizer in SU(2) of the spin axis, and
square-integrable over Γ ≡ G/Hω

∼= R3position × R3momentum × S2spin, the classical
phase space of a massive, relativistic, spinning particle.
Orthogonality relations are present insuring that the images of the W η are or-

thogonal in L2µ(Γ). We have the
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Theorem 2. [11] Let G be a locally compact group, H a closed subgroup, σk :
G/H → G any Borel sections, and Uk any unitarily inequivalent representations of
G square integrable with respect to σk(G/H) on Hilbert space Hk. (k ∈ {1, 2}.) Also
let Hkαk denote the non-trivial closed subspaces of Hk generated by the set of αk-
admissible vectors in Hk. Assume that the vectors ηk, ξk ∈ Hkαk , and ϕk, ψk ∈ Hk.
Then there exists a unique, positive, invertible operator C on Hkαk such thatZ

G/H

< ϕ1, U(σ1(x))η1 >H1< U(σ2(x))η2, ϕ2 >H2 dµ(x) = 0;

Z
G/H

< ϕ1, U(σ1(x))η1 >H1< U(σ1(x))ξ1, ψ1 >H1 dµ(x)

= < Cξ1, Cη1 >H1< ϕ1, ψ1 >H1 .

Therefore, we have a prescription for when the representations are orthogonal in
L2µ(Γ): when < Cξ1, Cη1 >H1= 0.
Note that in the case of a compact group G, the positive operator C is just a

positive constant. In general, this does not hold on all locally compact groups, for
example for the Poincaré group in the representations with non-zero spin. See [16,
pp. 328 - 329] for a condition which guarantees that C is a constant.
We work, now, with a single choice of G, H, σ, α, and η. For the sake of

simplicity we also denote the closure of the image of W η by W η(H) ⊂ L2µ(Γ). Let
P η denote the canonical projection

P η : L2µ(Γ) −→W η(H)
and denote by Aη(f) the pulled back mapping [16]

Aη(f) ≡ [W η]−1P ηA(f)W η : H −→ H.
This is a plausible candidate for the quantum mechanical operator that corre-

sponds to the classical observable f . For example, for the Heisenberg group and
for η = the ground state wave function of the harmonic oscillator, then Aη(q) = Q
= the position operator, and Aη(p) = P = the momentum operator. Note that we
have gone from a commuting set of A(f)s to a non-commuting set, the Aη(f)s.
One can prove [16] that Aη(f) has an operator density T η(·):

Aη(f) =

Z
Γ

f(x)T η(x)dµ(x),

T η(x) ≡ | U(σ(x))η >< U(σ(x))η |,
and that, up to a finite renormalization of µ if necessary,

Aη(1) = 1.

With this set-up one can make a number of remarks:
1) We may restate the orthogonality relation in this case by replacing | U(σ(x))η >

< U(σ(x))η | with T η(x), yielding just a multiple of < ϕ1, ψ1 >H1 on the right-hand
side of the second relation of Theorem 2.
2) Let ρ denote any quantum density operator; i.e., ρ is non-negative and has

trace one. Then one may write ρ =
X

ρiPψi , the ψi forming an orthonormal set
and Pψi denoting the corresponding projection. Now, using the interpretation of



C* AXIOMS AND QUANTUM MECHANICS 7

|< U(σ(x))η, ψi >|2 as the transition probability from ψi to U(σ(x))η, one has the
quantum expectation value given by

Tr(ρAη(f)) =
X
i

ρi

Z
Γ

f(x) |< U(σ(x))η, ψi >|2 dµ(x);

i.e., the sum over the transition probabilities. [16]
For example, when using a "screen" to detect a particle in a vector state given

by ψ, one idealizes the detector (the screen) as a multi-particle quantum system
consisting of identical sub-detectors. In a fixed laboratory frame of reference a
sub-detector is represented by a state vector η whose phase space counterpart W ηη
is peaked about a reference phase space point which may be referred to as "the
origin". For a fixed space-time reference frame, one may "position" a detector
at all "points" of space-time (space-time events) exactly as Einstein located rods
and clocks. Of course, one must now position mass spectrometers (devices that
measure rest-mass in their own rest frames) and Stern-Gerlach devices at all space-
time events in addition to rods and clocks. As Einstein imagined that the rods
and clocks were also equipped (at all space-time coordinate events) in all inertially-
related space-time reference frames, so must we imagine that our inertially-related
space-time reference frames carry identical mass spectrometers and Stern-Gerlach
devices in addition to rods and clocks (boosted relative to the rest "laboratory"
frame). So, instead of rods and clocks situated at each space-time event and at rest
in inertially-related (uniformly moving) rest frames, we must add to that imagery a
more elaborate set of apparati. For a fixed value of momentum p there are infinitely
many pairs (m,u) such that p = mu; of course the momentum does not alone
characterize the uniform relative velocity (boost) represented by p - one requires
also the rest-mass m. The totality of all such "placements" of detectors constitutes
the phase-space distribution of detectors - the classical phase space frame analogous
to the classical space-time (Lorentz) frame (of rods and clocks). Thus the complete
detector is composed of sub-detectors each located at different "positions" (points of
Γ). The sub-detector located at "position" x ∈ Γ, obtained from η by a kinematical
placement procedure (with the same intent as Einstein’s placement of identical rods
and clocks at all points of spacetime), is U(σ(x))η. Since the probability that ψ is
captured in the state given by U(σ(x))η is |< U(σ(x))η, ψ >|2, the formula for the
expectation is justified. One cannot improve upon this procedure when measuring,
by quantum mechanical means, the distribution of the particle.
3) Since T η(x) ≥ 0 and Aη(1) = 1, then ρclass(x) ≡ Tr(ρT η(x)) is a classical

(Kolmogorov) probability function [16]. Consequently,

quantum expectation = Tr(ρAη(f))

=

Z
Γ

f(x)Tr(ρT η(x))dµ(x)

=

Z
Γ

f(x)ρclass(x)dµ(x)

= classical expectation.

4) Since the operators Aη(f) enjoy the feature of the same expectation as the
"classical" observables f , one might ask whether these operators are sufficient to
distinguish states of the quantum system.
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Definition 1. [15]: A set of bounded self-adjoint operators {Aβ | β ∈ I, I some
index set} is informationally complete iff for all states ρ, ρ0 such that Tr(ρAβ) =
Tr(ρ0Aβ) for all β ∈ I then ρ = ρ0.

Example [15]: In spinless quantum mechanics, the set of all spectral projec-
tions for position is not informationally complete. Neither is the set of all spectral
projections for momentum, nor even the union of them.
The {Aη(f) | f is measurable} (or, equivalently {T η(x) | x ∈ Γ}) is known to be

informationally complete in a number of cases and under a single condition on η,
that < U(g)η, η >6= 0 for a.e.g ∈ G:

a) spin-zero massive representations of the Poincaré group [1]
b) mass-zero, arbitrary helicity representations [4] of the Poincaré group
c) the affine group [11]
d) the Heisenberg group [11]
e) massive representations [2, 16] of the inhomogeneous Galilei group.

This leaves the case of massive, non-zero spin representations [5] of the Poincaré
group. We will have more to say on this in Section 6.
5) If {Aβ | β ∈ I} is informationally complete then any bounded operator on H

may be written as (a closure of) integrals over the set I. [7]
6) When we specialize Aη(f) to f = χ(∆), χ(∆) the characteristic function for

the Borel set ∆ ⊂ Γ, then
χ(∆) = classical localization in ∆ ⊂ Γ,

A(χ(∆)) = operator on L2(Γ) localizing in ∆ ⊂ Γ,
Aη(χ(∆)) = operator on H localizing in ∆ ⊂ Γ.

4. Spectral Properties of the Aη(f)

These Aη(f) have several properties [16] of relevance to us here. We first provide
the

Definition 2. Let H be a Hilbert space and let A be a compact operator on H. Let
{αk} denote the set of singular values (eigenvalues) of A. The nth trace class,
Bn, is defined to be the set of all compact operators such that

P
k | αk |n<∞. We

denote the corresponding norm by k A kBn≡ [
P

k | αk |n]
1/n.

Then we have the

Theorem 3. Let (X,Σ, µ) be a measure space, let H be a Hilbert space, and let
A : Σ → B(H) be a positive operator valued measure. Suppose A has an operator
density T such that k Tx k≤ c for all x ∈ X, and Tr(Tx) ≤ k for all x ∈ X, c and
k constants. Let f ∈ Lpµ(X). Then A(f) ≡

R
X
f(x)Txdµ(x) is a bounded operator

that is compact with k A(f) k ≤ c1/p k f kp and k A(f) kBp ≤ r(p) k f kp for some
constant r(p). In the case p = 1, r(p) = k.

The proof is an excursion in interpolation theory. [17]
In the case at hand, we have c = k = 1 and X = Γ. Thus, for Aη(f) 6= 0:

a) Aη(f) is compact for all f ∈ Lpµ(Γ), and thus for all f ∈ L1µ(Γ). In
particular, we have that it is compact for all f equal to a characteristic function on
a compact, measurable set in Γ.
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b) Suppose Aη(f)ϕ = λϕ, for f in L1µ(Γ), λ ∼ 1, k ϕ k= 1. Suppose also
that g ∈ L1µ(Γ), and k f − g k1<< 1. Then k λϕ − Aη(g)ϕ k = k Aη(f − g)ϕ k
≤ k f − g k1<< 1. Thus, ϕ is nearly an eigenfunction of Aη(g) with the same
eigenvalue as Aη(f). The eigenvalues are close. In particular, this holds if we take
g to be a characteristic function and f to be a fuzzy set function.
Now we have the

Definition 3. Let A and B be two effects; i.e., self-adjoint, positive operators in
H that have spectrum in [0,1]. Then A and B are comeasurable iff we can write
A = A1+C, B = B1 +C, for A1, B1 and C effects, and A1+B1+C is an effect.

In particular, for A = Aη(f), and B = Aη(g), then C = Aη(min{f, g}). Couple
that with the fact that in H, two projections are comeasurable iff they commute
and you obtain the

Theorem 4. [18] The set {Aη(f) | 0 ≤ f ≤ 1, f µ-measurable} does not contain
any two non-trivial projections.

But the T η(x) are covariant as an easy proof will show. Thus the Aη(f) are
covariant:

U(g)Aη(f)U−1(g) = U(g)

Z
Γ

f(x)T η(x)dµ(x)U−1(g) = Aη(g−1.f),

[g.f ](x) = f(gx) for all g ∈ G.

Hence, if you have one non-trivial Aη(f) that is a projection, you have many.
Consequently,

c) The set {Aη(f) | 0 ≤ f ≤ 1, f µ-measurable} does not contain any non-
trivial projection. [18] Hence, any non-trivial operator in the set has spectrum in
(0,1). This is in spite of the informational completeness of the set {Aη(f) | f is
µ-measurable}.
Now, one may prove such things as

d) If ∆ is a compact subset of Γ with a piecewise differentiable boundary,
we have shown that

P
(λi − λ2i ), {λi} the eigenvalues of Aη(χ(∆)), is small. Then

Aη(χ(∆)) has a decreasing spectrum which starts out just below 1, remains just
below 1 until it suddenly drops to values just above zero [16, pp. 281-283]. Notice
that χ(∆) ∈ L1µ(Γ) ∩ L∞µ (Γ), the additional restriction to which we referred in the
introduction.

e) For all ∆ ⊂ Γ, k Aη(χ(∆)) k ≤ µ(∆).

5. The other C* axioms

For completeness, we discuss cursorily the other axioms of the C* approach to
physical systems. See [8] for a complete discussion. They are
Axiom 1) For each physical system Σ we can associate the triple (A,S, <;>)

formed by the set A of all its observables, the set S of all its states, and a mapping
<;>: (S,A) → R which associates with each pair (φ,A) in (S,A) a real number
< φ;A > that we interpret as the expectation value of the observable A when the
system is in the state φ.

Definition 4. For fixed A ∈ A, we have < ·;A >: S → R. If T ⊆ S , denote by
A|T the restriction < ·;A >: T → R. Declare A |T≤ B |T whenever < φ;A > ≤
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< φ;B > ∀φ ∈ T. If T=S, then we write simply A ≤ B. A subset T is said to be
full with respect to a subset B ⊆ A iff A and B in B, and A |T≤ B |T⇒ A ≤ B.

Example: Let H be a separable Hilbert space. Let {ψi} be an orthonormal basis
for H. For ψ ∈ H and k ψ k = 1, let Pψ : H → H, Pψϕ = < ψ,ϕ > ψ. Let
BΨ =

©P
i αiPψi , αi ∈ C,

P
i |αi| <∞

ª
. Then TΨ = {Pψi} is full with respect to

BΨ.
Axiom 2) The relation ≤ is a partial ordering relation on A.
Axiom 3) (i) There exist in A two elements 0 and 1 such that, for all φ ∈ S we

have < φ; 0 > = 0 and < φ; 1 > = 1.
(ii) For each observable A ∈ A and any λ ∈ R there exists (λA) ∈ A such that

< φ;λA > = λ < φ;A > for all φ ∈ S.
(iii) For any pair of observables A and B in A there exists an element (A+B)

in A such that < φ;A+B > = < φ;A > + < φ;B > for all φ ∈ S.

Definition 5. Denote the set of all dispersion-free states for the observable A by
SA.

Definition 6. A subset T ⊆ S is said to be complete if it is full with respect to
the subset AT ⊆ A defined by AT ≡ {A ∈ A | SA ⊇ T}. A complete subset T ⊆ S is
said to be deterministic for a subset B ⊆ A whenever B ⊆ AT. A subset B ⊆ A
is said to be compatible if the set SB ≡ ∩B∈BSB is complete.

Example: TΨ is complete because it is full with respect to AT ≡ BΨ. It is
moreover deterministic for any subset C ⊆ AT ≡ BΨ.
Example: Compatibility ofB inH is known to be given by AB = BA∀A,B ∈ B.
Axiom 4) The set SA is deterministic for the one-dimensional subspace of A

generated by A; for any two observables A and B we have SA+B ⊇ SA ∩SB, and
S1 = S.
Example: If in H we take a bounded observable A that has no eigenvalues, then

SA is empty and axiom 4 is inachievable.
Axiom 5) The axiom discussed in Section 1.

Definition 7. Let A and B ∈ A. A ◦B ≡ 1
2([A+B]2 −A2 −B2).

Axiom 6) For any three observables A, B, and C in which A and C are compat-
ible, (A ◦B) ◦C −A ◦ (B ◦ C) vanishes.
Axiom 7) The norm of A ∈ A, k A k ≡ supφ∈S |< φ;A >|, is finite and A is

topologically complete when regarded as a metric space with the distance between
any two elements A and B of A defined by k A−B k. S is then identified with the
set of all continuous positive linear functionals φ on A satisfying < φ; 1 > = 1.
Axiom 8) A sufficient condition for a set B of observables to be compatible is

that P(B) is associative. Here P(B) is the set of polynomials in B.
Axiom 9) A can be identified with the set of all self-adjoint elements of a real or

complex, associative, and involutive algebra R satisfying
(i) For each R ∈ R there exists an element A in A such that R∗R = A2;
(ii) R∗R = 0 implies R = 0.

We mention Axiom 10 for completeness only. It is not necessary to obtain a C*
algebra.
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Axiom 10) To each pair of observables A and B in A corresponds an observable
C in A in the sense that for all φ ∈ S, we have

< φ; (A− < φ;A > 1)2 >< φ; (B− < φ;B > 1)2 > ≥ < φ;C >2 .

All axioms except axioms 4 and 5 hold in any Hilbert space construction with
< φ;A > = Tr(φA). Now consider any Hilbert space for which the phase space
formalism applies. Form

A+ ≡ {Aη(f) | f ∈ L1µ(Γ) ∩ L∞µ (Γ), 0 ≤ f }.

Then, any Aη(f) ∈ A+ is of the form Aη(f) =
P

i λiPψi for some orthonormal
basis {ψi}. Consequently, axioms 4 and 5 are satisfied. (One must be aware that,
in Aη(f) + Aη(h) = Aη(f + h), we may have all three of Aη(f), Aη(h), Aη(f + h)
possessing distinctly different eigenvectors!) Take A ≡ A+−A+, and we have a set
on which all the axioms hold. Or take R = A + iA. Thus we have arrived at the
result

Theorem 5. Any Hilbert space in which the phase space formalism applies, includ-
ing all the single particle Hilbert spaces of quantum mechanics, satisfies the axioms
of the C* algebra formalism for a physical system.

6. On the Informational Completeness of the Representation

Having a C* algebra in the phase space framework of quantum mechanics, we
may now employ the G.N.S. construction [9, 19] which we assume is familiar to the
reader:
Choose any state φ in the original Hilbert Space H in which the localization

operators, Aη(f), were defined and form < φ;A >,A ∈ A. (Note: this includes
φ = Pψ for any ψ ∈ H.) Let Kφ = {K ∈ A |< φ;R∗K >= 0∀R ∈ A}, which by
the Cauchy-Schwarz-Buniakowski inequality is equal to {K ∈ A |< φ;K∗K >= 0}.
Since H is irreducible, any vector in H is cyclic; so, we will take φ = Pψ, with ψ of
the form U(g−1)η, g ∈ G.
Then, abusing the notation, we have for our particular situation,

KU(g−1)η = {Aη(f) ∈ A |k Aη(f)U(g−1)η k= 0}
= {Aη(f) ∈ A |k Aη(g−1.f)η k= 0}.

Since the set of fs is invariant under the group G, it suffices to consider just

Kη = {Aη(f) ∈ A |k Aη(f)η k= 0}
= {Aη(f) ∈ A | Aη(f)η = 0}.

Now Aη(f)η =
R
f(x) < U(σ(x))η, η > U(σ(x))ηdµ(x). If < U(σ(x))η, η >= 0

a.e. x for σ(x) in some compact set O with non-empty interior, then for all f with
support in O, Aη(f)η = 0. Thus Kη 6= {0} in a way that is invariant under all
infinitesimal transformations. If < U(σ(x))η, η >6= 0 a.e. σ(x) with x ∈ Γ, there
may be some fs such that Aη(f)η = 0, but Aη(g.f)η = 0 does not hold for all g
infinitesimally in all directions. Thus, Aη(f)η = 0 holds only for a thin set of fs.
Remarks: 1) If f is always positive or always negative, then since spec(Aη(f)) ⊆

(0, 1), resp. ⊆ (−1, 0), Aη(f)η 6= 0.
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2) The α-admissibility of η implies

< U(σ(x))η, η > 6= 0 a.e. σ(x) with x ∈ Γ
⇔ < U(g)η, η > 6= 0 a.e. g ∈ G;

i.e., the same condition for obtaining informational completeness in the known cases
of the Galilei and Poincaré groups.
3) By using the modular function we obtain: if η is admissible, then U(g)η is

admissible for all g ∈ G. Moreover, we have: if η is α-admissible, then U(h)η is
α-admissible for all h ∈ H. Thus, coupled with the results above, we have that any
vector of the form U(h)η will be suitable for obtaining the results below.
We will now obtain a representation of A/Kη, η satisfying < U(g)η, η >6= 0: For

R,S in A/Kη, define (R,S) ≡ < Pη;R
∗S > . This turns out to be a sesquilinear

form and generates a norm on A/Kη. Hence A/Kη is a pre-Hilbert space which has
the Hilbert space Hη as its completion. Note that we are taking the completion in
the topology dual to the strong or weak sense, by the cyclicity of η. This is the
same topology as the topology for which informational completeness is discussed.
The representation πη of A is defined by πη(R) : A/Kη → A/Kη, πη(R)S = RS.

The G.N.S. theorem then goes on to show that πη(R) can be extended to a bounded
operator on Hη. Taking A/Kη instead of A is moot when we operate on Hη.
The set {Aη(f)} is informationally complete in this representation. But for all
practical purposes, we have that Hη ⊆ H. Define U(g) : Aη(f) → Aη(g−1.f),
g ∈ G. U is an anti-representation of G on A. But using the covariance property
of the Aη(f), we see that this representation of the symmetry group is given by
U(g)Aη(f) = U(g)Aη(f)U−1(g); i.e., by the same U we had before. But that U is
irreducible, and hence the Hilbert space obtained through the G.N.S. construction
is the same as the original Hilbert space and πη(A/Kη)

∼ = B(H). Consequently,

Theorem 6. The set {Aη(f) | f ∈ L1µ(Γ) ∩ L∞µ (Γ), f real-valued, η α-admissible
in H and < U(g)η, η >6= 0 for almost every g ∈ G} is informationally complete in
the G-irreducible representation space H, for any G that is a Lie group.

7. Conclusion

We have exhibited a set
©
Aη(f) | f real valued and L1µ(Γ) ∩ L∞µ (Γ)

ª
of oper-

ators that have a physical meaning in any experiment in which one measures by
quantum mechanical means. These Aη(f) each have a full set of eigenvectors. They
form a C* algebra, and hence form a basis for the C*-algebraic formalism for physics
in the free case. We may use the G.N.S. construction to obtain the informational
completeness of {Aη(f) | f real valued and L1µ(Γ) ∩ L∞µ (Γ)}. Generalizing to any
physical system that has the phase space localization operators defined on it, we
obtain a C* algebra and the informational completeness of these Aη(f).
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