
SEQUENTIAL PRODUCTS OF
QUANTUM MEASUREMENTS

Stan Gudder
Department of Mathematics

University of Denver
Denver, Colorado 80208
sgudder@math.du.edu

Abstract

Sequential products of quantum measurements are defined and
studied. Two types of measurement equivalence are considered and
their relationships with compatibility and the sequential product are
discussed. It is shown that a measurement A is sharp if and only if
A is equivalent to the sequential product of A with itself. Refine-
ments of measurements are defined and it is shown that they produce
a partial order on the set of measurements. Lattice properties of this
partially ordered set are briefly discussed. Finally we consider convex
combinations and conditioning for quantum measurements.

1 Introduction

A sequential product of quantum effects has recently been introduced and
studied [4, 5, 6, 7]. The present paper extends this concept to a sequential
product for quantum measurements. Since an effect can be thought of as a
two-valued measurement, the sequential product of measurements generalizes
that of effects in a natural way. In this work we only consider discrete
quantum measurements which are measurements with at most a countable
number of outcomes. Concepts such as sharp, compatible and coexistent
measurements directly generalize the corresponding notions for effects. If
A and B are quantum measurements on the same Hilbert space, we denote
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their sequential product by A ◦ B. We interpret A ◦ B as performing the
measurement A first and the measurement B next.

Two types of measurement equivalence are considered and their relation-
ships with compatibility and the sequential product are discussed. In the
first type of equivalence, A ≈ B if A and B are identical except for a possible
ordering of their outcomes. It is shown that if A is sharp and B is arbitrary,
then A ◦ B ≈ B ◦ A if and only if A and B are compatible. It is also shown
that A ◦ A ≈ A if and only if A is sharp. Refinements of measurements are
defined and we demonstrate that they produce a partial order on the set of
measurements. Lattice properties of this partially ordered set are discussed.
For example, we prove that if A is sharp and B is arbitrary, then the least
upper bound A∧ B exists if and only if A and B are compatible and in this
case A ∧ B = A ◦ B.

We say that two measurements A and B coexist if they have a common
refinement and show that this generalizes coexistence of effects. It is shown
that if A is sharp and B is arbitrary, then A and B coexist if and only if A
and B are compatible. We next define convex combinations of measurements
and show that they have properties analogous to those of effects.

The last section discusses conditioning one measurement relative to an-
other. This concept is defined directly in terms of the sequential product.
Properties of conditioning are given and its relationship to conditional prob-
ability is discussed. Throughout the paper, various conjectures and open
problems are presented.

2 Notation and Definitions

In classical probability theory we may think of an event as a characteristic
function χA. If χB is another event, then χAχB = χA∩B is the event that
occurs when χA and χB both occur. A more complete description is given
by the two-valued measurement A = {χA, χA′} where χA′ = 1 − χA is the
complement (negation) of χA. We interpret A as having the value (outcome)
1 if χA occurs and the value (outcome) 0 if χA does not occur. If B =
{χB, χB′} is another two-valued measurement, we can form their sequential
product

A ◦ B = {χAχB, χAχB′ , χA′χB, χA′χB′}
= {χA∩B, χA∩B′ , χA′∩B, χA′∩B′}
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We interpret A◦B as the measurement resulting from first performing mea-
surement A and then performing measurement B. Then A◦B has four values
(outcomes) that we arbitrarily set to 1, 2, 3, 4. These values correspond to
whether χA and χB, χA and χB′ , χA′ and χB or χA′ and χB′ both occur.
Notice that just as χA + χA′ = 1 we have

χAχB + χAχB′ + χA′χB + χA′χB′ = 1

Since A◦B = B◦A the order of performing the measurements is irrelevant in
classical probability theory. As we shall see, because of quantum interference,
this is no longer true in quantum mechanics.

We can extend this discussion to n-valued measurements. In this case,
A = {f1, . . . , fn} where f1, . . . , fn are random variables satisfying fifj = 0,
i 	= j, and

∑
fi = 1. It follows that fi = χAi

are characteristic functions
with Ai ∩ Aj = ∅, i 	= j, and ∪Ai is the entire sample space Ω. That is
{Ai : i = 1, . . . , n} is a partition of Ω. If B = {g1, . . . , gm} is an m-valued
measurement, we can form the sequential product.

A ◦ B = {figj : i = 1, . . . , n, j = 1, . . . , m}

In general this gives an mn-valued measurement corresponding to a finer
partition of Ω. Of course, we can also consider a countable partition of Ω
corresponding to a discrete measurement {f1, f2, . . . }.

This discussion can be further extended to classical fuzzy probability
theory [5]. In this case our fuzzy events are represented by functions in
[0, 1]X for some nonempty set X. An n-valued measurement is given by
A = {f1, . . . , fn} where fi ∈ [0, 1]X satisfy

∑
fi = 1. In general, the fuzzy

events fi need not be characteristic functions. For the particular case in
which they are characteristic functions (f 2

i = fi) we say that A is a sharp
measurement. As before, if B = {g1, . . . , gm} is an m-valued measurement
then

A ◦ B = {figj : i = 1, . . . , n, j = 1, . . . , m}

Notice that figj ∈ [0, 1]X and
∑

figj = 1 so A ◦ B is again a measurement.
Again, A◦B = B ◦A so the order in which the measurements are performed
is irrelevant.

We now consider quantum measurements. The formalism is similar to
that of classical fuzzy probability theory except now the fuzzy events are
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represented by positive operators on a complex Hilbert space H. In this case
the order in which measurements are performed is relevant and this is an
essential feature of quantum mechanics. We denote the set of bounded linear
operators on H by B(H). We use the notation

E(H) = {A ∈ B(H) : 0 ≤ A ≤ I}
P(H) =

{
P ∈ E(H) : P 2 = P

}
D(H) = {ρ ∈ E(H) : tr(ρ) = 1}

The elements of E(H) correspond to fuzzy quantum events and are called
effects. The elements of P(H) are projections corresponding to quantum
events and are called sharp effects. The elements of D(H) are density
operators corresponding to probability measures and are called states. If ρ ∈
D(H), A ∈ E(H) then tr(ρA) is the probability that A occurs (is observed)
in the state ρ. For A, B ∈ E(H), the sequential product of A and B is
A◦B = A1/2BA1/2. It is easy to show that A◦B ∈ E(H). We interpret A◦B
as the effect that occurs when A occurs first and B occurs second [4, 5, 6, 7].
It can be shown that A ◦B = B ◦A if and only if AB = BA [7]. In this case
we say that A and B are compatible.

A measurement is a finite or infinite sequence {Ai} where Ai ∈ E(H)
satisfy

∑
Ai = I. If A = {Ai} is a measurement, then Ai is the effect

observed when A is performed and the result is the ith outcome. We call
A1, A2, . . . the elements of A. If the system is in the state ρ and A is
performed, then the probability that the result is the ith outcome is given
by tr(ρAi). Notice that i �→ tr(ρAi) is a probability distribution because∑

tr(ρAi) = tr
(
ρ

∑
Ai

)
= tr(ρ) = 1

A measurement is also called a discrete positive operator-valued mea-
sure (POVM). If Ai ∈ P(H) then A = {Ai} is a sharp measurement
which is also called a discrete projection-valued measure (PVM). We de-
note the set of measurements by M(H) and the set of sharp measurements
by S(H). A submeasurement is a finite or infinite sequence {Ai} where
Ai ∈ E(H) with

∑
Ai ≤ I. We denote the set of submeasurements by

sub-M(H). We define the set of sharp submeasurements in a similar way
and denote this set by sub-S(H). Of course, if A = {Ai} ∈ sub-M(H) then
we can extend A to a sequence containing I−∑

Ai to obtain a measurement.
For A,B ∈ sub-M(H) with A = {Ai}, B = {Bj} we define the sequen-

tial product of A and B by A◦B = {Ai ◦Bj}. If A,B ∈M(H) we interpret
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A ◦ B to be the measurement obtained when A is performed first and B is
performed second. Moreover, we indeed have that A ◦ B ∈M(H) because∑

i,j

Ai ◦Bj =
∑
i,j

A
1/2
i BjA

1/2
i =

∑
i

A
1/2
i

∑
j

BjA
1/2
i =

∑
Ai = I

In a similar way, if A,B ∈ sub-M(H) then A◦B ∈ sub-M(H). The sequen-
tial product is noncommutative and nonassociative in general. Defining the
identity measurement I = {I}, we have that A ◦ I = I ◦ A = A for all
A ∈ sub-M(H).

3 Equivalence

For A,B ∈ sub-M(H), we write A ≈ B if the nonzero elements of A are a
permutation of the nonzero elements of B. Of course, ≈ is an equivalence
relation and when A ≈ B we say that A and B are equivalent. In this case
the two submeasurements are identical up to an ordering of their outcomes.
It is clear that if A ≈ B then C ◦ A ≈ C ◦ B and A ◦ C ≈ B ◦ C for all
C ∈ sub-M(H).

For A ∈M(H), ρ ∈ D(H) we define

A(ρ) =
∑

Ai ◦ ρ =
∑

A
1/2
i ρA

1/2
i

Notice that A(ρ) ∈ D(H) and we interpret A(ρ) as the post-measurement
state when the input state is ρ and the outcome of the measurement is not
observed. We write A ∼ B and say that A and B are weakly equivalent
if A(ρ) = B(ρ) for every ρ ∈ D(H). It is clear that ∼ is an equivalence
relation and that A ≈ B implies A ∼ B. In contrast to A ≈ B, if A ∼ B we
cannot consider A and B to be essentially identical. This is because tr(ρAi)
may not coincide with tr(ρBj) for any j. In this case the probability of
outcome i for measurement A does not equal the probability of any outcome
of measurement B. By the unitary freedom theorem [11], A ∼ B if and

only if there exists a (possibly infinite) unitary matrix [uij] such that A
1/2
i =∑

uijB
1/2
j where we augment A or B with 0s if necessary so they have the

same number of elements.

Lemma 3.1. If A,B ∈ S(H) then A ∼ B if and only if A ≈ B.
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Proof. Of course, A ≈ B implies A ∼ B. If A ∼ B there exists a unitary
matrix [uij] such that Ai =

∑
uijBj for all i. Since uij is in the spectrum

of Ai, uij = 0 or 1. Since [uij] is unitary, there is a j such that uij = 1
and uik = 0 for k 	= j. It follows that [uij] is a permutation matrix. Hence
A ≈ B.

We say that A = {Ai} and B = {Bj} are compatible if AiBj = BjAi

for all i and j. It follows from the unitary freedom theorem that ∼ preserves
compatibility; that is, if A ∼ B and C is compatible with A, then C is
compatible with B. It is clear that if A and B are compatible, then A ◦ B ≈
B ◦ A. The converse does not hold. Indeed, A ◦ A ≈ A ◦ A and yet A need
not be compatible with itself. In general, sequential products do not preserve
∼; that is A ∼ B does not imply that C ◦ A ∼ C ◦ B or that A ◦ C ∼ B ◦ C.
However, we do have the following result.

Lemma 3.2. If A ∼ B and C is compatible with A and B, then C◦A ∼ C◦B.

Proof. For ρ ∈ D(H) we have

(C ◦ A)(ρ) =
∑
i,j

(CiAj)
1/2ρ(CiAj)

1/2 =
∑
i,j

C
1/2
i A

1/2
j ρA

1/2
j C

1/2
i

=
∑

i

C
1/2
i

∑
j

A
1/2
j ρA

1/2
j C

1/2
i =

∑
i

C
1/2
i

∑
j

B
1/2
j ρB

1/2
j C

1/2
i

=
∑
i,j

(CiBj)
1/2ρ(CiBj)

1/2 = (C ◦ B)(ρ)

Hence, C ◦ A ∼ C ◦ B.

The next lemma will be useful for proving Theorem 3.4.

Lemma 3.3. For A ∈ B(H), B ∈ E(H), if ABA∗ = 0 then BA∗ = 0.

Proof. Since ABA∗ = 0, for every x ∈ H we have

‖B1/2A∗x‖2 =
〈
B1/2A∗x, B1/2A∗x

〉
= 〈ABA∗x, x〉 = 0

Hence, B1/2A∗x = 0. so BA∗x = 0 for all x ∈ H. Thus, BA∗ = 0.

Theorem 3.4. If P ∈ sub-S(H) and A ∈ sub-M(H) and P ◦ A ≈ A ◦ P,
then P and A are compatible.
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Proof. Letting P = {Pi} and A = {Ai} we have that {Pi ◦ Aj} ≈ {Aj ◦ Pi}.
If Pi ◦ Aj = Aj ◦ Pi then PiAj = AjPi [7]. Suppose Pi ◦ Aj = Ar ◦ Ps,

s 	= i, so that PiAjPi = A
1/2
r PsA

1/2
r . Pre and post multiplying by Ps gives

(PsA
1/2
r )Ps(PsA

1/2
r )∗ = 0. By Lemma 3.3 we have

PsA
1/2
r Ps = Ps(PsA

1/2
r )∗ = 0

Hence, PsAr = ArPs. Finally, suppose Pi ◦ Aj = Ar ◦ Pi so that PiAjPi =

A
1/2
r PiA

1/2
r . Pre and Post multiplying by Pk, k 	= i, gives

(PkA
1/2
r )Pi(PkA

1/2
r )∗ = 0

By Lemma 3.3 we have PiA
1/2
r Pk = 0, k 	= i. Summing over k we obtain

PiA
1/2
r (I − Pi) = 0

Hence, PiA
1/2
r = PiA

1/2
i Pi so that PiA

1/2
r = A

1/2
r Pi. It follows that PiAr =

ArPi. We conclude that P and A are compatible.

We define the supplement of A ∈ E(H) by A′ = I − A.

Lemma 3.5. Let A, B ∈ E(H) and suppose that dim H < ∞. Then A◦B +
A′ ◦B = B′ if and only if B = 1

2
I.

Proof. It is clear that B = 1
2
I implies A ◦ B + A′ ◦ B = B′. Conversely,

assume that A ◦B + A′ ◦B = B′. Then B = I − A ◦B − A′ ◦B. Hence,

B = I − A ◦ (I − A ◦B − A′ ◦B)− A′ ◦ (I − A ◦B − A′ ◦B)

= A2 ◦B + 2(A ◦ A′) ◦B + (A′)2 ◦B

Since

A2 + 2(A ◦ A”) + (A′)2 = I

we conclude from [1] that BA2 = A2B so that AB = BA. Therefore,

B = I − AB − A′B = I −B

so that B = I/2.
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Although A◦B ≈ B◦A does not imply that A and B are compatible in gen-
eral, the next result shows that this does hold for two-valued measurements
when dim H∞. We do not know if the condition dimH < ∞ can be relaxed.

Theorem 3.6. Suppose that dim H < ∞ and A = {A, A′}, B = {B, B′}. If
A ◦ B ≈ B ◦ A, then AB = BA.

Proof. If A ◦ B ≈ B ◦ A we have that

{A ◦B, A ◦B′, A′ ◦B, A′ ◦B′} ≈ {B ◦ A, B ◦ A′, B′ ◦ A, B′ ◦ A′}

If A◦B = B◦A, then AB = BA [7] and similarly for the other corresponding
terms. We can therefore assume equality for noncorresponding terms.

Case 1. If A ◦B = B ◦ A′ and A ◦B′ = B ◦ A, then

A = A ◦B + A ◦B′ = B ◦ A′ + B ◦ A = B

so clearly AB = BA.

Case 2. If A ◦B = B ◦ A′ and A′ ◦B = B ◦ A, then

B = B ◦ A + B ◦ A′ = A′ ◦B + A ◦B

and it follows from [1] that AB = BA.

Case 3. If A′ ◦B = B ◦ A′ and A′ ◦B′ = B′ ◦ A, then

A′ = A′ ◦B + A′ ◦B′ = B ◦ A + B′ ◦ A

Applying Lemma 3.5 we conclude that A = 1
2
I so clearly AB = BA. The

other cases are similar

Theorem 3.7. Let A = {Ai} ,B = {Bj} ∈ M(H). Then A ◦ B ∈ S(H) if
and only if A,B ∈ S(H) and A ◦ B ≈ B ◦ A.

Proof. Since Ai ◦ Bj ∈ P(H) we have that AiBj = BjAi for all i, j so A ◦
B = B ◦ A [7]. Now AiBj ∈ P(H) and (AiBj)(AiBk) = 0 imply that
Ai =

∑
j AiBj ∈ P(H). Similarly, Bj ∈ P(H). The converse is clear.
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4 Properties of Sequential Products

This section derives various properties for sequential products of measure-
ments. We also discuss an order on M(H). The order on E(H) is the usual
operator order.

Lemma 4.1. Any A ∈ sub-M(H) has a maximal element.

Proof. Let C be a chain inA. Then C has a largest element. Indeed, otherwise
there exist Ai ∈ C with 0 < A1 < A2 < · · · . If 〈A1x, x〉 	= 0, then

0 < 〈A1x, x〉 ≤ 〈A2x, x〉 ≤ · · ·

and this contradicts the fact that
∑ 〈Aix, x〉 ≤ 1. Hence, C has an upper

bound in A. By Zorn’s lemma, A has a maximal element.

Lemma 4.2. If A = {Ai} ∈ sub-M(H) and Aj ∈ P(H) for some j, then
Aj ◦ Ak = 0 for all k 	= j.

Proof. Since

Aj = Aj ◦ I ≥ Aj ◦
∑

k

Ak =
∑

k

Aj ◦ Ak = Aj ◦ Aj +
∑
k �=j

Aj ◦ Ak

= Aj +
∑
k �=j

Aj ◦ Ak

we have that
∑

k �=j Aj ◦ Ak = 0. Hence, Aj ◦ Ak = 0 for k 	= j.

The next result shows that sharp measurements are precisely the idem-
potents in M(H) under sequential products.

Theorem 4.3. For A ∈ sub-M(H) we have that A ◦ A ≈ A if and only if
A ∈ sub-S(H).

Proof. It follows from Lemma 4.2 that for A ∈ sub-S(H) we have A◦A ≈ A.
Conversely, suppose A = {Ai} and A ◦ A ≈ A. Then {Ai ◦ Aj} ≈ {Ai} and
we may assume that Ai 	= 0 for all i. Let B1, B2, . . . be all the projections
in A. By Lemma 4.2, Bi ◦ Aj = 0 whenever Aj 	= Bi. Let A1 be the
submeasurement A � {Bi : i = 1, 2, . . . } and assume that A1 	= ∅. Writing
A1 = {Ci} we have that A1 ◦ A1 ≈ A1 so that {Ci ◦ Cj} ≈ {Ci}. By
Lemma 4.1, {Ci = Cj} has a maximal element, say Ci◦Cj. Since Ci◦Cj ≤ Ci
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and Ci is an element of {Ci ◦ Cj} we have that Ci ◦Cj = Ci. It follows from
[7] that

Ci ◦ Cj = Cj ◦ Ci = Ci

But now Cj ◦ Ci is a maximal element and Cj ◦ Ci ≤ Cj. Hence, Cj =
Cj ◦ Ci = Ci. We conclude that Ci ◦ Ci = Ci so Ci ∈ P(H). Since this is a
contradiction, A1 = ∅. Hence, {Ai} = {Bi} ∈ sub-S(H).

We now give a simple example which shows that Theorem 4.3 does not
hold for weak equivalence. Let A =

{
1
2
I, 1

2
I
}
. Then

A ◦ A =
{

1
4
I, 1

4
I, 1

4
I, 1

4
I
}
∼ A

but A is not sharp. However, A ∼ I ∈ S(H). We say that A ∈ sub-M(H)
is finite if A has a finite number of elements.

Theorem 4.3 is easier to prove for finite A ∈ M(H). Indeed, let A =
{A1, . . . , An} where Ai 	= 0, i = 1, . . . , n, and suppose A ◦ A ≈ A. Then
{Ai ◦ Aj} ≈ {Ai} and since Ai 	= 0, A2

i 	= 0, i = 1, . . . , n. Since A ◦ A and
A have the same number of nonzero elements, we conclude that Ai ◦Aj = 0,
i 	= j. It follows that

Ai = Ai ◦ I = Ai ◦
∑

j

Aj =
∑

j

Ai ◦ Aj = A2
i

so Ai ∈ P(H), i = 1, . . . , n. Hence, A ∈ S(H).
For A = {Ai} ∈ sub-M(H) and B = {Bj} ∈ sub-M(H) we call A a

refinement of B and write A ≤ B if we can adjoin 0s to A if necessary and
organize the elements of A so that A ≈ {Aij} and Bi =

∑
j Aij for all i. For

example, A ◦ B ≤ A. Indeed, A ◦ B = {Ai ◦Bj} and Ai =
∑

j Ai ◦Bj for all
i. We now show that the converse does not hold.

This example shows that A ≤ B does not imply that A ≈ B ◦ C for
some C ∈ sub-M(H). Let A ∈ E(H) have the properties that A and A′

are invertible and A 	= λI for 0 < λ < 1. Letting B = {A, A′} and A ={
1
2
A, 1

2
A, A′

}
we have that A ≤ B. Suppose that A ≈ B ◦ C where C =

{C1, C2, . . . }. Assume that A′ = A′ ◦Ci for some i. Since A′ is invertible, we
have Ci = I. But then C = I andA ≈ B which is a contradiction. Otherwise,
A′ = A ◦ Ci for some i. Since A is invertible, we have that Ci = A−1 − I.
Hence,

A′ ◦ Ci = (I − A)(A−1 − I) = A−1 + A− 2I
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If A′ ◦Ci = 1
2
A, then A−1 + 1

2
A− 2I = 0 or A2− 4A+2I = 0. It follows that

A =
(
2−

√
2
)
I which is a contradiction. If A′◦Ci = A′, then A−1+A−2I =

I − A or 2A2 − 3A + I = 0. Hence, (I − 2A)(I − A) = 0 which implies that
A = 1

2
I. Since this is again a contradiction, we conclude that A 	≈ B ◦ C for

any C ∈ sub-M(H).
We now show that ≤ gives a partial order on sub-M(H). Strictly speak-

ing, we are considering equivalence classes because we use ≈ instead of equal-
ity.

Theorem 4.4. (sub-M(H),≤) is a poset in which A ≤ B implies C ◦ A ≤
C ◦ B.

Proof. It is clear that ≤ is reflexive and it is not hard to show that ≤ is
transitive. To prove anti-symmetry, let A = {Ai}, B = {Bj} and suppose
that A ≤ B and B ≤ A. Eliminate from A all the elements that have a
singleton sum decomposition Ai = Bj in the definition of refinement and
denote the resulting submeasurement by A1. After eliminating these ele-
ments from B we have the submeasurement B1 and A1 ≤ B1, B1 ≤ A1. By
Lemma 4.1, A1 has a maximal element Ai. Then some Bj ∈ B1 satisfies
Bj = Ai + Aj1 + Aj2 + · · · . Hence, Bj ≥ Ai. Now there exists an Ak ∈ A1

such that Ak = Bj + Bk1 + Bk2 + · · · . Hence, Ai ≥ Bj ≥ Ai. Since Ai is
maximal in A1, we have that Ak = Bj = Ai. Hence, Ai has a singleton sum
decomposition which is contradiction. We conclude that A1 = B1 = ∅ and
A ≈ B. Finally, suppose that A ≤ B. We then have that Bi =

∑
j Aij for

all i so that

Ck ◦Bi = Ck ◦
∑

j

Aij =
∑

j

Ck ◦ Aij

It follows that C ◦ B ≤ C ◦ A.

It follows from Theorem 4.4 that (M(H),≤) is a poset with largest ele-
ment I.

Theorem 4.5. (a) If A ∈ sub-S(H), B ∈ sub-M(H) and B ≤ A, then
B ≈ A ◦ B ≈ B ◦ A. (b) If A ∈ sub-S(H), B ∈ sub-M(H) and A ≤ B,
then B ∈ sub-S(H) and A ≈ A ◦ B ≈ B ◦ A. (c) If A,B ∈ sub-M(H) and
A ◦ B ≈ A, then A and B are compatible, B ∈ sub-S(H) and A ≤ B.
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Proof. (a) Since B ≤ A, we can write B = {Bij}, A = {Ai} where Ai =∑
j Bij for all i. Since Bij ≤ Ai we have that

Bij ◦ Ai = Ai ◦Bij = Bij

for all i and Bij◦Ak = 0 for all j and k 	= i. It follows that B ≈ A◦B ≈ B◦A.
(b) It is clear that B ∈ sub-S(H) and the result follows from (a). (c) By
Lemma 4.1, A has a maximal element Ak ∈ A. Now Ak = Ai ◦Bj for some i
and j. Since Ak = Ai ◦Bj ≤ Ai we have that Ak = Ai. Hence, Ak = Ak ◦Bj.
It follows that Ak ◦ Bj = Bj ◦ Ak [7]. Since Ak = Ak ◦ Bj =

∑
r Ak ◦ Br we

have that Ak ◦ Br = 0 for r 	= j. Call Ak type 1 if Ak ◦ Bj = Ak for some j.
Let A1 = {Ai1 , Ai2 , . . . } be the non-type 1 elements of A. If A1 	= ∅, then
by Lemma 4.1, A1 contains a maximal element Aik . As before, there is a Bs

such that Aik ◦ Bs = Aik which is a contradiction. Hence, all elements of A
are type 1. No for every Bj we have Aj1 ◦ Bj = Aj1 , Aj2 ◦ Bj = Aj2 , · · · and
Ai ◦Bj = 0, i 	= j1, j2, . . . . Hence,

Bj =
∑

i

Bj ◦ Aji
=

∑
i

Aji
◦Bj =

∑
i

Aji

Therefore, A ≤ B and A, B are compatible. Moreover,

B2
j = Bj ◦Bj =

∑
i

Bj ◦ Aji
= Bj

Hence, B ∈ sub-S(H).

We now briefly discuss the lattice properties of the poset M(H). As we
shall show, A ∧ B does not always exist. The characterization of pairs A, B
for which A∧B (or A∨B) exist is an open problem. Denoting the set of two-
element measurements by M2(H), it is clear that the members of M2(H)
are anti-atoms. Hence, if A,B ∈M2(H) and A 	= B, then A∨ B = I. More
generally, for A ∈ M(H), B ∈ M2(H), if A ≤ B then A ∨ B = B and if
A 	≤ B then A ∨ B = I

We shall show in Section 5 that for A ∈M(H), B ∈ S(H), A ∧ B exists
if and only if A and B are compatible and in this case A ∧ B = A ◦ B. In
general, even when A and B are compatible, A◦B 	= A∧B. For example, if
A ∈ M(H) � S(H) then A ∧ A = A and A ◦ A 	= A. As another example,
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let

A =
{

1
4
I, 1

4
I, 1

2
I
}

B =
{

1
2
I, 1

2
I
}

Then A ≤ B so that A ∧ B = A. However,

A ◦ B =
{

1
8
I, 1

8
I, 1

4
I, 1

8
I, 1

8
I, 1

4
I
}
	= A

For a slightly more complicated example, let

A =
{

1
2
I, 1

3
I, 1

6
I
}

B =
{

1
2
I, 1

2
I
}

C =
{

2
3
I, 1

3
I
}

Then A = B ∧ C. Indeed, A ≤ B, C and if D ≤ B, C with D = {Di}, then
1
2
I =

∑
r Dir ,

1
3
I =

∑
s Dis , so that 1

6
I =

∑
t Dit . Hence, D ≤ A so that

A = B ∧ C. However,

A 	= B ◦ C =
{

1
3
I, 1

3
I, 1

6
I, 1

6
I
}

5 Coexistence

For simplicity of notation, in Section 5 and 6 we shall write A = B for
A ≈ B. In this way, we are implicitly working with equivalence classes. Two
effects A, B ∈ E(H) coexist if there exist effects C1, C2, C3 ∈ E(H) such
that C1 +C2 +C3 ≤ I and A = C1 +C2, B = C2 +C3. Coexistence has been
thoroughly studied in the literature [2, 3, 8, 9, 10]. We say that A ∈ E(H) is
associated with A = M(H) if A ≤ {A, A′}.

Lemma 5.1. Two effects A, B ∈ E(H) coexist if and only if A, B are asso-
ciated with a common measurement A ∈M(H).

Proof. If A and B coexist, let C1, C2, C3 be as in the definition. Letting
C4 = I − C1 − C2 − C3 we have the measurement A = {C1, C2, C3, C4} and
since A = C1 + C2, B = C2 + C3, A and B are both associated with A.

13



Conversely, suppose A and B are both associated with A = {Ai} ∈ M(H).
We can then write

A =
∑

r

Air +
∑

s

Ais

B =
∑

s

Ais +
∑

t

Ait

where ir 	= it for all s, t. Letting C1 =
∑

r Air , C2 =
∑

s Ais , C3 =
∑

t Ait we
have that A = C1 + C2, B = C2 + C3 and C1 + C2 + C3 ≤ I. Hence A and
B coexist.

The following lemma summarizes some of the elementary properties of
coexistence [9, 10].

Lemma 5.2. (a) If A, B ∈ E(H) and A + B = P ∈ P(H), then A, B are
compatible. (b) IF A, B ∈ E(H) are compatible, then A, B coexist. (c) If
A ∈ E(H), P ∈ P(H) and A, P coexist, then A, P are compatible.

Proof. (a) Since A ≤ P we have that AP = PA = A. Hence,

A2 + AB = AP = A

Therefore, AB = A− A2 and taking adjoints gives AB = BA. (b) If A, B
are compatible we have AB ∈ E(H) and we can write

A = (A− AB) + AB

B = (B − AB) + AB

Moreover,

(A− AB) + (B − AB) + AB = A(I −B) + B ≤ (I −B) + B = I

(c) As in the definition, A = C1 + C2, P = C2 + C3 where C1 + C2 + C3 ≤ I.
Now there exists a C4 ∈ E(H) with C1 + C2 + C3 + C4 = I. By (a) we have
C2C3 = C3C2 and C1C4 = C4C1. Hence,

C1(C1 + P ) = (C1 + P )C1

so that C1P = PC1. Therefore, AP = PA.

14



Notice that coexistence is a much weaker property than compatibility. In
fact, it is easy to find A, B, C ∈ E(H) such that A+B+C = I and no pair of
the A, B, C commute. Letting D = A + B, E = B + C we have that D and
E coexist and DE 	= ED in general. We say that A,B ∈ M(H) coexist if
they have a common refinement, C ≤ A,B. (This definition is different than,
but similar to, the definition of coexistence of observables [9, 10]. Notice that
if A◦B = B ◦A, then A◦B ≤ A,B so A, B coexist. The next lemma shows
that this definition generalizes the definition of coexistence of effects.

Lemma 5.3. Two effects A, B ∈ E(H) coexist if and only if {A, A′} , {B, B′}
coexist.

Proof. This follows directly from Lemma 5.1.

Notice that if {Ai}, {Bj} coexist, then {Ai, A
′
i},

{
Bj, B

′
j

}
coexist so Ai,

Bj coexist for all i, j. The example at the end of this section shows the
converse does not hold. Since A ≤ B implies C ◦A ≤ C ◦ B, it follows that if
A, B coexist, then C◦A, C◦B coexist. In contrast, if A and B are compatible,
then C ◦ A and C ◦ B need not be compatible.

Theorem 5.4. If A ∈ M(H) and B ∈ S(H) coexist, then A and B are
compatible.

Proof. Suppose A = {Ai} and B = {Bj} coexist so they have common
refinement. Then {Ai, A

′
i} and

{
Bj, B

′
j

}
have a common refinement for all

i, j. Hence {Ai, A
′
i} and

{
Bj, B

′
j

}
coexist so by Lemma 5.3, Ai and Bj coexist.

Applying Lemma 5.2(c), Ai, Bj are compatible so A, B are compatible.

Theorem 5.5. For A ∈ M(H) and B ∈ S(H), A ∧ B exists if and only if
A and B are compatible. In this case A ∧ B = A ◦ B.

Proof. If A ∧ B exists, then A and B coexist so by Theorem 5.4, A and B
are compatible. Conversely, suppose A and B are compatible. Then B ◦A ≤
A,B. Suppose C ≤ A,B. By Theorem 4.5, C = C ◦ B = B ◦ C. Since C ≤ A
we have that

C = B ◦ C ≤ B ◦ A

Hence, B ◦ A = A ∧ B.
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Example Let P, Q ∈ P(H) with PQ 	= QP and let A = 1
2
P , B = 1

2
Q. Then

A, B ∈ E(H) and since A + B ≤ I we have that A and B coexist. Since
B + B = Q ∈ P(H) and A is not compatible with B + B, it follows from
Lemma 5.2(c) that A and B+B do not coexist. We conclude that an effect A
can coexist with two effects B1, B2 where B1 +B2 ≤ I and yet A and B1 +B2

do not coexist. Letting A = 1
2
P , B = 1

2
Q as before, define the measurements

A = {A, A′}, B =
{
B, B, 1

2
I −B, 1

2
I −B

}
. Then the elements of A and

B mutually coexist but since A does not coexist with B + B we conclude
that A and B do not coexist. (The corresponding problem for observables is
unsolved [9, 10].)

6 Convexity

If A = {Ai} and B = {Bj} are in sub-M(H) we say that A⊕ B is defined
if

∑
Ai +

∑
Bj ≤ I and in this case we define the submeasurement

A⊕ B = {A1, A2, . . . , B1, B2, . . . }

Defining the zero submeasurement O = {0} we see that {sub-M(H),O,⊕}
is a generalized effect algebra [3]. That is, whenever ⊕ is defined, we have
that ⊕ is commutative, associative, O ⊕ A = A for all A, A ⊕ B = A ⊕ C
implies B = C and A⊕B = O implies A = B = O. We also have that if A ∈
sub-M(H), then there exists a B ∈ sub-M(H) such that A ⊕ B ∈ M(H).
Moreover, if A⊕B is defined and C ∈ sub-M(H) then C ◦ (A⊕B) = C ◦A⊕
C⊕B.In a similar way, we defined ⊕Ai, if Ai is a countable set in sub-M(H)
satisfying the analogous condition. Again we have that A◦ (⊕Bi) = ⊕A◦Bi

whenever ⊕Bi is defined. For 0 ≤ λ ≤ 1 and A ∈ sub-M(H), define λA ∈
sub-M(H) by λ {Ai} = {λAi}. If λi ≥ 0,

∑
λi = 1, then ⊕λiAi is always

defined and if Ai ∈M(H), then ⊕λiAi ∈M(H). Moreover,

A ◦ (⊕λiBi) = ⊕λiA ◦ Bi

(⊕λiBi) ◦ A = ⊕λiBi ◦ A

It is clear that⊕(λiA) ∼ A. We now show that convex combinations preserve
∼.

Lemma 6.1. If A ∼ B, C ∼ D and 0 ≤ λ ≤ 1, then

λA⊕ (1− λ)C ∼ λB ⊕ (1− λ)D
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Proof. We have that A(ρ) = B(ρ) and C(ρ) = D(ρ) for all ρ ∈ D(H). Hence,

[λA⊕ (1− λ)C] (ρ) = λA(ρ) + (1− λ)C(ρ) = λB(ρ) + (1− λ)D(ρ)

= [λB ⊕ (1− λ)D] (ρ)

for every ρ ∈ D(H).

The next lemma shows that convexity preserves the important concepts
of E(H).

Lemma 6.2. Suppose that λi ≥ 0,
∑

λi = 1 and Ai, Bi ∈ E(H) i =
1, . . . , n. (a) (

∑
λiAi)

′ =
∑

λiA
′
i. (b) If Ai, Bj are compatible for all i, j,

then
∑

λiAi is compatible with
∑

λiBi. (c) If Ai and Bi coexist, i = 1, . . . , n,
then

∑
λiAi coexists with

∑
λiBi.

Proof. (a) Since∑
λiA

′
i +

∑
λiAi =

∑
λi(A

′
i + Ai) =

∑
λiI = I

we have that
∑

λiA
′
i = (

∑
λiAi)

′. (b) This is clear. (c) We prove this
by induction on n. Let n = 2 and suppose Ai and Bi coexist, i = 1, 2.
Then A1 = C1 + D1, B1 = D1 + E1, A2 = C2 + D2, B2 = D2 + E2 where
C1 + D1 + E1 ≤ I and C2 + D2 + E2 ≤ I. We then have that

λ1A1 + λ2A2 = λ1C1 + λ1D1 + λ2C2 + λ2D2

= (λ1C1 + λ2C2) + (λ1D1 + λ2D2)

λ1B1 + λ2B2 = λ1D1 + λ1E1 + λ2D2 + λ2E2

= (λ1D1 + λ2D2) + (λ1E1 + λ2E2)

Since

λ1C1 + λ2C2+λ1D1 + λ2D2 + λ1E1 + λ2E2

= λ1(C1 + D1 + E1) + λ2(C2 + D2 + E2) ≤ I

we conclude that λ1A1 + λ2A2 and λ1B1 + λ2B2 coexist. Next suppose the
result holds for n and assume that Ai and Bi coexist, i = 1, . . . , n+1. Letting
α =

∑n
i=1 λi, by the induction hypothesis, 1

α

∑n
i=1 λiAi and 1

α

∑n
i=1 λiBi

coexist. Hence,
∑n

i=1 λiAi and
∑n

i=1 λiBi coexist. Again by the induction
hypothesis,

1

2

n∑
i=1

λiAi +
1

2
λn+1An+1
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and

1

2

n∑
i=1

λiBi +
1

2
λn+1Bn+1

coexist. Hence,
∑n+1

i=1 λiAi and
∑n+1

i=1 λiBi coexist.

If A,B ∈ sub-M(H) and A⊕B ∈M(H), we call B a supplement of A
and write B = A′. Notice that A′ is not unique. The proof of the next result
is analogous to that of Lemma 6.2.

Theorem 6.3. Suppose that λi ≥ 0,
∑

λi = 1 and Ai,Bi ∈ sub-M(H), i =
1, . . . , n. (a) (⊕λiAi)

′ =
∑

λiA′i. (b) If Ai, Bj are compatible for all i, j,
then ⊕λiAi is compatible with ⊕λiBi. (c) If Ai and Bi coexist, i = 1, . . . , n,
then ⊕λiAi and ⊕λiBi coexist.

7 Conditioning

For A = {Ai} ,B = {Bj} ∈ M(H) we defined A | B ∈ M(H) by

A | B =

{∑
j

Bj ◦ Ai : i = 1, 2, . . .

}

and call A | B the measurement A conditioned by the measurement B.
Notice that B ◦ A ≤ A | B and if A and B are compatible, then A | B ≈ A.
IT follows from a result in [1] that the converse does not hold. That is,
A | B ≈ A does not imply that A and B are compatible. If A | B ≈ A
we say that A is unaffected by B. It follows from a result in [1] that A is
unaffected by B does not imply that B is unaffected by A. If A is compatible
with itself we say that A is commutative.

Lemma 7.1. If dim H < ∞ and {A, A′} is unaffected by {B, B′}, then
{A, A′} and {B, B′} are compatible.

Proof. If {A, A′} | {B, B′} = {A, A′}, then

{B ◦ A + B′ ◦ A, B ◦ A′ + B′ ◦ A′} ≈ {A, A′}

If B ◦ A + B′ ◦ A = A, then AB = BA. If B ◦ A + B′ ◦ A = A′, then by
Lemma 3.5 we have that A = 1

2
I. In either case, {A, A′} and {B, B′} are

compatible.
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We do not know if the condition dimH < ∞ can be relaxed.

Theorem 7.2. Let A ∈ M(H) and B ∈ S(H). If A is unaffected by B or
if B is unaffected by A, then A and B are compatible.

Proof. Let A = {Ai}, B = {Bj}. If A | B ≈ A then for every i we have∑
j BjAi = Ak for some k. Hence,

BrAiBr = BrAk = AkBr

for every r so that A and B are compatible. If B | A ≈ B then for every i

we have
∑

j A
1/2
j BiA

1/2
j = Bk for some k. If k = i, then from a result in [1]

we have AjBi = BiAj for every j. Otherwise, k 	= i and then

BiA
1/2
j BiA

1/2
j Bi = 0

Hence (Bi ◦Aj)
2 = 0 which implies that Bi ◦Aj = 0. It follows that BiAj =

AjBi [7]. But then Bi = Bk which is impossible. Hence, k = i and the result
follows.

We conjecture that if A does not affect itself, then A is commutative.
The next example shows that this conjecture holds in some special cases.
Let A = {A1, A2, A3} with Ai 	= 0, i = 1, 2, 3 and suppose that A | A ≈ A
and dim H < ∞. We then have that {A1 ◦ A1 + A2 ◦ A1 + A3 ◦ A1, A1 ◦
A2 + A2 ◦ A2 + A3 ◦ A2, A1 ◦ A3 + A2 ◦ A3 + A3 ◦ A3} ≈ {A1, A2, A3}. If∑

Ai ◦ A1 = A1, then A1A2 = A2A1 and A1A3 = A3A1 [1]. But then

A2A3 = A2(I − A1 − A2) = (I − A1 − A2)A2 = A3A2

so that A is commutative. Next, suppose that
∑

Ai ◦ A1 = A2. We then
obtain

A1 ◦ A1 + A3 ◦ A1 = A2 − A2 ◦ A1 = A2 ◦ (I − A2 − A3)

= A2 − A2 ◦ A2 − A2 ◦ A3

Hence,

A2 =A1 ◦ A1 + A3 ◦ A1 + A2 ◦ A2 + A2 ◦ A3 =A1 ◦ A1 + A2 ◦ A1 + A3 ◦ A1
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We conclude that

A2 ◦ A1 − A2 ◦ A2 − A2 ◦ A3 = 0

Since
∑

A2 ◦Ai = A2 we have that A2 ◦A1 = 1
2
A2. Similarly, A3 ◦A2 = 1

2
A3

and A1 ◦ A3 = 1
2
A1. In general, if A ◦ B = 1

2
A then we need not have

that AB = BA. For example, let Px be the one-dimensional projection
onto the span of the unit vector x, and let B ∈ E(H) satisfy 〈Bx, x〉 = 1

2

and BPx 	= PxB. Then B and Px are not compatible, but Px ◦ B = 1
2
Px.

However, suppose that A1 is invertible. Then A1 ◦ A3 = 1
2
A1 implies that

A3A
1/2
1 = 1

2
A1/2 so that A3A1 = A1A3. If in addition, A2 is invertible, then

A2A1 = A1A2 and A is commutative. Or suppose that A1 ≤ 1
2
I. Then

2A1 ∈ E(H) and A2 ◦ (2A1) = A2 implies that (2A1)A2 = A2(2A1) [7].
Hence, A1 and A2 are compatible. If in addition, A2 ≤ 1

2
I, then A2 and A3

are compatible and A is commutative.
It is easy to check that conditioning preserves convex combinations. That

is, (⊕λiAi) | B = ⊕λi(Ai | B). It is also easy to check that A ≤ B implies
that A | C ≤ B | C.

For A ∈ E(H), ρ ∈ D(H) we denote the probability of A in the state
ρ by Pρ(A) = tr(ρA). If A, B ∈ E(H), ρ ∈ D(H), then the conditional
probability of A given B in the state ρ is

Pρ(A | B) =
tr(ρB ◦ A)

tr(ρB)
=

tr [(B ◦ ρ)A]

tr(ρB)

assuming that tr(ρB) 	= 0 [7]. Since

ρ | B =
B ◦ ρ

tr(ρB)
∈ D(H)

we can write Pρ(A | B) = Pρ|B(A). Analogous to our definition of conditioned
measurements, it is natural to define A | B =

∑
Bi ◦ A for A ∈ E(H),

B = {Bi} ∈ M(H). It is clear that A | B ∈ E(H) and we call A | B
the effect A conditioned by the measurement B. Conditions under which
A | B = A have been studied in [1]. We now have the formulas

Pρ(A | B) = tr
(
ρ

∑
Bi ◦ A

)
=

∑
tr (ρBi ◦ A) =

∑
tr [(Bi ◦ ρ)A]

= tr
[(∑

Bi ◦ ρ
)

A
]

= tr [(ρ | B)A] = Pρ|B(A)
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and

Pρ(A | B) =
∑

tr(ρBi ◦ A) =
∑

tr(ρBi)Pρ(A | Bi) =
∑

Pρ(Bi)Pρ(A | Bi)

In the case when Pρ(A) = Pρ(A | B) we say the law of total probability
holds. Although this law always holds in classical probability theory it does
not hold in general for quantum mechanics. [1, 7].
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