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Abstract. On any quantum mechanical Hilbert space, the phase space local-
ization operators form a set of operators that are both physically motivated and
form the groundwork for a C* algebra. This set is shown to be informationally
complete in the original Hilbert space. We also revisit the relation between
having a complete set of eigenvectors, commutability and compatibility.

1. Introduction

We have discussed the phase space formulation of quantum mechanics at these
conferences, and most recently have abstracted an algebra of operators (the phase
space localization operators) from it that is an M.V. algebra and a Heyting algebra.
Along the way, we discussed the informational completeness of this set of operators
in certain Hilbert space representations, such as the usual massive, spinless particle
representation. In this paper, we will assert that every phase space representation
of quantum mechanics has this informational completeness for the phase space
localization operators.
In section 2, we review the axioms for a C* algebra by following the program of

G. G. Emch in which a C* algebra for a physical system is treated. In section 3, we
describe informational completeness in any Hilbert space. In the next section, we
briefly obtain the phase space, Γ, and the Lie group that is associated with Γ. We
shall also obtain the set of square integrable functions over Γ, the representation
we obtain on this Hilbert space, and the operators of multiplication by functions
of the coordinates. In section 5, we intertwine the irreducible Hilbert space(s) of
ordinary quantum mechanics with L2(Γ) and obtain the pull-back of the operators
of multiplication by functions of the coordinates in phase space. In section 6,
we look at the spectral properies of these pulled-back operators, and revisit the
relation among having a complete set of eigenvecors, the (lack of) commutativity,
and compatibility. In section 7, we prove that these pulled-back operators satisfy
the physical axioms for a C* algebra and prove the informational completeness of
them.
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2. The C* Axioms for a Physical System

In 1947, Irving Segal [19] gave axioms for a physical system to form a groundwork
for a C* algebra. This was mostly overlooked by people at the time. It was not
until 1972 that G. G. Emch [10] gave a variation of the axioms that were accepted
by many. We will give them here along with some examples that will be used later:
Axiom 1) For each physical system, Σ, we can associate the triple (A,S, <;>)

formed by the set A of all its observables, the set S of all its states, and a mapping
<;>: (S,A) → R which associates with each pair (φ,A) in (S,A) a real number
< φ;A > that we interpret as the expectation value of the observable A when the
system is in the state φ.

Definition 1. For a fixed A ∈ A, we have < ·;A >: S→R. If T ⊆ S, denote by
A |T the restriction < ·;A >: T→R. Declare A |T≤ B |T whenever < φ;A > ≤
< φ;B > ∀φ ∈ T . If T = S, then we simply write A ≤ B. A subset T is said to be
full with respect to a subset B ⊆ A iff A and B in B, and A |T≤ B |T⇒ A ≤ B.

Example: Let H be a separable Hilbert space. Let {ψi} be an orthonormal basis
for H. For ψ ∈ H and k ψ k= 1, let Pψϕ = < ψ,ϕ > ψ. Let BΨ = {

P
i αiPψi , αi ∈

C,
P

i | αi |<∞}. Then TΨ = {Pψi} is full with respect to BΨ.
Axiom 2) The relation ≤ is a partial ordering relation on A.
Axiom 3) (i) There exist in A two elements 0 and 1 such that, for all φ ∈ S, we

have < φ; 0 > = 0 and < φ; 1 > = 1.
(ii) For each observable A ∈ A and any λ ∈ R there exists (λA) ∈ A such that

< φ;λA > = λ < φ;A > for all φ ∈ S.
(iii) For any pair of observables A and B in A there exists an element (A+B)

in A such that < φ;A+B > = < φ;A > + < φ;B > for all φ ∈ S.

Definition 2. Denote the set of all dispersion-free states for the observable A by
SA.

Definition 3. A subset T ⊆ S is said to be complete if it is full with respect to the
subset AT ⊆ A defined by AT = {A ∈ A | SA ⊇ T }. A complete subset T ⊆ S is
said to be deterministic for a subset B ⊆ A whenever B ⊆ AT . A subset B ⊆ A
is said to be compatible if the set SB ≡ ∩B∈BSB is complete.

Example: TΨ is complete because it is full with respect to AT ≡ BΨ. It is
moreover deterministic for any subset C ⊆ AT ≡ BΨ.
Example: Compatibility ofB inH is known to be given byAB = BA ∀A,B ∈ B.
Axiom 4) The set SA is deterministic for the one-dimensional subspace of A

generated by A; for any two observables A and B we have SA+B ⊇ SA ∩SB, and
S1 = S.
Example: If in H we take a bounded observable A that has no eigenvalues, then

SA is empty and Axiom 4 is inachievable. Several specific examples of this will be
given at the end of this section.
Axiom 5) For any element A in the set of observables A and any non-negative

integer n, there is at least one element, denoted An, in A such that (i) the set of
dispersion-free states for An is contained in the set of dispersion-free states for A,
(ii) < φ;An > = < φ;A >n for all φ in the set of dispersion-free states for A.

Definition 4. Let A and B ∈ A. A◦B is defined by A◦B ≡ 1
2 ([A+B]2−A2−B2).
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Axiom 6) For any three observables A, B, and C in which A and C are compat-
ible, (A ◦B) ◦C −A ◦ (B ◦ C) vanishes.
Example: In any Hilbert space setting, this axiom is automatically satisfied.
Axiom 7) The norm of A ∈ A, k A k≡ supφ∈S |< φ;A >|, is finite and A is

topologically complete when regarded as a metric space with the distance between
any two elements A and B of A defined by k A−B k. S is then identified with the
set of all continuous positive linear functionals φ on A satisfying < φ; 1 > = 1.
Axiom 8) A sufficient condition for a set B of observables to be compatible is

that P(B) is associative. Here P(B) is the set of polynomials in B.
Axiom 9) A can be identified with the set of all self-adjoint elements of a real or

complex, associative, and involutive algebra R satisfying
(i) for each R ∈ R there exists an element A in A such tht R∗R = A2;
(ii) R∗R = 0 implies R = 0.

We mention Axiom 10 for completeness only. It is not necessary to obtain a C*
algebra.
Axiom 10) To each pair of observables A and B in A corresponds an observable

C in A in the sense that for all φ ∈ S, we have
< φ; (A− < φ;A > 1)2 > < φ; (B− < φ;B > 1)2 > ≥ < φ;C >2 .

All axioms except 4 and 5 hold in any Hilbert space with < φ;A > = Tr(φA)
and A consisting of bounded operators. To have axioms 4 and 5 satisfied as well,
we will have to have A consisting of (some) bounded operators with purely discrete
spectrum.
A counter-example is provided by the position operator, Q, or the momentum

operator, P . They are unbounded self-adjoint operators with a purely continuous
spectrum on any of the non-relativistic Hilbert spaces in quantum mechanics. We
first treat them as being generated by their spectral projections onto compact sets
of their spectrum, each being a bounded self-adjoint operator. But you have a
problem; each of these has a piecewise continuous spectrum, and thus has no purely
discrete spectrum (eigenvalues) associated with it, much less a complete basis of
eigenvectors. The same problem appears for any self-adjoint operator with a purely
continuous spectrum in any Hilbert space. Next, we may use a theorem [21] that
says that if T is a self-adjoint, bounded operator on a separable Hilbert space, then
there exists a self-adjoint compact operator K such that T + K has eigenvectors
that span the space. Moreover, by a theorem of von Neumann [20], k K k may be
made arbitrarily small and T does not have to be bounded. But there is no physical
interpretation for what K may be! We conclude that considering just Q or just P
will not do for obtaining C* algebra from the physical perspective.

3. Informational Completeness

In any Hilbert space, we have

Definition 5. [15]: A set of bounded self-adjoint operators on Hilbert space H,
{Aβ | β ∈ I, I some index set}, is informationally complete iff for all states
ρ, ρ0 on H such that Tr(ρAβ) = Tr(ρ0Aβ) for all β ∈ I then ρ = ρ0.

Example [15]: In spinless quantum mechanics, the set of all spectral projections
for position is not informationally complete. Neither is the set of all spectral pro-
jections for momentum, nor even the union of them. This is another reason why
we will not base our theory on Q or on P .
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There are two properties of an informationally complete set which we will note:
1) If I is an informationally complete set in H, then any bounded operator may

be written as (the closure in the topology induced by the trace) an integral(s) over
the set I. [6]
2) If dim(H) > 1, then no set of self-adjoint operators on H is informationally

complete if it is a commuting set.[7]
Thus, we shall look for a set that generates, somehow, all of B(H) and necessarily

is not a commuting set.

4. Phase Space

We shall only briefly summarize this section, as it has been discussed at the last
meeting in this series. [5].
Start with any dynamical group G such as the Galilei group or the Poincaré

group. These are all Lie groups. Form the Lie algebra g, and then take its dual g∗.
From the strucure constants in the Lie algebra, construct the coboundary operator
δ between the various ∧n(g∗). Take ω ∈ Z2(g) ≡ {' ∈ (g ∧ g)∗ | δ(') = 0}.
Define the sub-Lie algebra hω ≡ {ξ ∈ g | ω(ξ, ·) = 0}. Exponentiate hω to obtain
the subgroup Hω. Then, assuming that Hω is closed, form Γ ≡ G/Hω. A theorem
[12][16] says that 1) Γ is a transitive symplectic manifold (i.e., a phase space)
with 2-form (essentially the Poisson bracket) being the pull-back of ω, 2) Γ has
even dimension 2m. The m-th exterior product of this 2-form is the left-invariant
measure µ, 3) if X is any symplectic space under G, then X = a union of the Γs.
As Γ is phase space, obtain the canonical variables.
Now form the separable Hilbert space L2µ(Γ), and on L2µ(Γ) define the action of

the group G by
[V α(g)Ψ](x) = α(h(g−1, x))Ψ(g−1x),

whereΨ ∈ L2µ(Γ), h is a generlized cocycle and α is a one-dimensional representation
of Hω. These representaions up to a phase are important in representing the spin
plus angular momentum correctly. The representation V α is highly reducible.
Define the multiplication by measurable functions f of the phase space coordi-

nates by
[A(f)Ψ](x) ≡ f(x)Ψ(x).

We point out that the A(f)s are a commuting set (including f ∈ the set of canonical
variables), and thus are not informationally complete in L2µ(Γ). However, they are
physically identifiable as they are just multiplication by the fs which in turn are
just functions of the phase space coordinates. L2µ(Γ) is not a quantum mechanical
Hilbert space either, as it is not irreducible.

5. Quantum Mechanical Hilbert Spaces and Intertwining with L2µ(Γ)

We obtain the quantum mechanical Hilbert spaces by the "Mackey machine"
[14] as the irreducible unitary representation spaces H with U the representation.
These are the usual representation spaces encountered in any textbook on quantum
mechanics.
Take any Borel section σ : Γ = G/Hω → G, and then define "η is admissible

with respect to the section σ" iffZ
Γ

| < U(σ(x))η, η > |2dµ(x) <∞.
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Furthermore, if η is admissible with respect to σ, then we say that η is "α-admissible
with respect to σ” iff U(h)η = α(h)η for all h ∈ Hω where α is a one dimensional
representation of Hω. We have shown that the set of "α-admissible vectors with
respect to σ” is never empty for any of the usual representation spaces for quantum
mechnics. [16][4]
Now define a map W η : H × Γ→ C by

[W η(ϕ)](x) ≡ < U(σ(x))η, ϕ > .

We have the remarkable theorem that 1) W η is a (linear) map from H to L2µ(Γ)
whenever η is α-admissible. Furthermore, 2) W η interwines:

W ηU(g) = V α(g)W η.

3) W η(H) is a closed subspace of L2µ(Γ), and so we may define the canonical pro-
jection

P η : L2µ(Γ)→W η(H).

Next, we pull back the multiplication operators A(f) from L2µ(Γ) to H:

Aη(f) ≡ [W η]−1P ηA(f)W η,

which is an operator acting from H to H. Then for k η k= 1, we find that

Aη(f) ≡
Z
Γ

f(x)T η(x)dµ(x),

T η(f) ≡ PU(σ(x))η =| U(σ(x))η >< U(σ(x))η |;

i.e., there is an operator-valued density for Aη(f). Since

U(g)T η(x)U(g)−1 = T η(gx),

and using the left-invariance of µ with respect to G, we have

U(g)Aη(f)U(g)−1 =

Z
Γ

f(x)T η(gx)dµ(x)

=

Z
Γ

f(g−1y)T η(y)dµ(y)

= Aη(g.f)

where

[g.f ](x) = f(g−1x).

In other words, the Aη are covariant under the action of G. Moreover, take a vector
ψ in H with k ψ k= 1, take Pψ to be the one-dimensional projection onto the ray
determined by ψ, and form

Tr(PψA
η(f)) =

Z
Γ

f(x)Tr(PψT
η(x))dµ(x)

=

Z
Γ

f(x) |< U(σ(x))η, ψ >|2 dµ(x).
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This is the transition probability between U(σ(x))η and ψ integrated over f , and
provides an interpretation of the meaning of η which is directly related to the instru-
ment with which you measure Pψ. See [5] for more on the physical interpretability
of η.
If we take the fs corresponding to canonical variables, we obtain Aη(f) = Qi,

Pi, or Si and these have the correct (anti-)commutation relations. [16] These fs
are not compactly supported, however. This is a direct consequence of having P η

in the expression for Aη(f). In fact, it is known that the operators Aη(f) include
all polynomials in the operators p and q, for example.
The set

E ≡ {Aη(f) | f ∈ L1µ(Γ) ∩ L∞µ (Γ), 0 ≤ f(x) ≤ 1}
has been studied. [17][18] E forms an effect algebra which is also an M.V. algebra, a
Heyting algebra, and contains no non-trivial projections. It includes all the Aη(χC)
where χC is the characteristic function for C, C a Borel set in Γ. Thus E contains
the phase space localization operators. Generally, E is the set of phase space fuzzy
localization operators.
What we have to discuss is whether E, suitably generalized, is information-

ally complete. We have that E contains non-commuting operators, because of the
presence of the P η in the Aη(f)s. The operators in {Aη(f)} are known to be in-
formationally complete for a number of cases: massive spin-zero [1] and mass zero,
arbitrary helicity [3] representations of the Poincaré group, the affine group [13], the
Heisenberg group [13], and massive representations of the inhomogeneous Galilei
group [2][16]. In all these cases, there was an extra condition on η guaranteeing
informational completeness:

< U(g)η, η >6= 0 a.e. g ∈ G.

6. Spectral Properties of the Aη(f)

We will prove that the Aη(f) for f ∈ L1µ(Γ)∩Lpµ(Γ), p > 1, have a purely discrete
spectrum.

Definition 6. Let H be a Hilbert space, and let B be a compact operator on H. Let
{βk} denote the set of singular values (eigenvalues) of B. The nth trace class,
Bn, is defined to be the set of all compact operators such that

X
k

| βk |n< ∞. In

Bn we denote the norm by

k B kBn≡
"X

k

| βk |n
#1/n

.

Then, by interpolation theory, we have the

Theorem 1. Let (X,Σ, µ) be a measure space, H be a Hilbert space, and B :
Σ → B(H) be a positive operator valued measure. If B has an operator density
T such that k Tx k≤ c ∀x ∈ X, and Tr(Tx) ≤ k ∀x ∈ X, c and k constants, let
f ∈ Lpµ(X). Then B(f) ≡

R
X
f(x)Txdµ(x) is a compact, bounded operator with

k B(f) k≤ c1/p k f kp and k B(f) kBp≤ r(p) k f kp for some constant r(p). In the
case p = 1, r(p) = k.
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Now, consider any Hilbert space for which the phase space formalism applies.
We have that T η(x) is a one dimensional projection; so, c = k = 1. Also X = Γ for
B(f) = Aη(f). Thus we have that the Aη(f)s are all compact for suitable fs.
In the Aη(f), we wish to include f = χB for B any compact Borel set. For these,

χB ∈ L1µ(Γ) ∩ L∞µ (Γ); so, we will take f ∈ L1µ(Γ) ∩ L∞µ (Γ) from here on.
Using the property that the Aη(f)s are compact, we may use the result of P.A.M.

Dirac [9] to get that two Aη(f)s commute iff there exist a complete set of simulta-
neous eigenstates of them. We then may deduce easily that they are functions of
each other, without using the spectral theorem.
In addition to the set E defined above, we will also define

F ≡ {Aη(f) | f ∈ L1µ(Γ) ∩ L∞µ (Γ), f real valued},
E+ ≡ {Aη(f) | f ∈ L1µ(Γ) ∩ L∞µ (Γ), 0 ≤ f(x) ≤ 1},
R ≡ {Aη(f) | f ∈ L1µ(Γ) ∩ L∞µ (Γ), f complex valued}.

By the theorem, each of these consists of compact operators and may be represented
by

Aη(f) =
X
i

λiPψi

for some orthonormal basis {ψi} of H. Consequently, we may create a C* algebra
(for a physical system) from any of them and henceforth call the C* algebra "A".
(One must be aware that in Axiom 3 we have Aη(f)+Aη(h) = Aη(f+h), where all

three of Aη(f), Aη(h), and Aη(f + h) may have distinctly different eigenvectors!)
These Aη(f) =

P
i λiPψi are interesting, as they have a complete set of orthonor-

mal eigenvectors despite f involving all the canonical variables. They are bounded.
Different Aη(f)s generally do not commute. They are all compatibile. Thus, com-
mutability and compatibiliy are independent. This is a partial generalization of [8]
in which it was pointed out that P.O.V.M.s may be compatible without commuting.
To measure the Aη(f)s in state ρ, we must first measure a single Aη(χB1

) which
is a countable process, then measure another one, and continue with {Bi} consti-
tuting a subset of the Borel sets that accumulate at all rational points in Γ. From
this countable process, all operators are in fact determined (once we prove the
informational completeness).

7. Representations of the C* Algebra

We will follow the G.N.S. construction [11][19] to obtain a representation of the
C* algebra acting on some Hilbert space, and then show that this Hilbert space is
equivalent to the original Hilbert space H.
First we choose any state φ in the original Hilbert space H in which the local-

ization operators, Aη(f), were defined, and form < φ;A >, A ∈ A. Then let

Kφ = {K ∈ A |< φ;R∗K >= 0 ∀R ∈ A},

which by the Cauchy-Schwarz-Buniakowski inequality is equal to

Kφ = {K ∈ A |< φ;K∗K >= 0}.

(Note: This includes φ = Pψ for any ψ ∈ H.)
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Since H is irreducible, any vector in H is cyclic; so, we will take φ = Pψ, with ψ
of the form U(g−1)η, g ∈ G. Then in particular, abusing the notation for Kφ, we
have

KU(g−1)η = {Aη(f) ∈ A |k Aη(f)U(g−1)η k= 0}
= {Aη(f) ∈ A |k Aη(g−1.f)η k= 0}.

Since the set of fs is invariant under the group G, it suffices to consider just

Kη = {Aη(f) ∈ A |k Aη(f)η k= 0}
= {Aη(f) ∈ A | Aη(f)η = 0}.

Now

Aη(f)η =

Z
f(x) < U(σ(x))η, η > U(σ(x))η dµ(x).

If < U(σ(x))η, η > = 0 a.e. x for σ(x) in some compact set O with non-empty
interior, then for all f with support in O, Aη(f)η = 0. Thus Kη 6= {0} in a way
that is invariant under all infinitesimal transformations. If < U(σ(x))η, η > 6= 0
a.e.σ(x) with x ∈ Γ, there may be some fs such that Aη(f)η = 0, but Aη(g.f)η = 0
does not hold for all g infinitesimally in all directions. Thus, Aη(f)η = 0 holds only
for a thin set of fs.
Remarks: 1) If Aη(f) ∈ E, resp. Aη(f) ∈ −E, then since spec(Aη(f)) ⊆ (0, 1),

resp. ⊆ (−1, 0), Aη(f)η 6= 0.
2) The α-admissibility of η implies

< U(σ(x))η, η > 6= 0 a.e. σ(x) with x ∈ Γ
⇔ < U(g)η, η > 6= 0 a.e. g ∈ G;

i.e., the same condition for obtaining informational completeness in the previously
known cases for the Galilei and Poincaré groups.
3) By using the modular function we obtain: if η is admissible, then U(g)η is

admissible for all g ∈ G. Moreover, we have: if η is α-admissible, then U(h)η is
α-admissible for all h ∈ H. Thus, coupled with the results above, we have that any
vector of the form U(h)η, h ∈ H, will be suitable for obtaining the results below.
We will now obtain a representation of A/Kη, η satisfying < U(g)η, η > 6= 0:

For R, S in A/Kη, define (R,S) ≡< Pη;R
∗S >. This turns out to be a sesquilinear

form and generates a norm on A/Kη. Hence A/Kη is a preHilbert space which has
the Hilbert space Hη as its completion. Note that we are taking the completion in
the topology dual to the strong or weak sense, by the cyclicity of η. This is the
same topology as the topology for which informational completeness is discussed in
[16].
The representation πη of A is defined by

πη(R) : A/Kη → A/Kη,

πη(R)S = RS.

The G.N.S. Theorem then proceeds to show that πη(R) can be extended to a
bounded operator on Hη. Taking A/Kη instead of A is moot when we operate on
Hη. The set {Aη(f)} is informationally complete in this representation.
Now for all practical purposes, we have that Hη ⊆ H. Define

U(g) : Aη(f) 7→ Aη(g.f), g ∈ G.
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U is a representation of G on A. But using the covariance property of the Aη(f),
we see that this representation of the symmetry group is given by U(g)Aη(f) =
U(g)Aη(f)U−1(g); i.e. by the same U we had before. But that U is irreducible,
and hence the Hilbert space obtained through the G.N.S. construction is the "same"
as the original Hilbert space and πη(A)

˜
= B(H). Consequently,

Theorem 2. The set {Aη(f) | f ∈ L1µ(Γ)∩L∞µ (Γ), f real-valued, η α-admissible in
H and < U(g)η, η > 6= 0 a.e.g ∈ G} is informationally complete in the G-irreducible
representation space H, for any G that is a Lie group and Γ is a phase space coming
from G.

8. Conclusion

We have exhibited a set
©
Aη(f) | f real valued, f ∈ L1µ(Γ) ∩ L∞µ (Γ)

ª
of oper-

ators that have a physical meaning in any experiment in which one measures by
quantum mechanical means. These Aη(f) each have a full set of eigenvectors. They
are compatible and are generally non-commuting. They form a C* algebra, and
hence form a foundation for the C*-algebraic formalism for physics in the free case.
We may use the G.N.S. construction to obtain the informational completeness of©
Aη(f) | f real valued, f ∈ L1µ(Γ) ∩ L∞µ (X)

ª
. Generalizing to any physical sys-

tem that has the phase space localization operators on it, we obtain a C* algebra
and the informational completeness of these Aη(f).

9. Acknowledgments

The author appreciates all that he has learned from his thesis advisor and friend,
Gerard G. Emch. He would also like to thank James Brooke and Paul Busch for
suggesting changes to the paper which made it much more readable and accurate.

References

[1] Ali, S. T., Brooke, J. A., Busch, P., Gagnon, R., Schroeck, Jr., F. E., Can. J. Physics 66
(1988), 238 - 244.

[2] Ali, S. T. and Progovecki, E., Acta Appl. Math. 6 (1986), 19 - 45; 6 (1986) 47 - 62..
[3] Brooke, J. A., Schroeck, Jr., F. E., J. Math. Phys.37 (1996), 5958 - 5986.
[4] Brooke, J. A., Schroeck, Jr., F. E., Phase Space Representations of Relativistic Massive

Spinning Particles, in preparation.
[5] Brooke, J. A., Schroeck, Jr., F. E., "Perspectives: Quantum Mechanics on Phase Space",

International Journal of Theoretical Physics 44 (2005), 1894 - 1902.
[6] Busch, P., Int. J. Theor. Phys. 30 (1991), 1217 - 1227.
[7] Busch,P., Lahti, P., Found. Phys. 19 (1989), 633 - 678.
[8] Busch, P., Schonbek, T. P., Schroeck, F. E. Jr., J. Math. Phys. 28 (1987), 2866 - 2872.
[9] Dirac, P. A. M., Quantum Mechanics, 4th Edition, Oxford, 1958, pp. 49 - 50.
[10] Emch, G. G., Algebraic Methods in Statistical Mechanics and Quantum Field Theory, John

Wiley and Sons, Inc., 1972.
[11] Gelfand, I., and Naimark, M. A., Mt. Sborn., N. S. 12 [54] (1943), 197 - 217.
[12] Guillemin, V., and Sternberg, S., Symplectic Techniques in Physics, Cambridge Univ. Press,

1991.
[13] Healy, Jr., D. M. and Schroeck, Jr., F. E., J. Math. Phys. 36 (1995), 433 - 507.
[14] Mackey, G. W., Ann. Math. 55 (1952), 101 - 139; 58 (1953), 193 - 221.
[15] Prugovecki, E., Int. J. Theor. Physics 16 (1977), 321 - 331.
[16] Schroeck, F.E., Jr., Quantum Mechanics on Phase Space, Kluwer Academic Publishers, 1996.
[17] Schroeck, F.E., Jr., Int. J. Theor. Phys., 44 (2005), 2091 - 2100.
[18] Schroeck, F. E., Jr., Int. J. Theor. Phy. 44 (2005), 2101 - 2111.
[19] Segal, I. E., Ann. Math. 48 (1947), 930 - 948.



10 PROF. FRANKLIN E. SCHROECK, JR.

[20] von Neumann, J., Chrakterisierung des Spektrums eines Integraloperators, Act. Sci. et Ind.,
Paris, 229 (1935), 11.

[21] Weyl, H., "Überbeschränkte quadratische Formen, deren Differenz Vollstetig ist", Rend. Circ.
Mat. Palermo 27 (1909), 373 - 392.

(Schroeck) University of Denver
E-mail address, Schroeck: fschroec@du.edu


