Weighted Rectilinear Approximation of Points
in the Plane

Mario A. Lopez! and Yan Mayster?

L University of Denver, Department of Mathematics, 2360 S. Gaylord St.,
Denver, CO 80208, USA
mlopez@du.edu
2 University of Denver, Department of Computer Science, 2360 S. Gaylord St.,
Denver, CO 80208, USA

ymayster@cs.du.edu

Abstract. We consider the problem of weighted rectilinear approxima-
tion on the plane and offer both exact algorithms and heuristics with
provable performance bounds. Let S = {(p;,w;)} be a set of n points
pi in the plane, with associated distance-modifying weights w; > 0. We
present algorithms for finding the best fit to .S among z-monotone recti-
linear polylines R with a given number k < n of horizontal segments. We
measure the quality of the fit by the greatest weighted vertical distance,
i.e., the approximation error is maxi<;<n widy(ps, R), where d,(pi, R) is
the vertical distance from p; to R. We can solve for arbitrary k opti-
mally in O(n?) or approximately in O(nlog®n) time. We also describe a
randomized algorithm with an O(nlog? n) expected running time for the
unweighted case and describe how to modify it to handle the weighted
case in O(nlog®n) expected time. All algorithms require O(n) space.

1 Introduction

The approximation of points in the plane using piecewise linear functions has
drawn much interest from researchers in computational geometry and other
fields. Many variants exist as a result of different constraints on the nature
of the approximating curve, its complexity, error metric or the quality of the ap-
proximation. For a sample of recent results as well as references to other relevant
work see [1,4-6,9, 12]. For these variants, two subclasses of problems can be con-
sidered. The first, min-#, calls for a solution curve with the least number of line
segments (in the rectilinear case, only horizontal segments are counted) given
a target error . The second, min-¢, specifies a number k and asks for a curve
with no more than k segments that achieves least possible error . Finally, we
can also add an additional restriction in the form of weights attached to individ-
ual points, which modify the distances from the points to the approximating line
(usually, as multiplicative constants). This restriction creates many new versions
of the problem (see [8, 16]). This paper addresses the weighted min-¢ problem of
approximating a set of points by a rectilinear curve using the min-max vertical
distance metric.

In defining the problem we use much of the same notation as in [3], which was
the first to tackle the unweighted case. Let S = {p; = (x;,v:),i=1,...,n},x1 <
To < ... < Ty, be a set of n points in the plane. For 1 < ¢ < j < n, define
Sij = {PisDi+1,.-.,pj}. A curve R is rectilinear if it consists only of alternating
horizontal and vertical segments and is z-monotone if the z-domains of any two
consecutive horizontal segments meet in a single value. From now on, when we
speak of approximation curves they are both rectilinear and z-monotone.

We now define vertical distance, the error function used in our method. If a
horizontal segment s has y-coordinate y; and z-range [z, 2], then the weighted
vertical distance from s to a point p; with associated weight w; is

W, . _ wz|y7, - Zla| if x; € [x&x{s]a
dy’ (pi,s) = { 00 otherwise.

Then, the weighted vertical distance between a point p; and a curve R is defined
as

Wi . — in AW (1.
d, (pi, R) mind, (pis 5).

In the spirit of [3], the eccentricity of R with respect to S is the maximum
vertical error between the points of S and R, i.e.,

e(S,R) = max 4 (pi, R).

A point p; of S is said to be “covered” by a horizontal segment s of R if z; is in
the z-domain of s. We can see that every point of S is covered by some horizontal
segment of R and the set of all points covered by s is some S;; (which, as in
[3], we call the allocation set of s). All allocation sets can be assumed nonempty
as, otherwise, we unnecessarily increase the complexity of R. Furthermore, the
boundaries between adjacent horizontal segments can be fixed arbitrarily in the
intervals between adjacent allocation sets.

Diaz-Béfiez and Mesa [3] provide an O(n?logn) algorithm to solve the un-
weighted min -& problem using their O(n) solution for the min-# problem. They
solve the min-# problem by sweeping the points from left to right and extend-
ing the current segment while the y-span of the points it covers is at most twice
the allowed eccentricity. Thereafter, they solve min-¢ by reducing it to a binary
search on the “candidate” eccentricities (which number O(n?), one for each pos-
sible pair of points p;,p;, @ < j). Later, Wang [15] reduces the time for min-¢
to O(n?) by carefully generating a set of at most 2n — 2 candidate errors which
includes the optimal one and running the linear min-# algorithm on each of
these errors.

Mayster and Lopez [10] improve over Wang with a min-¢ algorithm that
runs in O(min{n?, nklogn}) time. Their algorithm uses Wang’s O(n) candidate
eccentricities coupled with an auxiliary tree structure that cuts the time for
each min-# instance down to O(klogn). The second result of [10] is a greedy
heuristic (GCSA) that runs in O(nlogn) time. It can generate curves with 2k —1
segments with eccentricity no worse than that for an optimal curve consisting of

k segments as well as produce curves with k segments with eccentricity within
a factor of 3 from k-optimal.

The rest of the paper is organized as follows. In the next section we introduce
the dual perspective to modelling weighted distances from points to an approxi-
mating segment. In Section 3, we describe an exact algorithm that runs in O(n?)
time. In Section 4 we discuss a modified GCSA heuristic that utilizes the dual
perspective to maintain the costs efficiently. It runs in O(n log? n) time and has
the same error bounds with proofs carrying over from [10]. Finally, in Section 5
we describe a randomized algorithm that solves the unweighted (resp. weighted)
version of the problem in O(nlog?n) (resp. O(nlog®n)) expected time.

2 Preliminaries

First, we consider the optimal placement of a horizontal segment with respect to
its (fixed) allocation set. In the unweighted case the error is minimized when the
segment is centered with respect to the y-range of the points. Thus, the optimal
location of the horizontal segment is unique and can be determined from two
points in the allocation set. This is still true in the weighted scenario, but the
optimal location may not correspond to the midpoint of the y-range. However,
it must still be equidistant (under weighted distance) from the furthest points
above and below it, as otherwise a small shift in its position would decrease the
error.

There cannot be two different locations for the optimal segment because of
the semi-monotonicity of the distance function. If two distinct segments s and
s’ were both optimal, then the distance from s’ to one of the two points that
define s would be greater than the distance from s to that point, in violation of
the optimality of s’. If the two points that define the y-coordinate 1, of the best
approximating segment s have coordinates (z;,v;), (x;,y;) and corresponding
weights w;, w;, then y, is given by

(yi — ys)wi = (ys — Yj)w; = ys = ﬁ
Therefore, the solution to the problem is the intersection of two lines ¢ = —w;y+

y;w; and ¢ = w;y — y;w;, where ¢ stands for the cost of approximating the point
by a segment located at y. This leads us to consider a “cost-location” space
composed of such lines, each point in S giving rise to one upward and one
downward sloping line with the absolute values of the slopes equal to the weight
of the point. Let us suppose that all points in .S are located in the first quadrant,
ie.x;,y; > 0V1 < i < n. We map each point p; with the corresponding weight w;
to the pair of lines in the “cost-location” plane ¢;o = w;y; —w;y and £;1 = —w;y;+
w;y and restrict their domain to the first quadrant. Thus, for each point we have
a linear transformation ¢; of the absolute value metric function restricted to the
nonnegative domain. Each such wedge shaped function ¢; computes the distance
from p; to the approximating segment as we hypothetically sweep it upward
starting from y = 0 and counsists of a finite down-sloping segment (recording the

ups

u py

Yo - L3

u P2

up1

Fig.1. (a) A set of points p; = (x;,¥:), numbered by increasing y-coordinate, having
respective weights w; such that we > ws > w1 > w3 > wo, and the best fit segment. (b)
The corresponding lines in the cost-location plane with the slopes w; and the vertical
axis intercepts c;. The lowest point of the envelope is identified with the cost and
y-coordinate of the best fit segment.

cost for y < y;) and an infinite up-sloping ray (for the cost when y > y;). Which
portion of this arrangement of 2n cost lines keeps track of the greatest distance
(i.e., the furthest point) to the approximating segment for any segment position
y? The answer is quite obvious - the upper envelope of the arrangement is made
up of the segments of the cost lines of those points that at some y are furthest
from the approximating segment. The optimal location is given by the lowest
point, which is also the lowest vertex, of the upper envelope.

We observe that in the case when S is known and fixed the above-mentioned
problem of finding the lowest vertex of the upper envelope has been tackled
successfully before, as it is nothing other than finding the optimal solution to a
linear program in 2D. The best known deterministic algorithm for this has been
developed by [11] and runs in O(n) time. In addition, a very simple randomized
algorithm [14] exists that has O(n) expected running time. In our optimal algo-
rithm we shall need to solve this problem repeatedly for each new subset of .S,
which differs in a single point from the previous subset, in order to compute the
eccentricities of candidate curves and, therefore, using the O(n) algorithm as a
subroutine is an overkill.

However, there are more efficient algorithms to dynamically maintain com-
mon intersections of half-planes. In particular, a clever dynamization technique
by Overmars and van Leeuwen [13] can be exploited to maintain the upper enve-
lope in O(log® n) time per update (insertion or deletion of a line) and enables us
to query for the lowest point on the boundary in just O(logn) time. The essence
of their approach is to store the “left” half-planes (i.e., those that contain the
left ray of any horizontal line) and the “right” half-planes in two separate aug-
mented binary search trees. The lines bounding the half-planes are stored at the

leaves and ordered by slope. In our case, since each point contributes an entire
wedge with both bounding lines having the same (in absolute value) slope, it
makes sense to have just one tree and store the points themselves at the leaves
sorted by weight. Then, the bounding lines of the left half-planes are sorted in
descending order and the bounding lines of the right half-planes are sorted in
ascending order (without explicitly storing these lines). As per [13], each inter-
nal node is augmented with a pointer to the parent and the largest slope value
(largest point weight) of the lines in its left subtree (needed for concatenation).
Most importantly, the portion of the upper envelope of the left half-plane lines in
its subtree that does not contribute to the upper envelope of the left half-planes
of its parent is stored in a concatenable queue along with the number of lines on
its envelope that belong to the upper “left” envelope of the parent. The “right”
upper envelope is handled similarly, so each internal node has two concatenated
queues associated with it.

Then, the overall “left” upper envelope is stored at the root of the “left” tree
(and, similarly, the “right” upper envelope is stored at the root of the “right”
tree). Using the procedures DOWN and UP described in [13] one can insert and
delete lines and maintain the queue structures as well as the balance of the tree.
Then, the intersection of the left and right envelopes can be found efficiently in
O(logn) time as is also proven in the original paper.

Finally, we note that there are other dynamic half-plane intersection al-
gorithms that outperform the above-mentioned algorithm by Overmars and
Leeuwen and run in O(nlogn) amortized time, such as [7] and [2].

3 An Exact Algorithm

As observed in the previous section, the error of each approximating segment in
its best position is determined by two points and, therefore, so is the eccentricity
of the curve. It is still valid to use Wang’s choice of candidate eccentricities and
then it remains to describe how to compute these and the candidate curves
that they give rise to. In Wang’s algorithm, when one of the two pointers (called
sweep lines in the original paper) is advanced, the error of the best approximating
segment for the set of points between the two pointers is computed. This error
computation in the weighted distance case corresponds to finding the lowest
point on the upper envelope of the wedge lines in the cost-location plane as
these lines are added or deleted one at a time. As mentioned in the previous
section, computing the candidate eccentricities can be done using the O(log2 n)
dynamic half-plane intersection algorithm of [13].

‘We now turn to the question of how to compute a candidate curve itself once
the target eccentricity € has been found. This can be done with a slightly modified
min-# algorithm of [3]. In this new version, each point (z;,y;) with the weight
w; is represented by a vertical line segment v; = (z;,y; — wi)(mz, Yi + wi) Then,
the algorithm proceeds in essentially the same way as described in [3]. We build
horizontal segments of the curve by piercing consecutive vertical segments v;. At
first, we initialize the allocation set of the first horizontal segment to the single

point (x1,y1) and define its corridor to be (Ymin = y1 — wil,ymam =y + wil)
Then, adding each additional point p; to the allocation set causes the segment’s
corridor to be updated to y/,;,, = max{ymin,yi — wi}, Yrow = Min{Ymaz, vi +
wi} We keep extending the current horizontal segment of the curve for as long
as adding new points does not cause the corridor to become empty, i.e. until
further expansion of the allocation set would make y! .. > 4., ... Therefore,
computing both the candidate eccentricity and curve takes O(n) time leading to
the following result.

Theorem 1. The weighted rectilinear approximation problem can be solved in
O(n?) time.

This time bound becomes considerably reduced if the number of distance weights
associated with the points of S is equal to a constant. In this case, the line
wedges in the cost-location plane only have a constant number of distinct slopes.
It is easy to see that for any given slope only one line wedge with that slope
may contribute to the downward (and, similarly, upward) portion of the upper
envelope. Furthermore, in our case, it is obvious that only the line wedge that
contributes the first segment to the downward portion may also contribute a
segment to the upward portion (due to the fact that all other line wedges that
are part of the downward portion have smaller slope and a further z-intercept
than the first one). All other line wedges may contribute only to one of the two
portions. This means that the upper envelope consists of no more than n + 1
segments. In the case of a constant number of slopes ¢, we have no more than
c+ 1 segments on the envelope and, therefore, the above algorithm runs in linear
time. This is summarized in the next theorem.

Theorem 2. The weighted rectilinear approximation problem with a constant
number ¢ of distance-modifying weights can be solved in O(cn) time.

4 A Heuristic with Provable Bounds

In [10], the authors describe a simple yet in practice quite accurate GCSA ap-
proximation algorithm for the problem of rectilinear curve fitting. The algorithm
begins by building a curve consisting of n singleton segments and computes the
costs that would result from merging the allocation sets of each adjacent pair of
such segments. These costs are prioritized by storing them in a min-heap and,
subsequently, at each iteration the minimum cost is extracted and the pair of
associated segments is merged. The algorithm then updates the structure and
the costs that involve the newly created enlarged segment and its neighbors.
We now modify this algorithm to be able to solve the weighted version of
the same problem. While the overall structure of the algorithm shall remain
unchanged, we have to supply new details for the merge step and analyze how
these affect the overall running time. Now merging two allocation sets can no
longer be accomplished in constant time as the points responsible for the error
of the new larger segment are not necessarily a subset of the points defining the

placement of the old segments. Recall that the y-coordinate of the new longer
segment s is determined by a pair of points whose so-called cost lines in the
cost-location plane define the lowermost point of the upper envelope of all such
cost lines coming from the points in the allocation set of s. Clearly, the cost lines
that define this point come from the upper envelopes of the old segments’ cost
lines. Hence, the placement of the new longer segment can be determined by
any two points whose cost lines were on the upper envelopes of their respective
segments. We, therefore, have to keep track of the points defining these upper
envelopes for each allocation set (upper envelope points).

Each of these points contributes at most two edges to the upper envelope
and no two edges on the same envelope have overlapping x-ranges except at the
boundaries. We can, therefore, store these in a binary tree ordered by z-range
with pointers going to the original points. We also note that ordering the edges
by z-range also has the effect of sorting them by slope as well as inducing a semi-
sorted order on their y-ranges, since these decrease until the lowest point on the
envelope and then monotonically increase. Furthermore, all upper envelopes are
necessarily concave down, an important property that will be of use later.

When “merging” the allocation sets of two curve segments, their upper en-
velopes S (for small) and B (for big) need to be “merged” to produce the upper
envelope of the new segment. Suppose that |B| = n,|S| = m and n > m (where
the cardinality of an envelope is equal to the number of lines contributing seg-
ments to it). When we merge S and B, we always traverse S sequentially and
B sometimes sequentially (when B is below S) and sometimes logarithmically
(when B is above S). Clearly, the segments that survive (either partially or in
their entirety) are on the upper envelope of S U B. Therefore, we need to find
all points of intersection between S and B (for this is where they switch roles,
one going below the other) and stitch together those portions that contribute
to the overall upper envelope. Hence, when B is below S, we remove segments
from B one by one (in O(log n) time per segment) and replace them by segments
from S. Once removed, these lines (i.e., points in the allocation set) will never
contribute to the upper envelope. When B is above S, that portion of B needs to
be preserved and traversing it sequentially in order to find the next intersection
between S and B would lead to a linear amortized time per merge and, thus, to
the total quadratic time for the entire algorithm (consisting of O(n) merges).

We begin with the leftmost segments of S and B. As we move along S,
for each of its segments s with endpoints p;, p, we locate (via a binary search)
the segments by, b, (potentially, b; = b,) in B whose z-ranges contain the a-
coordinates x;, z, of those endpoints. In the case of ties, when the endpoints of
two segments of B have z-coordinate x; or x,, we always pick the segment of B
that begins at x; and ends at z,.. We then test if p; is above or below b; and,
similarly, whether p, is above or below b,.. If p; or p, coincide with the endpoints
of b; or b, we test whether s itself is below or above b; or b,.. If both p; and p,
(or s itself in the case of coinciding endpoints) are above the segments of B, then
because of the concavity of upper envelopes we know that s is completely above
B (Figure 2a) and, therefore, it must be added to the upper envelope of S U B

P by by by

~I
T s) b
" br s Dr

(@ (b) (c) (d)

Fig. 2. (a) Case L: both endpoints of s are above the bigger envelope B. (b) Case II:
pi is below a segment b; of B while p, is above B (same as p; above B and p, below).
(c) Case IIL: both endpoints of s are below B and an intersection exists. (d) Case IV:
endpoints of s are as in Case III but there is no intersection.

and all segments of B from b; to b, (except, perhaps, b, itself if its z-range is
not completely covered by the z-range of s) can be removed from consideration.
As a way to simplify and speed up the process, we create the upper envelope of
S U B completely inside of the data structure for B. Therefore, all deletions of
segments of B and insertions of the segments of S are carried out straight on
the binary tree containing B with the result that after the merge is complete B
contains the final “merged” envelope.

If one of the endpoints of s (again, in the case of endpoints coinciding, s itself)
is above B and the other is below B, then an intersection exists (Figure 2b) and
can be found in logarithmic time by simply doing a binary search on the segments
of B and testing them as being above or below s, or simply walking along B
starting from the segment which is below s and deleting segments from B until
we arrive at the intersection at which point we link up with s. Thus, all segments
of B below s are removed (again, except perhaps for b, even if it is below s)
and a portion of s is added to B (starting or ending at the intersection point,
depending on which part of s is above B).

Finally, we come to the case when both endpoints of s are below B, which
leads to the two possibilities illustrated in Figures 2c¢ and 2d. In this case, there
may or may not be an intersection and some extra work needs to be done to
determine this. Namely, we certainly do not have an intersection when s belongs
to the downsloping part of S and p; is below the upsloping part of B or vice
versa, when s has an upward slope and p, is below the downsloping part of B.
However, this is not sufficient to decide whether there is an intersection between
s and B. These cases, then, are subsumed by the following simple check. First,
we determine whether the slope of s is between the slope of b; and that of b,
(remember, that slopes uniformly increase from b; to b,.). Only if it is, there
may be an intersection. We then find, via a binary search on the slopes of lines
between b; and b,., the line b of B that has slope closest to that of s. If this
line is not above s (Figure 2c), then we have two intersections which can be
found by walking from b in opposite directions, while deleting segments from B.
Otherwise, there is still no intersection (Figure 2d). To see that this is indeed a

correct strategy, we remember that if s were to pierce B it must either intersect
or “obscure” the line with the closest slope since in the resulting envelope lines
must appear in the order from smallest to largest slope.

To complete the description of the modified GCSA heuristic, we need to
address one more problem and that is the computation of the merge cost, i.e.
the eccentricity of the resulting curve if the two allocation sets were merged.
This, however, can be achieved with the same algorithm as above except that
no changes should be made to B (i.e., we “simulate” a merge) and we can stop
once the lowest point on the envelope has been found (note that this technique
cannot be used for the exact algorithm in the previous section for it only handles
envelopes obtained by merges and does not handle those obtained by deleting
lines).

Let’s analyze now the running time of this new GCSA algorithm. We first
look at the operation of a single merge step involving the smaller allocation set
S with |S| = ng and the bigger allocation set B with |B| = np. How many
times can a segment of S’s envelope intersect B’s envelope? The answer is at
most twice, since envelopes have parabolic shape. Therefore, only one part of a
segment of S or that segment in its entirety can be inserted into B’s envelope
and since the number of segments in the envelope is at most one more than the
size of the allocation set, no more than ng + 1 insertions take place. Therefore,
the total cost of insertions per merge step is O(nglogng). It remains to sum the
cardinalities of all such smaller allocation sets S participating in merge steps.
This question can be approached from the point of view of how many times, at
the most, the same point can belong to the smaller set over the course of all
merge steps. This is very similar to the analysis of the disjoint data set union
operation and we know that the same point can be merged from a smaller set at
most log n times, for the sizes of the smaller sets it is part of will in the worst case
increase as the sequence 1,2,4,8, ... So, the number of insertions over all merge
steps is at most O(n logn) and with each insertion taking O(logn) time, the total
time is O(n log® n). We still need to remember to account for the deletions taking
place during merging, but this is easy for once a line has been removed from an
envelope, the point responsible for it will no longer be considered. Hence, the
total cost of deletions is only O(nlogn). Also, “simulating” a merge to compute
the prospective eccentricity has the same cost as an ordinary merge and we
know that only at most two such simulations are needed for every real merge
step. Thus, we can perform all O(n) merges in O(nlog®n) time. This gives us
the following result.

Theorem 3. The modified GCSA algorithm runs in O(n log? n) time and guar-
antees the error bounds proven for the original GCSA. Namely that for n > 2k,
the GCSA algorithm with m = 2k —1 produces a curve C with eccentricity € < €*
and with m = k segments achieves eccentricity at most 3e*.

The above claims regarding the error bounds follow directly from the proofs
given in [10], as they carry over verbatim to this modified version of GCSA.

5 A Randomized Algorithm

The main idea of this algorithm is to perform an efficient search on the set
of O(n?) possible eccentricities but, unlike [3], the entire set of eccentricities
is not generated explicitly. Instead, only those for which a candidate curve is
constructed are computed. This results in O(logn) candidates on average and
O(nlog? n) expected running time. We begin by describing the unweighted ver-
sion of the algorithm and then show how to extend it to handle weights.

The algorithm starts by picking a random pair of points p; and p; and com-
puting the eccentricity of the allocation set S;;. This can be done in O(n) time
(e.g., using the linear programming algorithm in [11]). Then, using the min-#
algorithm of [3], the first candidate curve R;; of size k;; is constructed and com-
pared against the target k. The result of this comparison is to be used to decide
about the bounds on the achievable eccentricity. The algorithm, therefore, keeps
track of the feasible eccentricity window &; = [€min, Emas), Which is updated
after investigating each candidate curve. This window is initialized to [0, c0).
Now, if k;; < k, we update the window to [0, ¢;;]. While, in the opposite case of
ki; > k, we know that the eccentricity has to be increased, and so the feasible
window becomes [g;;, 00).

Now, to discard all allocation sets whose errors are outside of the feasible
eccentricity window, we create a data structure that records for each point p;
of S the number of allocation sets that start at p; and end at some p; with
errors still in the current feasible window as well as the smallest index {; and
the largest index r; such that i < [; < j < r;. For each p; and a given feasible
eccentricity window &f, we thus have the set Si‘S ’ of possible values of j. In this
set, j = I; specifies the index of the closest (in z-direction) point to p; such that
the error of the allocation set {p;,...,p;,} is at least .4, and, similarly, j = r;
gives the furthest point from p; with the error of the allocation set {p;,...,pr,}
at most €,,4.. To see that pj TUDS across a contiguous subset of S, we note that
the eccentricity of an allocation set S;; is monotonically non-decreasing as 7 is
kept fixed and j is advanced.

Let us now explain how to compute for each p; the cardinality and bounds
l;,r; of SZ—E / as well as how to maintain this information as £ + changes. After the

first candidate curve is generated and &y is initialized, we compute \Sff | and
l1,71 by scanning S. We then note that I; < lx,r; < rp whenever ¢ < k. This
holds because the y-range of the set {pg,...,p;,} (possibly empty if k& > [;) is
subsumed by the y-range of the set {p;,...,p;, } forcing l; to be no less than
l; and, similarly, for r; and r;. Therefore, it seems that ls and 7o can be found
by simply moving ahead the pointers from [y and ry, respectively, if needed.
Unfortunately, in order to know when to stop for l; and 72 we need to know
the error of the allocation sets that begin at po rather than p; for it could be
that p;, which is now removed from consideration, was one of the two points
determining the error of Ly = {p1,...,p;, } or the two points determining the
error of Ry = {p1,...,pr, }- This necessitates the creation of two priority queues,
such as min-max heaps, to keep track of the lowest and highest points in the

two allocation sets L;, R; as they are being determined for each p;. Then, in the
case of py, we set Ly = Ly, R, = R; and then remove p; from the heaps for each
of the sets. Then, we start adding points to Ly beginning with p;, 11 and stop
after having added the first point that had caused the error of Ly to exceed or
become equal to €,,,;,. Similarly, we add points to Ry until adding the next point
would make the error of Ry become greater than £,,,,. We remember the index
of the last point added to Ly as I and that of the last point added to Rs as rs.
All subsequent bounds for Sf 72 <i < n, can be found by advancing these two
pointers, each making at most one full pass through S. Finally, computing the
size of Sff is trivial as it is just |r; —I; + 1|. We note that every point is added to
each of the two queues exactly once and is removed at most once as we compute
all values of 1,1, for a given eccentricity window &;.

Thus, every time & changes, recomputing the bounds and cardinality infor-
mation takes only O(nlogn) time since it only involves O(n) heap operations.
Hence, the key to good performance becomes reducing the (expected) number of
changes to the feasible eccentricity window that are necessary to process before
the optimal eccentricity is found. This goal we achieve through randomization
as we shall describe next.

After the initial step has determined £; and the bounds and cardinalities of

each of the sets Sf ’ have been computed, we pick a pair of points that enclose an
allocation set with error in the feasible eccentricity window at random from the
set of all such possible pairs. In order to do this, and have a uniform distribution
of probabilities, for each 2 < i < n we sum up the cardinalities of the sets S,ff
for all £ < ¢ and store this number for p;, i.e. we have

K=Y |5
k=1

Clearly, these can be computed in one scan of the array since K; is just the sum
of K;_1 and the cardinality of Sf 7. Then, we can generate a pseudo-random
number z between 1 and K,, and identify the unique pair (p;, p;) corresponding
to this index (we just search for = in the array of K;’s, find the smallest iy such
that K;, > x, and then find the unique j from Siif.

This way we make sure that each pair is selected with the same probability
but only from the set of those pairs that already fulfill the criteria for the error
of its allocation set. Thus, we can expect that on average picking a new pair will
reduce the number of pairs in the feasible eccentricity window roughly in half
and so, our search has an expected logarithmic number of steps in the size of
the set of possible eccentricities, that is, O(log(n?)) = O(logn). Since after each
pair is picked an O(nlogn) time is spent updating the auxiliary arrays described
above and constructing a candidate curve, the total expected running time of
this randomized algorithm is O(nlog? n).

Now, notice that even though the discussion so far focused on the unweighted
case only, our algorithm can be easily adapted to the weighted case. First, we
observe that it is still true in the presence of weights that I; < lx,r; < rp for

any two points p;,pr such that ¢ < k. Clearly, not just the y-range but the
weighted error range of the set {pg,...,p;,} is subsumed by the weighted error
range of {p;,...,p;, } because the lowest point on the upper envelope of a set
of cost lines can be no lower than the lowest point on the upper envelope of its
subset. Consequently, instead of min-max heaps to keep track of the errors of
L; and R; we would have to maintain upper envelopes and we can do so again
using the algorithm from [13]. Each individual update of that structure takes
O(log2 n) and so one full pass through the array to update the pointers I;,r;
for all i takes O(nlog® n). Hence, the total time is O(nlog® n) as there are still
O(logn) candidate curves to construct.

References

1. Aronov, B., Asano, T., Katoh, N., Mehlhorn, K., Tokuyama, T.: Polyline fitting
of planar points under min-sum criteria. International Journal of Computational
Geometry and Applications. 16 (2006) 97-116

2. Brodal, G., Jacob, R.: Dynamic planar convex hull. Proceedings of the 43rd IEEE
Symposium on Foundations of Computer Science. (2002) 617-626

3. Diaz-Banez, J.M., Mesa, J.A.: Fitting rectilinear polygonal curves to a set of points
in the plane. European Journal of Operations Research. 130 (2001) 214222

4. Eu, D., Toussaint, G.: On approximating polygonal curves in two and three di-
mensions. CVGIP: Graphical Models and Image Processing. 56(3) (1994) 231-246

5. Goodrich, M.: Efficient piecewise-linear function approximation using the uniform
metric. Discrete and Computational Geometry. 14 (1995) 445-462

6. Hakimi, S.L., Schmeichel, E.F.: Fitting polygonal functions to a set of points in
the plane. CVGIP: Graphical Models and Image Processing. 53(2) (1991) 132-136

7. Hershberger, J., Suri, S.: Off-line maintenance of planar configurations. Journal of
Algorithms. 21 (1996) 453-475

8. Houle, M., Imai, H., Imai, K., Robert, J.-M., Yamamoto, P.: Orthogonal weighted
linear L1 and Lo approximation and applications. Discrete Applied Mathematics.
43(3) (1993) 217-232

9. Imai, H., Iri, M.: Computational-geometric methods for polygonal approximations
of a curve. Computer Vision, Graphics and Image Processing. 36(1) (1986) 31-41

10. Mayster, Y., Lopez, M.A.: Rectilinear approximation of a set of points in the plane.
LATIN 2006: Theoretical Informatics. (2006) 715-726

11. Megiddo, N.: Linear programming in linear time when the dimension is fixed.
Journal of ACM. 31(1) (1984) 114-127

12. Melkman, A., O’Rourke, J.: On polygonal chain approximation. In: Toussaint, G.T.
(ed.): Computational Morphology. North-Holland, Amsterdam, Netherlands (1988)
87-95

13. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane.
Journal of Computer and System Sciences. 23(2) (1981) 166-204

14. Seidel, R.: Linear programming and convex hulls made easy. SCG ’90: Proceedings
of the Sixth Annual Symposium on Computational Geometry. (1990) 211-215

15. Wang, D.P.: A new algorithms for fitting a rectilinear z-monotone curve to a set
of points in the plane. Pattern Recognition Letters. 23 (2002) 329-334

16. Yamamoto, P., Kato, K., Imai, K., Imai, H.: Algorithms for vertical and orthogonal
L1 linear approximation of points. Proceedings of the 4th Annual Symposium on
Computational Geometry. (1988) 352-361

