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Abstract

This article discusses the concept of Boolean spaces endowed with a Boolean valued
inner product and their matrices. A natural inner product structure for the space
of Boolean n-tuples is introduced. Stochastic boolean vectors and stochastic and
unitary Boolean matrices are studied. A dimension theorem for orthonormal bases
of a Boolean space is proven. We characterize the invariant stochastic Boolean
vectors for a Boolean stochastic matrix and show that they can be used to reduce
a unitary matrix. Finally, we obtain a result on powers of stochastic and unitary
matrices.
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1 Introduction

A Boolean space Ln (B) is the set of all n-tuples of elements of a fixed
Boolean algebra B. The elements of Ln (B) are called Boolean vectors and
they possess a natural linear space-like structure. Moreover, we can define
on Ln (B) an operation which is analogous to an inner product. By using
this “inner product” we can also define a B-valued norm and orthogonality
relations for Boolean vectors.
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A Boolean matrix is a matrix whose entries are elements of a Boolean
algebra B. With the natural choice of matrix multiplication defined in terms of
the lattice operations of B, such matrices become the linear mappings between
Boolean linear spaces. The study of Boolean matrices is a fascinating blend
of linear algebra and boolean algebra which finds many applications, and was
undertaken in [1–3,6–12,14–20].

An important concept in our work is that of a stochastic vector. These
are Boolean vectors of norm one whose components are mutually disjoint.
In particular, a finite partition of the universe of a Boolean algebra would
correspond to a stochastic Boolean vector. We define an orthonormal basis of
Ln (B) the usual way and it turns out it must be made of stochastic vectors.
Our first main result is that all orthonormal bases for Ln (B) have cardinality
n and conversely, any orthonormal set of stochastic vectors with cardinality
n is a basis for Ln (B). Our next main result states that any orthonormal set
of stochastic vectors in Ln (B) can be extended to an orthonormal basis for
Ln (B). In order to prove this result, we introduce a notion of linear subspace
of Ln (B).

We define stochastic and unitary Boolean matrices in terms of properties
of their product with their adjoint matrices. We then show that stochastic
Boolean matrices are precisely those whose columns are stochastic vectors and
unitary matrices are precisely those whose rows and columns are stochastic.

We next characterize the invariant stochastic Boolean vectors for stochas-
tic Boolean matrices and show that they can be employed to reduce unitary
Boolean matrices. As mentioned in Section 2, stochastic Boolean matrices
may be used to describe a dynamics analogous to a Markov chain. It is thus of
interest to consider powers of stochastic Boolean matrices because they cor-
respond to iterations in the dynamics. Our last result concerns such powers.
The paper includes examples that illustrate various points which we wish to
emphasize.

As a matter of notations, we shall write N as the set of nonzero natural
numbers.

2 Definitions and Motivation

Throughout this article, B will denote a Boolean algebra. We denote the
smallest and largest element of B respectively by 0 and 1. For any a ∈ B, we
denote by ac its complement. For a, b ∈ B, we denote the infimum of a and b
by ab (instead of a ∧ b). We denote by a\b = a (bc). The supremum of a, b is
denoted by a ∨ b.
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For all n ∈ N we denote by Ln (B) the set of all n-tuples of elements in
B. We endow Ln (B) with the following operations: if a = (a1, . . . , an) and
b = (b1, . . . , bn) are in Ln (B) , and c ∈ B then

a+ b = (a1 ∨ b1, . . . , an ∨ bn)

and

ca = (ca1, . . . , can) .

Then Ln (B) has the usual properties of a linear space except for the lack of
additive inverses. In particular, our structure differs from the notion of Boolean
vector space introduced in [14–16] which assumes an underlying additive group
and is best modelled by the action of a Boolean space on a regular vector space
by means of a (finitely additive) measure.

We call the elements of Ln (B) Boolean vectors and call Ln (B) a Boolean
(linear) space. We will use the following definitions throughout this paper

Definition 2.1 A Boolean vector a = (a1, . . . , an) is an orthovector when
aiaj = 0 for i, j ∈ {1, . . . , n} and i 6= j.

Definition 2.2 An orthovector a = (a1, . . . , an) is a stochastic vector when
n∨

i=1

ai = 1.

The Boolean space Ln (B) is endowed with a natural inner product.

Definition 2.3 Let a = (a1, . . . , an) and b = (b1, . . . , bn) in Ln (B). Then we
define the B-valued inner product of these two vectors by

〈a, b〉 =
n∨

i=1

aibi.

The norm of a is defined by ‖a‖ = 〈a, a〉.

The Boolean inner product shares most of the usual properties of the
Euclidian inner product, if we replace scalar sums and products by the supre-
mum and infimum in B. Thus given a, b, c ∈ Ln (B) and α ∈ B then

• 〈αa+ b, c〉 = α 〈a, c〉 ∨ 〈b, c〉,
• 〈a, b〉 = 〈b, a〉,
• 〈αa, c〉 = 〈a, αc〉,
• 〈a, a〉 = 0 if and only if a = (0, . . . , 0) = 0.

We now give some properties of the norm.
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Theorem 2.4 Let a, b ∈ Ln (B) and c ∈ B. Then

(1) ‖ca‖ = c ‖a‖,
(2) ‖a+ b‖ = ‖a‖ ∨ ‖b‖,
(3) 〈a, b〉 ≤ ‖a‖ ‖b‖,
(4) If a and b are orthovectors and ‖a‖ = ‖b‖ then 〈a, b〉 = ‖a‖ ‖b‖ if and

only if a = b.

PROOF. We have

‖ca‖ = 〈ca, ca〉 = c 〈a, ca〉 = c 〈a, a〉 = c ‖a‖

and, denoting a = (a1, . . . , an) and b = (b1, . . . , bn), we have

‖a+ b‖ =
n∨

i=1

(ai ∨ bi) =

(
n∨

i=1

ai

)
∨
(

n∨
i=1

bi

)
= ‖a‖ ∨ ‖b‖

while

〈a, b〉 =
n∨

i=1

aibi ≤
n∨

i,j=1

aibj =

(
n∨

i=1

ai

) n∨
j=1

bj

 = ‖a‖ ‖b‖ .

Now let us assume that a and b are orthovectors and ‖a‖ = ‖b‖ and that

〈a, b〉 = ‖a‖ ‖b‖. Hence, 〈a, b〉 = ‖a‖ so
n∨

i=1

aibi =
n∨

i=1

ai. Hence, for all j ∈

{1, . . . , n}

ajbj =

(
n∨

i=1

aibi

)
bj = ajbj ∨

∨
i 6=j

aibj

 .

Hence
∨
i 6=j

aibj ≤ ajbj yet
∨
i 6=j

aibj ≤ ac
jbj since a is an orthovector, so

∨
i 6=j

aibj = 0

and thus aibj = 0. Therefore

aj (‖a‖ \bj) = aj (‖b‖ \bj) = aj

∨
i 6=j

bi

 =
∨
i 6=j

ajbi = 0.

Hence, using again that a is an orthovector, aj = aj ‖a‖ = ajbj ≤ bj. Sym-
metrically, bj ≤ aj so aj = bj for all j ∈ {1, . . . , n}. Hence a = b. 2

Note that the condition ‖a‖ = ‖b‖ in the last statement of Theorem (2.4)
is necessary. If we let a = (a, 0, . . . , 0) and b = (b, 0, . . . , 0) with a, b ∈ B
and a 6= b then a, b are orthovectors of different norms, and yet trivially
〈a, b〉 = ‖a‖ ‖b‖. Also, the condition that a and b are orthovectors is necessary
since if a = (1, a) and b = (1, b) for a, b ∈ B with a 6= b then ‖a‖ = ‖b‖ = 1
and 〈a, b〉 = 1.
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Corollary 2.5 If a and b are stochastic Boolean vectors then 〈a, b〉 = 1 if and
only if a = b.

PROOF. By assumption, a and b are orthovectors with ‖a‖ = ‖b‖ = 1 so
the result follows from Theorem (2.4). 2

We now introduce the following standard notions:

Definition 2.6 Two vectors a and b in Ln (B) are orthogonal when 〈a, b〉 = 0,
in which case we shall write a ⊥ b. The vector a is a unit vector when ‖a‖ = 1.

Definition 2.7 An orthogonal set in Ln (B) is a subset E of Ln (B) such that

for all e, f ∈ E we have e 6= f =⇒
〈
e, f

〉
= 0. An orthonormal subset of

Ln (B) is an orthogonal set whose elements all have norm 1.

The next section of this paper will address the concept of dimension for a
Boolean vector space. It will be based on the notion of basis. We now introduce:

Definition 2.8 Let A be a subset of Ln (B). A vector b ∈ Ln (B) is a linear

combination of elements in A when there exists a finite subset
{
a1, . . . , am

}
of

A and b1, . . . , bm ∈ B such that b =
∑m

i=1 biai.

A subset A of Ln (B) is a generating subset of Ln (B) when all vectors in
Ln (B) are linear combinations of elements in A.

A subset A is free when for any bi, dj ∈ B\ {0} and ai, cj ∈ A with i = 1, . . . ,m

and j = 1, . . . k such that
∑m

i=1 biai =
∑k

j=1 djcj we have:

m = k, {b1, . . . , bm} = {d1, . . . , dm} and
{
a1, . . . , am

}
=
{
c1, . . . , cm

}
.

Thus a set A is free whenever a linear combination of elements in A
has unique nonzero coefficients and associated vectors of A. We naturally
introduce:

Definition 2.9 A subset A of Ln (B) is a basis of Ln (B) when every element
of Ln (B) can be written as a unique linear combination of elements of A with
nonzero coefficients, i.e. when A is generating and free.

A first easy observation is that a basis must be made of unit vectors.

Lemma 2.10 Let A be a basis of Ln (B). If a ∈ A then ‖a‖ = 1.

PROOF. Note first that, if 0 = (0, . . . , 0) ∈ Ln (B) were in A and 1 =
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(1, . . . , 1) ∈ Ln (B) then 1 = 1 = 1 + 0, so 1 could be written as two distinct
linear combinations of elements in A with coefficients 1. This is a contradiction
so 0 6∈ A. Let a ∈ A. Then a = 1a = ‖a‖ a. Hence if ‖a‖ 6= 1 then a can be
written as two distinct linear combinations of elements in A with nonzero
coefficients (since a 6= 0 so ‖a‖ 6= 0) which contradicts the definition of a
basis. 2

A second easy observation is:

Lemma 2.11 Let A be an orthonormal set in Ln (B). Then A is free.

PROOF. Let e =
∑m

i=1 biai =
∑k

i=1 dici with a1, . . . , am, c1, . . . , ck ∈ A and

b1, . . . , bm, d1, . . . , dk ∈ B\ {0}. Note that di =
〈
e, ci

〉
for i = 1, . . . , k. Now if

cj 6∈
{
a1, . . . , am

}
for some j ∈ {1, . . . , k} then dj =

〈
cj, e

〉
=
〈
cj,
∑m

i=1 biai

〉
=

0 which is a contradiction. Hence
{
c1, . . . , ck

}
⊆
{
a1, . . . , am

}
. The reverse

inclusion is obtained by symmetry. Then for all i = 1, . . . ,m there exists
j ∈ {1, . . . ,m} such that bi =

〈
e, ai

〉
=
〈
e, cj

〉
= dj, concluding this proof. 2

We thus can set:

Definition 2.12 A subset A of Ln (B) is an orthonormal basis of Ln (B) when
it is an orthonormal generating subset of Ln (B).

An orthonormal basis is thus a generating set which, by Lemma (2.11),
is also free, so it is basis, so that our vocabulary is consistent.

There always exist orthonormal bases of Ln (B) and we now give some
examples. First, the canonical basis or standard basis of Ln (B) is defined as

the basis
(
δi

)
i=1,...,n

with δ1 = (1, 0, . . . , 0), δ2 = (0, 1, 0, . . . , 0), . . . , δn =

(0, . . . , 0, 1). More generally, we have:

Example 2.13 Let a = (a1, . . . , an) be a stochastic vector. Let

ei = (ai, ai+1, . . . , an, a1, . . . , ai−1)

for all i ∈ {1, . . . , n}. Then by construction,
(
ei

)
i=1,...,n

is an orthonormal

subset of Ln (B). Moreover
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δ1 = a1e1 + a2e2 + . . .+ anen

δ2 = a2e1 + a3e2 + . . .+ anen−1 + a1en

...

δn = ane1 + a1e2 + . . .+ an−1en

so
(
ei

)
i=1,...,n

is a generating set and thus an orthonormal basis for Ln (B).

Let us observe that in general, linear independence in Ln (B) is not an easy
concept. We propose in this paper to use orthogonality as a substitute. Indeed,
if {v1, . . . , vk} is a generating subset of Ln (B) made of pairwise orthogonal,
nonzero vectors, then it is a minimal generating set, in the sense that any
strict subset is not generating (since, say, vi is not a linear combination of
the vectors in {v1, . . . , vk} \ {vi} as all such combinations are orthogonal to vi,
the inner product is definite yet vi 6= 0). However, orthogonality still allows
for some pathologies. For instance, assume there exists a ∈ B such that a
is neither 0 or 1. Then (a, 0), (ac, 0) and (0, 1) are three nonzero orthogonal
vectors generating L2 (B). It is a minimal generating set, yet its cardinality is
not minimal among all generating families (since the canonical basis of L2 (B)
has cardinal 2). If B is large enough, we can even build on the same model
infinite orthogonal generating families of nonzero vectors, which are therefore
minimal! We shall prove in the next section that these pathologies are avoided
when one restricts one’s attention to orthonormal bases. We shall also see that
the concept of a basis, i.e. a free generating subset, is in fact identical to the
concept of an orthormal basis.

The natural maps for our structure are:

Definition 2.14 A map T : Ln (B) −→ Lm (B) is linear when for all a ∈
B, b, c ∈ Ln (B) we have T (ab+ c) = aT (b) + T (c).

As usual, T (0) = 0 when T is linear. When T is linear from Ln (B)
into Ln (B), we call T an operator on Ln (B). An operator T on Ln (B) is
invertible when there exists an operator S such that S ◦ T = T ◦ S = I where
I : x ∈ Ln (B) 7→ x is the identity operator. In the usual way, one can check
that T is an invertible operator if and only if T is a linear bijection, and the
inverse is a unique operator and is denoted by T−1.

We shall denote by Bn the Boolean algebra product of B with itself n
times. Of course, the elements of Bn are the same as the elements of Ln (B),
but the algebraic structures are different.
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Lemma 2.15 If T is an invertible operator on Ln (B) then T is a Boolean
algebra automorphism on Bn.

PROOF. Note that the supremum operation ∨ on Bn agrees with the ad-
dition on Ln (B) by definition. So for any operator L on Ln (B) we have
L (a ∨ b) = L(a) ∨ L(b) and L preserves the order ≤ on Bn. Hence, T and
T−1 both preserve the order. Consequently, a ≤ b if and only if T (a) ≤ T (b).
Hence T is a lattice morphism, i.e. it also preserves the infimum. Also note
that this implies that T (1, . . . , 1) = (1, . . . , 1) – since (1, . . . , 1) is the largest
element of Bn, we deduce that T preserves the complement operation as well.
This concludes the proof. 2

The converse of Lemma (2.15) does not hold, namely: if T : Bn −→ Bn

is a Boolean algebra automorphism then T : Ln (B) −→ Ln (B) need not be
linear. For example, let B = {0, 1, ω, ωc} and consider the Boolean algebra B2.
Define the automorphism S on B by S(ω) = ωc (so that S(0) = 0, S(1) = 1
and S(ωc) = ω). Then T = S × S is an automorphism of B2. Yet, seen as a
map on L2 (B) we have

T (ω (1, 0)) = T (ω, 0) = (ωc, 0)

and yet
ωT (1, 0) = (ω, 0)

and thus T is not linear.

We now show that if B is a finite Boolean algebra, then any orthonormal
basis for Ln (B) has cardinality n. Indeed, let

{
e1, . . . , em

}
be an orthonormal

basis for Ln (B). Define T : Ln (B) −→ Lm (B) by

T (a) =
(〈
a, e1

〉
, . . . ,

〈
a, em

〉)
.

Then T is a bijection from Bn onto Bm by definition of orthonormal basis.
Hence n = m since B is finite. As previously mentioned, we shall show in the
next section that this result holds for any Boolean algebra B. Also, notice that
T thus defined is an invertible operator on Ln (B), hence a Boolean algebra
automorphism of Bn by Lemma (2.15).

As in traditional linear algebra, the study of linear maps is facilitated by
introducing matrices. A Boolean matrix A is a n ×m matrix with entries in
B. We then write A = [aij] with aij ∈ B for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
If A is an n × m Boolean matrix and if B is an m × k Boolean matrix,
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then we define the product AB as the n × k matrix whose (i, j) entry is
given by ∨m

p=1aipbpj. In particular, we see elements of Ln (B) as n× 1 matrices
(i.e. column vectors). Boolean matrices, and a generalization to distributive
lattices have a considerable literature of investigation [1–3,6–12,17–20].. These
matrices provide useful tools in various fields such as switching nets, automata
theory and finite graph theory. Notice that permutation matrices are a special
case of (invertible) Boolean matrices.

Our main motivation for studying Boolean matrices comes from an anal-
ogy of a Markov chain [5,4,13]. Let G be a finite directed graph whose vertices
are labelled 1, 2, . . . , n and let B be a fixed Boolean algebra. We think of the
vertices of G as sites that a physical system can occupy. The edges of G des-
ignate the allowable transitions between sites. If there is an edge from vertex
i to vertex j, we label it by an element aji of B. We think of aji as the event,
or proposition that the system evolves from site i to site j in one time-step.
If there is no edge between i and j then we set aji = 0. The Boolean matrix
A = [aij] is the transition matrix in one-time-step for the physical system.
The transition matrix for m-time-steps is then naturally given by Am.

Assuming that the system evolves from a site i to some specific site j
in one-time-step, we postulate that ajiaki = 0 for j 6= k and ∨n

j=1aij = 1 for
all i = 1, . . . , n. Thus each column of A is a stochastic vector. In the next
section, we will refer to such matrices as stochastic matrices. Suppose that
bi is the event that the system is in the site i initially. We would then have
that the vector b = (b1, . . . , bn) is a stochastic vector and Ab describes the
system location after one-time-step. As we shall see, Ab is again a stochastic

vector and in a natural way, (Ab)i =
n∨

j=1

aijbj is the event that the system

is at site i at one time-step. Thus, m ∈ N 7→ Am describes the dynamics of
the system and this is analogous to a traditional Markov chain. If in addition,
we impose the condition that for every site i there is a specific site j from
which the system evolved in one time-step, then we would have aijaik = 0 and
n∨

i=1

aij = 1. Such matrices are called unitary and will be studied from Section

4 onward.

In general, if G is a directed graph with n vertices and A is an n × n
stochastic matrix corresponding to the edges of G, we call (G,A) a Boolean
Markov chains. In section 6, we study the powers of A which are important
for the description of the dynamics of (G,A).
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3 The Dimension Theorem

An orthonormal set is said to be stochastic if all of its elements are sto-
chastic. In this section, we show that all orthonormal bases of Ln (B) have
cardinality n. Conversely, we show that any stochastic orthonormal set with
cardinality n is a basis for Ln (B).

We shall use the following notations. Given a set A = {a1, . . . , am} of m
vectors, we use the notation aj = (a1j, . . . , anj) with aij ∈ B (i = 1, . . . , n
and j = 1, . . . ,m). Thus, we often think about a set {a1, . . . , am} as a matrix
[aij]n×m whose columns are the elements of the set. By abuse of notation, we
denote this matrix by A again.

We first establish that orthonormal bases possess a duality property

Theorem 3.1 Let A = {a1, . . . , am} be an orthonormal subset of Ln ( B).
Then A is an orthonormal basis for Ln (B) if and only if the set A∗ of columns
of [aji]m×n is an orthonormal subset of Lm (B).

PROOF. For all j ∈ {1, . . . ,m} we denote aj = (a1j, . . . , anj). Assume that
A is an orthonormal basis for Ln (B). Then there exists b1, . . . , bm ∈ B such

that δ1 =
∑m

j=1 bjaj. In particular, 0 =
m∨

j=1

bjaij for i 6= 1 so bjaij = 0 for

all i ∈ {2, . . . , n} and all j ∈ {1, . . . ,m}. Hence, bja1j = bj

(
n∨

i=1

aij

)
= bj

since ∨n
i=1aij = 1. Hence bj ≤ a1j for all j ∈ {1, . . . ,m}. On the other hand,

1 =
m∨

j=1

bja1j and a1j and a1k are disjoint for j 6= k, so we must have bja1j = a1j

for all j ∈ {1, . . . ,m}. Consequently,
m∨

j=1

a1j = 1. Moreover since bjaij = 0 for

i 6= 1, we conclude that a1jaij = 0 for i 6= 1.

Replacing δ1 by δk for k ∈ {1, . . . , n} we see similarly that
m∨

j=1

akj = 1 and

akjaij = 0 for i 6= k and for all j ∈ {1, . . . ,m}. Hence, the set of columns of
[aji]m×n is indeed an orthonormal subset of Lm (B).

Conversely, assume that A∗ is an orthonormal subset of Lm (B). This means

by definition, and using the same notations as before, that
m∨

j=1

aij = 1 for all

i = 1, . . . , n and akjaij = 0 for all i 6= k between 1 and n and j = 1, . . . ,m. It
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follows that
m∨

j=1

akjaij = δij (k, i = 1, . . . , n) (3.1)

where δij is 1 ∈ B if i = j and 0 ∈ B otherwise. Now (3.1) is equivalent to

δk =
m∨

j=1

akjaj

for k = 1, . . . , n and thus
{
a1, . . . , am

}
generates Ln (B) and, since it is an

orthonormal set by assumption, it is an orthonormal basis of Ln (B). 2

Corollary 3.2 An orthonormal basis is stochastic.

Corollary 3.3 If
{
a1, . . . , an

}
is a stochastic orthonormal subset of Ln (B)

then it is a basis.

PROOF. Let a =

 n∨
j=1

a1j

c

and assume a 6= 0. By Stone’s Theorem, there

exists a set Ω, a Boolean algebra of subsets of Ω and a Boolean algebra iso-
morphism B −→ BΩ. We identify B and BΩ in this proof and thus regard the
elements of B as subsets of Ω, with 0 identified with ∅ and 1 with Ω.

Let ω ∈ a. Then ω 6∈ a1j for j = 1, . . . , n. Since A is stochastic and ortho-
normal, we must have that ω ∈ ai11, ω ∈ ai22, . . . , ω ∈ ain−1n−1 for some
i1, . . . , in−1 with ir 6= 1 and ir 6= is for r, s = 1, . . . , n − 1. Now, suppose
ω ∈ akn for some k ∈ {1, . . . , n}. Then k 6= 1 (since ω ∈ a) and k 6= ir for
r = 1, . . . , n − 1 (orthogonality). But this is a contradiction since this pre-
cludes n values for k which can only take n values. Hence ω 6∈ akn for all
k ∈ {1, . . . , n}. This contradicts, in turn, that an is a unit vector, i.e. form a
partition of Ω. Hence, a = 0.

The same reasoning applies to show that
n∨

j=1

akj = 1 for all k ∈ {1, . . . , n}.

Hence A∗ is an orthonormal subset of Ln (B) and thus by Theorem (3.1), A
is an orthonormal basis for Ln (B). 2

By symmetry, we can restate Theorem (3.1) by stating that A is an
orthonormal basis for Ln (B) if and only if A∗ is an orthonormal basis for
Lm (B). We call A∗ the dual basis for A. For example, if a1, a2, a3 ∈ B with
a1 ∨ a2 ∨ a3 = 1 and aiaj = 0 for i 6= j in {1, 2, 3}, then the columns of the
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following matrix:

A =


a1 a3 a2

a2 0 ac
2

a3 a
c
3 0


form an orthonormal basis for L3 (B). The rows form the corresponding dual
basis. Notice that A need not be symmetric. Such a matrix A is what we shall
call a unitary matrix in section 4.

We now establish a core result concerning the construction of stochastic
vectors.

Theorem 3.4 Let n > 1. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two
stochastic vectors in Ln (B). Then a ⊥ b if and only if there exists a stochastic
vector c = (c1, . . . , cn−1) in Ln−1 (B) such that bi = cia

c
i for i = 1, . . . , n − 1.

If a ⊥ b then we can always choose c with ci = bnai ∨ bi for i = 1, . . . , n− 1.

PROOF. Suppose that a ⊥ b. Let i ∈ {1, . . . , n− 1}. We set ci = bnai ∨ bi.
Since a ⊥ b, we have bi ≤ ac

i . Hence

cia
c
i = (bnai ∨ bi) ac

i = bia
c
i = bi.

Now, since a and b are stochastic vectors, we conclude that for all j ∈
{1, . . . , n} and j 6= i we have

cicj = (bnai ∨ bi) (bnaj ∨ bj)
= bnaiaj ∨ bnbjai ∨ bibnaj ∨ bibj = 0.

Finally, we have

n−1∨
i=1

ci =
n−1∨
i=1

(bnai ∨ bi) =

(
bn

n−1∨
i=1

ai

)
∨

n−1∨
i=1

bi

= bna
c
n ∨ bcn = bn ∨ bcn = 1.

We conclude that c = (c1, . . . , cn−1) is a stochastic vector, and it obviously
has the desired property.

Conversely, suppose that there exists a stochastic vector c in Ln−1 (B) such
that bi = cia

c
i for i = 1, . . . , n − 1. Then by construction aibi = 0 for i =

1, . . . , n− 1. Moreover
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anbn = an

(
n−1∨
i=1

bi

)c

= an

(
n−1∨
i=1

cia
c
i

)c

= an

n−1∧
i=1

(ai ∨ cci) = an

n−1∧
i=1

cci = an

(
n−1∨
i=1

ci

)c

= 0.

It follows that a ⊥ b. 2

We can now show:

Lemma 3.5 If A =
{
a1, . . . , am

}
is a stochastic orthonormal set in Ln (B)

then m ≤ n.

PROOF. We proceed by induction on n ∈ N. For n = 1 the only orthonormal
set is {1} so the result holds trivially. Now we assume the results holds for
some n ∈ N. Let A = [aij](n+1)×m be a stochastic orthonormal set in Ln+1 (B).

By Theorem (3.4), for each j = 2, . . . ,m there exists a stochastic vector cj =
(c1j, . . . , cnj) in Ln (B) such that aij = cija

c
i1 for all i = 1, . . . , n and j =

2, . . . ,m. Let j, k ∈ {2, . . . ,m} with j 6= k and i ∈ {1, . . . , n}. Recall from
Theorem (3.4) that cij = ai1anj ∨ aij, and since A is orthonormal

cijcik = (ai1anj ∨ aij) (ai1ank ∨ aik)

= ai1anjank ∨ ai1anjaik ∨ ai1aijank ∨ aijaik

= 0.

Hence
{
c2, . . . , cm

}
is a stochastic orthonormal set in Ln (B). By our induction

hypothesis, m − 1 ≤ n and thus m ≤ n + 1, which completes our proof by
induction. 2

The main result of this section is:

Theorem 3.6 If A is an orthonormal basis for Ln (B) then the cardinality of
A is n.

PROOF. We proceed by induction on n. The result is trivial for n = 1.
Assume that for some n ∈ N, if A0 is an orthonormal basis for Lk (B) with
k ≤ n then A0 contains exactly k vectors. Let A be an orthonormal basis
of Ln+1 (B). By Corollary (3.2), A is stochastic. Applying Lemma (3.5), we
deduce that the cardinality m of A satisfies m ≤ n+1. Assume that m < n+1.
By Theorem (3.1), A∗ is an orthonormal basis for Lm (B). Since m ≤ n, we
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conclude by our induction hypothesis that the cardinality of A∗ is m. But by
construction, the cardinality of A∗ is n + 1, which is a contradiction. Hence
m = n+ 1 which completes our proof by induction. 2

Combining Theorem (3.6) and Corollary (3.3) we obtain the following result:

Corollary 3.7 A stochastic orthonormal set A is a basis for Ln (B) if and
only if the cardinality of A is n.

To be fully satisfactory, we shall now check that the orthonormal families
of Ln (B) of cardinality n are in fact basis. We shall use the following:

Lemma 3.8 If a = (a1, . . . , an) ∈ Ln (B) is a unit vector, then there exists a
stochastic vector b = (b1, . . . , bn) with bi ≤ ai for all i = 1, . . . , n.

PROOF. For i = 1, . . . , n we set bi = ai

(
ac

1a
c
2 . . . a

c
i−1

)
≤ ai. Then bibj = 0

for i, j = 1, . . . , n and i 6= j, and
n∨

i=1

bi =
n∨

i=1

ai = 1 so b is a stochastic

vector. 2

Now, we can state:

Corollary 3.9 An orthonormal set of Ln (B) is a basis for Ln (B) if and only
if it has cardinality n.

PROOF. Let A =
{
a1, . . . , an

}
be an orthonormal set. Using Lemma (3.8),

there exists a set of stochastic vectors b1, . . . , bn such that bij ≤ aij. Therefore,{
b1, . . . , bn

}
is a stochastic orthogonal set of size n and thus it is a basis for

Ln (B) by Corollary (3.7). Now, let i, j, k, l = 1, . . . , n with i > j. Let v =
aikajkδi. Then, using the construction of Lemma (3.8), we have

aikajkbil = aikajkaila
c
1l . . . a

c
i−1,l = 0

since either l = k and then aikajkbil ≤ ajka
c
jk = 0 since i > j, or l 6= k and

aikail = 0 since A is orthogonal. Hence the vector v is orthogonal to b1, . . . , bn,
thus v = 0. Hence, A is stochastic. By Corollary (3.7), it is an orthonormal
basis of Ln (B).

The converse is Theorem (3.6). 2

In view of Corollary (3.9), we call n the dimension of the Boolean linear
space Ln (B). We now consider the following question: can any stochastic or-
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thonormal subset A of Ln (B) be extended to an orthonormal basis for Ln (B)?
By Lemma (3.5), A can not have more than n vectors. Of course, if the cardi-
nality ofA is n then it is already a basis by Corollary (3.3). Moreover, Example
(2.13) shows that if A is reduced to a unique stochastic vector, then there is
an orthonormal basis of Ln (B) containing A so the answer is affirmative. We
shall now prove that the answer is affirmative in general.

We shall use the following concept:

Definition 3.10 A subset M ⊆ Ln (B) is a subspace if it is generated by an

orthonormal set A =
{
a1, . . . , am

}
, i.e.

M =

{
m∑

i=1

biai : b1, . . . , bm ∈ B
}

.

Any orthonormal set A generating M is called an orthonormal basis for M.

We emphasize that we do not require orthonormal bases of subspaces to
be stochastic. In fact, a subspace may not contain any stochastic orthonormal
basis: for example, if there exists a ∈ B such that a 6∈ {0, 1} then the subset
E = {b (1, a) : b ∈ B} is a subspace with basis (1, a). Since any orthonormal set
of two vectors generates L2 (B) 6= E, any orthonormal basis for E is necessarily
reduced to one vector. If this vector is stochastic, then it is of the form (b, bc)
for some b ∈ B. It is then easy to check that (1, a) can not be of the form
(cb, cbc) and thus E has no stochastic vector basis. Thus, we will sometimes
use:

Definition 3.11 A subspace with a stochastic orthonormal basis is called a
stochastic subspace.

Linear maps generalize trivially to linear maps between two subspaces.
Of special interest to us will be:

Definition 3.12 A linear map T : M −→ N between two subspaces M
and N of, respectively, Ln (B) and Lm (B), is called an isometry when for all
a, b ∈M we have 〈T (a), T (b)〉 = 〈a, b〉.

Lemma 3.13 Let M ⊆ Ln (B) and N ⊆ Lm (B) be two subspaces. Let T :
M−→ N be a linear map. The following are equivalent:

(1) T is an isometry,

(2) There exists an orthonormal basis A =
{
e1, . . . , ek

}
of M such that{

Tei : i = 1, . . . , k
}

is an orthonormal set of N ,
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(3) For every orthonormal set A =
{
e1, . . . , ek

}
of M, the set

{
Te1, . . . T ek

}
is an orthonormal set of N .

Moreover, if T is an isometry, then it is injective.

PROOF. We start by proving that (2) implies (1). Let A =
{
e1, . . . , ek

}
be

an orthonormal subset of M such that
{
Te1, . . . , T ek

}
is orthonormal. Let

a, b ∈ M. We can write a =
∑k

i=1 aiei and b =
∑k

i=1 biei with ai, bi ∈ B
(i = 1, . . . , n). Then

〈Ta, Tb〉=
n∨

i,j=1

〈
aiTei, bjTej

〉
=

n∨
i,j=1

aibj
〈
Tei, T ej

〉

=
n∨

i=1

aibi = 〈a, b〉 .

Hence T is an isometry.

Now, (1) implies (3) and (3) implies (2) are both trivial.

Assume now that T is an isometry. Assume Ta = Tb. Then, using the same
notations as above, we have

ai =
〈
a, ei

〉
=
〈
Ta, Tei

〉
=
〈
Tb, Tei

〉
=
〈
b, ei

〉
= bi

for all i = 1, . . . , k. Hence a = b. 2

Definition 3.14 Let M and N be two subspaces of respectively Lm (B) and
Ln (B). A surjective isometry T : M −→ N is called an isomorphism, and
then M and N are called isomorphic subspaces.

It is clear that the inverse of an isomorphism is an isomorphism, and that
the composition of two isomorphisms is again an isomorphism. It follows that
isomorphic is an equivalence relation. It is also an important observation that
isomorphisms map orthonormal bases to orthonormal bases: if

{
a1, . . . , an

}
is

an orthonormal basis for a subspaceM and T :M−→ N is an isomorphism
then

{
Ta1, . . . , Tan

}
is an orthonormal set since T is an isometry (Theorem

(3.13)). Moreover, if b ∈ N then there exists c ∈M such that T (c) = b. Since
c =

∑n
i=1 ciai for some c1, . . . , cn ∈ B we conclude that b =

∑n
i=1 ciT (ai). Hence{

Ta1, . . . , Tan

}
is an orthonormal generating subset of N , hence a basis of N .

Theorem 3.15 If M is a subspace then there exists an m ∈ N and an iso-
morphism T : M −→ Lm (B). Moreover T can be chosen to take stochastic
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vectors to stochastic vectors, and if M is a stochastic subspace then T can be
chosen so that T and T−1 map stochastic vectors to stochastic vectors.

PROOF. Let
{
e1, . . . , em

}
be an orthonormal basis forM and let us denote

the canonical basis of Lm (B) by
{
δ1, . . . , δm

}
. We define T : M −→ Lm (B)

by setting for all a ∈M:

Ta = (〈a, e1〉 , . . . , 〈a, em〉) .

Then T is linear and Tei = δi for i ∈ {1, . . . ,m}. By Lemma (3.13), T is
an isometry and T is surjective by construction (if b ∈ Lm (B) then b =

(b1, . . . , bm) then T
(∑m

i=1 biei

)
= b). So T is an isomorphism.

Moreover, T preserves stochastic vectors. Indeed, let a be a stochastic vector
inM. Let n ∈ N such thatM is a subspace of Ln (B). Denote by

{
δ′1, . . . , δ

′

n

}
the canonical orthonormal basis of Ln (B). For i = 1, . . . ,m then

〈
a, ei

〉
=

〈
a,

n∑
r=1

〈
ei, δ

′
r

〉
δ′r

〉
=

n∨
r=1

〈
ei, δ

′
r

〉 〈
a, δ′r

〉
.

Hence, for i 6= j and i, j = 1, . . . ,m we have

〈
a, ei

〉 〈
a, ej

〉
=

n∨
r,s=1

〈
ei, δ

′
r

〉 〈
a, δ′r

〉 〈
ej, δ

′
s

〉 〈
a, δ′s

〉

=
n∨

r=1

〈
ei, δ

′
r

〉 〈
a, δ′r

〉 〈
ej, δ

′
r

〉
since a is stochastic

≤
n∨

r=1

〈
ei, δ

′
r

〉 〈
ej, δ

′
r

〉
=
〈
ei, ej

〉
= 0.

Hence, by definition, Ta is stochastic.

Now, it is easy to check that T−1 (a1, . . . , am) =
∑m

k=1 aiei. Assume that M
is stochastic and that the basis

{
e1, . . . , en

}
is stochastic. If (a1, . . . , am) ∈

Lm (B) is stochastic, then for r, s = 1, . . . ,m:

〈
m∑

k=1

akek, δ
′
r

〉〈
m∑

k=1

akek, δ
′
s

〉
=

m∨
k,l=1

akal

〈
ek, δ

′
r

〉 〈
el, δ

′
s

〉

=
m∨

k=1

ak

〈
ek, δ

′
r

〉 〈
ek, δ

′
s

〉
as a is stochastic

= akδ
s
r
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with δs
r is the Kronecker symbol. Note that we used that by definition, an

orthonormal basis of a subspace is stochastic. Hence T−1 (a1, . . . , am) is a
stochastic vector as well. Hence T−1 maps stochastic vectors to stochastic
vectors. 2

Corollary 3.16 Any two orthonormal bases of a subspace M have the same
cardinality.

PROOF. Let A =
{
a1, . . . , am

}
and B =

{
b1, . . . , bn

}
be two orthonormal

bases ofM. By Theorem (3.15), there exists isomorphisms T :M−→ Lm (B)
and S :M−→ Ln (B). Hence T ◦S−1 : Ln (B) −→ Lm (B) is an isomorphism.
In particular, it maps orthonormal basis to orthonormal basis. Hence n = m
by Theorem (3.6). 2

We call the common cardinality of all orthonormal bases for a subspaceM
the dimension of M. It follows from Theorem (3.15) that ifM has dimension
m, then M is isomorphic to Lm (B). A source of examples of subspaces is
given by:

Proposition 3.17 For any a1 ∈ Ln (B) we denote by a1
⊥ the set{

b ∈ Ln (B) :
〈
a1, b

〉
= 0

}
.

If a1 is stochastic then a1
⊥ is a stochastic subspace of Ln (B) of dimension

n− 1.

PROOF. Using Example (2.13), we extend the stochastic vector a1 to an

orthonormal basis
{
a1, . . . , an

}
of Ln (B). If b ⊥ a1 then, writing b =

∑n
i=1 biai

we see that
〈
b, a1

〉
= 0 if and only if b1 = 0. Hence

a1
⊥ =

{
n∑

i=2

biai : b2, . . . , bn ∈ B
}

is the subspace generated by the stochastic orthonormal set
{
a2 . . . , an

}
of

cardinality n− 1. 2

We are now ready to show:

Theorem 3.18 If A =
{
a1, . . . , am

}
is a stochastic orthonormal set in Ln (B)

with m < n then A can be extended to an orthonormal basis for Ln (B).
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PROOF. We proceed by induction on n. The result is trivial for n = 1. As-
sume that for some n ∈ N, any stochastic orthonormal set of cardinality m < n
in Ln (B) can be extended to a basis for Ln (B). Let A =

{
a1, . . . , am

}
be a sto-

chastic orthonormal subset of Ln+1 (B) with m < n+1. By Proposition (3.17)
and Theorem (3.15) there exists an isomorphism T : a1

⊥ −→ Ln (B) such that

T and T−1 preserve stochastic vectors. Moreover,
{
a2, . . . , am

}
⊆ a1

⊥. Let

bi ∈ Ln (B) be given by Tai = bi for i = 2, . . . ,m. It follows from Theorem

(3.13) that
{
b2, . . . , bm

}
is an orthonormal set in Ln (B) of cardinal m−1 < n.

By our induction hypothesis, there exist stochastic vectors bm+1, . . . , bn+1 such

that
{
b2, . . . , bn+1

}
is an orthonormal basis for Ln (B). By Theorem (3.13),{

T−1b2, . . . , T
−1bn+1

}
is a stochastic orthonormal set in Ln+1 (B) which is a

basis for a1
⊥. Since ai = T−1bi for i = 2, . . . ,m, we conclude by Corollary

(3.3) that
{
a, T−1b2, . . . , T

−1bn+1

}
is an orthonormal basis of Ln+1 (B) which

extends A. 2

It follows from Theorem (3.18) that if M is a stochastic subspace of
Ln (B) then

M⊥ = {b ∈ Ln (B) : ∀a ∈M b ⊥ a}
is also a stochastic subspace and Ln (B) = M +M⊥. One can now study
projection operators and the order structure of subspaces but we leave this
for later work.

4 Stochastic and Unitary Matrices

In the sequel, a matrix on Ln (B) will mean an n × n Boolean matrix,
and a vector in Ln (B) will mean a Boolean vector and will be identified with
a n× 1 column vector. Moreover, if A is a matrix then we denote the (i, j)th

entry by (A)ij, or simply (A)i if A is a column vector.

Let A be a matrix on Ln (B). Then the map x ∈ Ln (B) 7→ Ax is linear and
will be identified with A. Indeed, for all b, c ∈ Ln (B), c ∈ B, and i = 1, . . . , n
we have

(A (cb))i =
n∨

j=1

aij (cb)j =
n∨

j=1

aijcbj = c
n∨

j=1

aijbj = c (Ab)i

and
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(A (b+ c))i =
n∨

j=1

aij (b+ c)j =
n∨

j=1

aij (bj ∨ cj)

=

 n∨
j=1

aijbj

 ∨
 n∨

j=1

aijcj


= (Ab)i ∨ (Ac)i = (Ab+ Ac)i .

Conversely, any operator T on Ln (B) can be represented by a matrix on

Ln (B) with respect to the canonical basis. Indeed, define aij =
〈
Tδj, δi

〉
for

all i, j = 1, . . . , n. Then Tδj =
∑n

i=1 aijδi. Defining the matrix AT = [aij]n×n

we have (
AT δi

)
k

=
n∨

j=1

akj

(
δi

)
j

=
n∨

j=1

akjδji = aki =
(
Tδi

)
k

for all i, k = 1, . . . , n and it follows that the action of AT is given by T . The
matrix AT is called the matrix corresponding to T in the canonical basis of
Ln (B). If A = [aij]n×n is a matrix on Ln (B) then its transpose [aji]n×n is
denoted by A∗.

It is straightforward to check that if T : Ln (B) −→ Lm (B) and S :
Lm (B) −→ Lk (B) then the matrix of S ◦T is given by the product ASAT , the
matrix of λT for λ ∈ B is given by λAT and if S : Ln (B) −→ Lm (B) then the
matrix of S + T is AS + AT . Moreover, for all a ∈ Ln (B) and b ∈ Lm (B) we
check that 〈Ta, b〉 = 〈a, T ∗b〉 where T ∗ : Lm (B) −→ Ln (B) is the linear map
of matrix A∗T (and where we use the same notation for the inner products on
Ln (B) and Lm (B)). Thus, linear maps always have an adjoint. It is routine
to check that the adjoint is unique. We thus have, as with standard linear
algebra, a natural isomorphism between the *-algebra of linear maps and the
*-algebra of Boolean matrices.

Invertibility of Boolean matrices was studied in [7,8,12,20] and the follow-
ing result is well-known. We present here a short proof which relies upon our
previous work with orthonormal bases and generalize the invertibility result
to show that invertible rectangular matrices have to be square. Note that if
a matrix A is invertible, then its columns and its rows both form generating
families. We now show that these families are actually orthonormal bases of
Ln (B) and therefore are stochastic.

Theorem 4.1 Let A be an n×m Boolean matrix. The following are equiva-
lent:

(1) A is invertible, i.e. there exists a (necessarily unique) m × n Boolean
matrix A−1 such that A−1A = In and AA−1 = Im,

(2) A is unitary,i.e. n = m and AA∗ = A∗A = In,
(3) The columns of A form an orthonormal basis for Ln (B),
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(4) The rows of A form an orthonormal basis of Lm (B).

In particular, if any of 1-4 holds, then n = m.

PROOF. Assume (3) holds. Then by Theorem (3.6), there are n columns of
A and thus n = m. By Theorem (3.1), the rows of A are a basis for Ln(B)
as well, so (4) holds. The same reasoning shows that (4) implies (3) and in
particular n = m again.

Moreover, let us denote the columns of A by a1, . . . , am and the rows of A

by r1, . . . , rn. By construction A∗A =
[〈
ai, aj

〉]
m×m

and AA∗ =
[〈
ri, rj

〉]
n×n

so A is unitary if and only if both (3) and (4) holds. Since (3) and (4) are
equivalent and imply n = m, either imply (2).

Assume now that A is invertible and write A = [aij]n×m and A−1 = [bij]m×n.

Then A−1A = Im and AA−1 = In implies that
m∨

j=1

aij =
n∨

j=1

bij = 1 and bkiaij =

0 (k 6= j ∈ {1, . . . ,m} and i ∈ {1, . . . n}) and aikbkj = 0 (i 6= j ∈ {1, . . . n}
and k ∈ {1, . . .m}). Moreover if i ∈ {1, . . . , n} and j 6= k ∈ {1, . . . ,m} then:

aijaik =

(
n∨

s=1

bksaij

)
aik =

 n∨
s=1
s 6=i

aijbks

 aik ≤

 n∨
s=1,s 6=i

aikbks

 = 0.

Hence, the columns of A∗ form an orthonormal subset of Lm (B) and thus by
Theorem (3.1), the columns of A form an orthonormal basis of Ln (B). So (1)
implies (3) and the proof is complete. 2

As a consequence of Theorem (4.1), we see that invertible operators are
always isomorphisms by Lemma (3.13), since they map the canonical basis to
the orthonormal basis of their column vectors.

Theorem (4.1) allows us to establish the following remarkable fact: bases,
as per Definition (2.9), are necessarily orthonormal, hence of cardinality the
dimension of the Boolean vector space. Thus, for Boolean vector spaces, being
a basis in a traditional sense is the same as being an orthonormal basis.

Theorem 4.2 If A =
{
a1, . . . , am

}
is a basis for Ln (B) then n = m and A

is an orthonormal basis.
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PROOF. Define

T :

∣∣∣∣∣∣∣
Ln (B) −→ Lm (B)

b 7−→ (b1, . . . , bm)

where b =
∑
biai. Now T is a linear bijection. Denote the inverse of T by S.

It is easily checked that S is a linear bijection and ST = In and TS = Im. We
conclude from Theorem (4.1) that n = m and that matrix AS of S is unitary.
It is easily checked that Sδi = ai for i = 1, . . . , n, i.e. the columns of AS are
the vectors a1, . . . , an which by Theorem (4.1) form an orthonormal basis. 2

We record the following observation as well:

Corollary 4.3 Let T : Ln (B) −→ Lm (B) be a linear bijection. Then n = m
and T is an isomorphism.

In view of Theorem (4.1), we introduce a type of matrix which will be of
great interest to us in the next section. First, given A,B two n×n matrices, we
shall say that A ≤ B when 〈Aa, b〉 ≤ 〈Ba, b〉 for all a, b ∈ Ln (B). The relation
≤ is easily seen to be an order on the set of n× n matrices. It is shown in [7]
that [aij]n×n ≤ [bij]n×n if and only aij ≤ bij for all i, j ∈ {1, . . . , n}. Now we
set:

Definition 4.4 A matrix A is stochastic when A∗A ≥ I and AA∗ ≤ I.

It is shown in [7] that products of stochastic matrices are stochastic ma-
trices, and that a matrix is stochastic if and only if it maps stochastic vectors
to stochastic vectors, or equivalently when its columns are stochastic vectors.

Note that A is unitary, or equivalently invertible, if and only if A and
A∗ are both stochastic. So unitarity is the same as bi-stochasticity. As an
interesting observation, if we call a matrix A symmetric when A∗ = A, then
a symmetric stochastic matrix is always a unitary of order 2, namely A2 = I.
Conversely, if A2 = I then A is invertible with A−1 = A∗, so symmetric
stochastic matrices are exactly given by unitaries of order 2, i.e. a reflection.

We have encountered such matrices before. Example (2.13) shows how to
obtain such reflections. Let a = (a1, . . . .an) be a stochastic vector. Then the
matrix

A =



a1 a2 · · · an

a2 a3 · · · a1

...
...

...

an a1 · · · an−1


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is symmetric and stochastic.

Note however that the product of reflections need not be a reflection, as

the product of the reflections


0 1 0

1 0 0

0 0 1

 and


1 0 0

0 0 1

0 1 0

 is given by


0 0 1

1 0 0

0 1 0

 which

is not a reflection.

5 Invariant Vectors

Eigenvalues and eigenvectors of Boolean matrices have been previously
studied [1,9,11,18]. Though invariant vectors are special case of eigenvectors,
as far as we know the results in this section are new.

The following consequence of Lemma (3.8) will be used.

Lemma 5.1 If a ∈ Ln (B) then there exists an orthovector b ∈ Ln (B) such
that ‖b‖ = ‖a‖ and b ≤ a.

PROOF. Apply Lemma (3.8) with the interval [0, ‖a‖] of B in lieu of B. 2

Let A1, . . . , Am be matrices on Ln (B) with Ak =
[
ak

ij

]
n×n

(k = 1, . . . ,m). The

joint trace of A1, . . . , Am is

tr (A1, . . . , Am) =
n∨

i=1

a1
iia

2
ii . . . a

m
ii .

In particular, the trace of [aij]n×n is given by tr (A) =
n∨

i=1

aii. A vector b is

an invariant vector for A if Ab = b, and more generally a common invariant
vector of A1, . . . , Am if Aib = b for i = 1, . . . ,m.

Lemma 5.2 Let A,B be two matrices on Ln (B). Then

(1) tr (AB) = tr(BA),
(2) If B is invertible then tr (BAB∗) = tr(A).
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PROOF. We compute

tr(AB) =
n∨

i=1

(AB)ii =
n∨

i=1

n∨
k=1

aikbki =
n∨

k=1

n∨
i=1

bkiaik =
n∨

k=1

(BA)kk = tr (BA) .

If B is invertible then B−1 = B∗ by Theorem (4.1) and thus (1) implies (2). 2

Theorem 5.3 Stochastic matrices A1, . . . , Am on Ln (B) have a common in-
variant stochastic vector if and only if tr (A1, . . . , Am) = 1.

PROOF. Suppose b is a stochastic vector and Aib = b for i = 1, . . . ,m. Then
n∨

j=1

ak
ijbj = bi for k = 1, . . . ,m and i, j = 1, . . . , n. Multiplying both sides by bi

and since b is stochastic, we obtain ak
iibi = bi. Hence, bi ≤ ak

ii, k = 1, . . . ,m,
so bi ≤ a1

iia
2
ii . . . a

m
ii . Therefore

tr (A1, . . . , Am) =
n∨

i=1

a1
iia

2
ii . . . a

m
ii ≥

n∨
i=1

bi = 1.

Conversely, suppose tr (A1, . . . , Am) =
n∨

i=1

a1
iia

2
ii . . . a

m
ii = 1. By Lemma (3.8),

there exists a stochastic vector b = (b1, . . . , bn) such that bj ≤ a1
jja

2
jj . . . a

m
jj.

Since bj ≤ ak
jj (k = 1, . . . ,m) and Ak is stochastic, we have that ak

ijbj = 0 for
i 6= j, i, j = 1, . . . , n and k = 1, . . . ,m. Hence

(Akb)i =
n∨

j=1

ak
ijbj = ak

iibi = bi.

Therefore, Akb = b (k = 1, . . . ,m) so b is a common invariant stochastic vector
for A1, . . . , Am. 2

Corollary 5.4 A stochastic matrix A has an invariant stochastic vector if
and only if tr(A) = 1.

Corollary 5.5 If A is a stochastic matrix and B is invertible on Ln (B) then
A has an invariant stochastic vector if and only if BAB∗ does.

Corollary 5.6 A stochastic vector b = (b1, . . . , bn) is a common invariant
vector for stochastic matrices A1, . . . , Am if and only if bi ≤ a1

iia
2
ii . . . a

m
ii for

all i = 1, . . . , n.

Stochastic matrices A1, . . . , Am on Ln (B) are simultaneously reducible if
there exists an invertible matrix B on Ln (B) and matrices C1, . . . , Cm on
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Ln−1 (B) such that for i = 1, . . . ,m we have

Ai = B

 1 0

0 Ci

B∗.

Notice that the matrices C1, . . . , Cm are stochastic since B∗AiB =

 1 0

0 Ci

. In

particular, if there is only one matrix A in the above definition, we say that
A is reducible.

Theorem 5.7 Unitary matrices A1, . . . , Am on Ln (B) are simultaneously re-
ducible if and only if tr (A1, . . . , Am) = 1.

PROOF. If A1, . . . , Am are simultaneously reducible then Ai = B

 1 0

0 Ci

B∗
for some invertible matrix B and some matrix Ci, i = 1, . . . ,m. Since B is
unitary, Bδ1 is stochastic and

Ai

(
Bδ1

)
= B

 1 0

0 Ci

 δ1 = Bδ1

for i = 1, . . . ,m. Hence, A1, . . . , Am have a common invariant vector, and thus
by Theorem (5.3) we have tr(A1, . . . , Am) = 1.

Conversely, assume that tr (A1, . . . , Am) = 1. Then A1, . . . , Am have a common
stochastic invariant vector b = (b1, . . . , bn) by Theorem (5.3). We define the
symmetric stochastic matrix B by

B =



b1 b2 b3 · · · bn
b2 b

c
2 0 · · · 0

b3 0 bc3 · · · 0
...

bn 0 0 · · · bcn


.

Let Di = BAiB for i = 1, . . . ,m. With the notation Ak =
[
ak

ij

]
n×n

, we

compute the (1, 1) entry of Di as

n∨
j=1

b1j

(
n∨

r=1

ai
jrbr1

)
=

n∨
j=1

bj

(
n∨

r=1

ai
jrbr

)
=

n∨
j=1

bjbj = 1.
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Since a product of unitary matrices is unitary, Di is a unitary matrix and thus
must have the form

Di =

 1 0

0 Ci


for some matrix Ci (i = 1, . . . ,m). Since Ai = BDiB for i = 1, . . . ,m, we are
finished. 2

Corollary 5.8 A unitary matrix A is reducible if and only if tr(A) = 1.

We now give an example to show that Theorem (5.7) does not hold

for stochastic matrices. Consider the stochastic matrix A =

 1 1

0 0

. It is

of trace 1, yet if it were reducible then there exists a unitary B such that

A = B

 1 0

0 1

B∗ = I which is a contradiction.

Notice if A is unitary and b is an invariant vector for A, then b is also an
invariant vector for A∗. Indeed, Ab = b implies that A∗b = A∗Ab = b.

We now give an example that motivates the next result. Let A = [aij]3×3

be a 3×3 symmetric stochastic matrix. We shall show that A has an invariant
stochastic vector and hence A is reducible. Indeed, we have that

ac
11a

c
22a

c
33 = (a12 ∨ a13) (a12 ∨ a32) (a13 ∨ a23)

= (a12 ∨ a13) (a12 ∨ a23) (a13 ∨ a23)

= (a12a12 ∨ a12a23 ∨ a13a12 ∨ a13a23) (a13 ∨ a23)

= a12 (a13 ∨ a23) = 0.

Thus tr (A) = (ac
11a

c
22a

c
33)c = 0c = 1 so the result follows from Corollaries (5.4)

and (5.8). The next theorem generalizes this calculation.

Theorem 5.9 If A is an n×n symmetric stochastic matrix with n odd, then
A has an invariant stochastic vector.

PROOF. Since A = [aij]n×n is symmetric, we have that

ac
11a

c
22 . . . a

c
nn = (a12 ∨ a13 ∨ . . . ∨ a1n) (a12 ∨ a23 ∨ . . . ∨ a2n)

. . . (a1n ∨ a2n ∨ . . . ∨ an−1,n) .
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Since A is stochastic, we conclude that if we expand the right hand-side, the
only nonzero terms are of the form aijaijarsars . . . auvauv with i 6= r, r 6= u and
so on. By construction, there are n factors in this product. This would imply
that n must be even. This is a contradiction, so all terms in the expansion are
zero and thus

tr (A) = (ac
11a

c
22 . . . a

c
nn)c = 1.

The result follows from Corollary (5.4). 2

We now show that Theorem (5.9) does not hold if n is even. Consider

the stochastic symmetric matrix A =

 0 1

1 0

. Then tr(A) = 0 so A has no

stochastic invariant vector. Now, generalizing, we see that if B is a k × k sto-

chastic symmetric matrix, then

 0 B

B 0

 has trace 0 and thus has no invariant

stochastic vector. Thus, for all even n there exists a stochastic symmetric n×n
matrix with no invariant stochastic vector.

We can find more invariant stochastic vectors in the natural way. An
invariant orthogonal set for matrices A1, . . . , Am on Ln (B) is a set of mutually
orthogonal invariant vectors for A1, . . . , Am. For example, if b, c are stochastic
vectors, then {b, c} is an invariant orthogonal set for the unitary matrix A if
and only if ci ≤ aiib

c
i for i = 1, . . . , n or equivalently bi ≤ aiic

c
i for i = 1, . . . , n.

Theorem 5.10 A unitary matrix A possesses an invariant orthogonal set of
m stochastic vectors if and only if there exists an invertible matrix B such that

A = B

 Im 0

0 C

B∗

where Im is the identity operator on Lm (B).

PROOF. Suppose A is an n × n matrix with the given form. Then m ≤ n
and we can define bj = Bδj, j = 1, . . . ,m. We conclude from Theorem (4.1)
that b1, . . . , bm are stochastic vectors and we have Abj = bj for j = 1, . . . ,m
by construction. Moreover, for i 6= j we have〈

bj, bi
〉

=
〈
Bδi, Bδj

〉
=
〈
B∗Bδi, δj

〉
=
〈
δi, δj

〉
= 0.
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Hence
{
b1, . . . , bm

}
is an invariant orthogonal set of stochastic vectors.

Conversely, suppose that A possesses an invariant orthogonal set of sto-
chastic vectors

{
b1, . . . , bm

}
and write bj = (b1j, . . . , bnj) for j = 1, . . . , n.

Letting

B1 =



b11 b21 b31 · · · bn1

b21 b
c
21 0 · · · 0

b31 0 bc31 · · · 0
...

...

bn1 0 · · · 0 bcn1


and D1 = B1AB1 as in the proof of Theorem (5.7), we have that

D1 =

 1 0

0 C1


where C1 is a stochastic matrix and A = B1D1B1. Letting C1 = [cij]n×n and
D1 = [dij]n×n we have

c11 = d22 =
2∨

j=1

b2j

(
2∨

k=1

ajkbk2

)
= b21 (a11b21 ∨ a12b

c
21) ∨ bc21 (a21b21 ∨ a22b

c
21)

= a11b21 ∨ a22b
c
21.

More generally

cii = di+1,i+1 = aiibi+1,1 ∨ ai+1,i+1b
c
i+1,1

for i = 1, . . . , n− 1. Hence

tr (C1) =
n−1∨
i=1

(
aiibi+1,1 ∨ ai+1,i+1b

c
i+1,1

)
=

n−1∨
i=1

aiib
c
i,1.

Since bi2 ≤ aiib
c
i1 (i = 1, . . . , n), we conclude that b2 is an invariant stochastic

vector of C1 by Corollary (5.6). Hence, there exists a symmetric stochastic
matrix B2 such that

C1 = B2

 1 0

0 C2

B2.

It follows that
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A=B1


1 0

0 B2

 1 0

0 C2

B2

B1

=B1

 1 0

0 B2




1 0 0

0 1 0

0 0 C2


 1 0

0 B2

B1

=B3

 I2 0

0 C2

B∗3

with B3 = B1

 1 0

0 B2

. The proof is then completed by a simple induction. 2

Theorem (5.10) can be easily generalized to the following:

Corollary 5.11 Unitary matrices A1, . . . , Am possess an invariant orthogonal
set of stochastic vectors if and only if there exists an invertible matrix B and
matrices C1, . . . , Cn such that

Ai = B

 Im 0

0 Ci

B∗
for i = 1, . . . ,m and Im the identity operator on Lm (B).

We now illustrate Theorem (5.10) with an example. Let B be the power
set of {1, 2, 3, 4, 5} = Ω endowed with its natural Boolean algebra structure.
Consider the stochastic symmetric matrix A over L5 (B) defined by

A =



{1} {2} {3} {4} {5}

{2} {4, 5} ∅ ∅ {1, 3}

{3} ∅ {4, 5} {1} {2}

{4} ∅ {1} {2, 3, 5} ∅

{5} {1, 3} {2} ∅ {4}


.

There are many stochastic invariant vectors for A and we choose

b = ({1} , ∅, ∅, {2, 3, 5} , {4}) .
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We now form the stochastic symmetric matrix

B =



{1} ∅ ∅ {2, 3, 5} {4}

∅ Ω ∅ ∅ ∅

∅ ∅ Ω ∅ ∅

{2, 3, 5} ∅ ∅ {1, 4} ∅

{4} ∅ ∅ ∅ {1, 2, 3, 5}


We can then reduce A by

BAB =



Ω ∅ ∅ ∅ ∅

∅ {4, 5} ∅ {2} {1, 3}

∅ ∅ {4, 5} {1, 3} {2}

∅ {2} {1, 3} ∅ {4, 5}

∅ {1, 3} {2} {4, 5} ∅


.

Thus

A = B

 1 0

0 C

B
yet tr(C) = {4, 5} 6= Ω so no further reduction is possible.

6 Powers of Stochastic Matrices

As mentioned in section 2, powers of stochastic matrices may be impor-
tant for the study of Boolean Markov chains. Various applications of powers of
lattice matrices are discussed in [2,19]. If A is a Boolean matrix, the smallest
natural number p such that there exists a natural number e with Ae+p = Ae is
called the period of A and is denoted by p(A). The smallest natural number e
such that Ae+p(A) = Ae is called the exponent or index of A and is denoted by
e(A). It is known that for any n × n Boolean matrix A, both p(A) and e(A)
exist and e(A) ≤ (n− 1)2 + 1 [2,19]. We shall use:

Definition 6.1 Let n ∈ N. The least common multiple of {1, 2, . . . , n} is
denoted by [n].

It is also known that p(A) divides [n].

In this section, we show that for a stochastic matrix, we can improve
the upper bound for e(A) to e(A) ≤ n − 1. Although we do not improve on
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p(A)|[n], we give an alternative proof of this result for stochastic matrices
because it is embedded in our proof that e(A) ≤ n− 1.

If A is a 2×2 matrix, then it follows from the previous known results that
A4 = A2. Moreover, it is easy to check that if A is a 2 × 2 stochastic matrix
then A3 = A. In the same way, for 3×3 matrix A we have A11 = A5. However,
one can check that if A is a 3× 3 stochastic matrix then A8 = A2. Displaying
the first eight powers of A would be cumbersome, so we refrain from doing
so. However, we can easily prove the special case that A6 = I for any unitary
3× 3 matrix A. In this case, we have

A =


a1 b1 c1

a2 b2 c2

a3 b3 c3


where each row and column is a stochastic vector. We then have

A2 =


a1 ∨ a2b1 ∨ a3c1 b3c1 b1c2

a3c2 a2b1 ∨ b2 ∨ b3c2 a2c1

b3a2 a3b1 a3c1 ∨ b3c2 ∨ c3

 ,

A3 =


a1 ∨ a3b1c2 ∨ a2b3c1 a2b1 a3c1

a2b1 a2b3c1 ∨ b2 ∨ a3b1c2 b3c2

a3c1 b3c2 a3b1c2 ∨ a2b3c1 ∨ c3

 .

Since A3 is symmetric and unitary (as a product of unitary, or by inspection),
we conclude that A6 = A3A3 = I.

From these observations and our work in Section 5, we can already draw
some interesting conclusions. For example, let A be a 3 × 3 unitary matrix
with tr(A) = 1. Applying Corollary (5.8), there exists an invertible matrix B
and a 2× 2 unitary matrix C such that

A = B

 1 0

0 C

B∗. (6.1)

Since C is symmetric (all 2× 2 unitaries are), we have C2 = I and thus

A2 = B

 1 0

0 C2

B∗ = I.
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We conclude that any 3× 3 unitary matrix A with tr(A) = 1 is symmetric.

As another example, let A be a 4× 4 unitary matrix with tr(A) = 1. As
before, there exists an invertible matrix B such that (6.1) holds where C is
now a 3× 3 unitary matrix. Since C6 = I, we conclude that A6 = I and thus
A3 is symmetric.

We now begin the proof of the main result of this section. Let A = [aij]n×n

be a stochastic matrix on Ln (B). We shall use:

Definition 6.2 A nonzero element of B of the form

ai11ai22 . . . ainn

for i1, . . . , in ∈ {1, . . . , n} is called an atom of A.

Of course there are a finite numbers of atoms of A.

Lemma 6.3 Let A = [aij]n×n be a stochastic matrix on Ln (B). Let ω1, . . . , ωm

be the distinct atoms of A.

(1) If i, j ∈ {1, . . . ,m} and i 6= j then ωiωj = 0,

(2)
m∨

i=1

ωi = 1,

(3) For all i, j ∈ {1, . . . , n} we have aij =
∨
{ωk : ωk ≤ aij},

(4) If ωi ≤ akj then Aωiδj = ωiδk.

PROOF. For (1), letting ωi = ai11ai22 . . . ainn and ωj = aj11aj22 . . . ajnn, if
i 6= j then ik 6= jk for some k ∈ {1. . . . , n} and thus ωjωi = 0 since aikkajkk = 0.

(2) will follow from (3). For (3), since

a11 =
∨
{a11 (ai22 . . . ainn) : i2, . . . , in = 1, . . . , n}

as A is stochastic, the results holds for a11. It holds similarly for aij with
i, j ∈ {1, . . . , n}. Last, for (4), if ωi ≤ akj then

Aωiδj =ωiAδj = ωi (a1j, a2j, . . . , anj) = (ωia1j, . . . , ωianj)

=ωiajkδk = ωiδk.

This concludes our proof. 2

The main result for this section is:
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Theorem 6.4 If A is a stochastic n× n matrix then A[n]+n−1 = An−1.

PROOF. Let ω1, . . . , ωm be the distinct atoms of A. By Lemma (6.3,2), we

have δi =
∑m

j=1 ωjδi for all i ∈ {1, . . . n}. Since
{
δ1, . . . , δn

}
is a basis for

Ln (B), the set
{
ωjδi : i = 1, . . . n; j = 1, . . .m

}
is a generating set of Ln (B).

Set r = [n] + n − 1. If we can show that Arωjδi = An−1ωjδi for i = 1, . . . n
and j = 1, . . .m then we are done.

Consider first ω1δ1 and call the vectors A0ω1δ1, Aω1δ1, A2ω1δ1, . . . , A
n−1ω1δ1

the iterates of A at ω1δ1. By Lemma (6.3,4), the iterates of ω1δ1 have the
form: ω1δ1, ω1δi1 , ω1δi2 , . . . , ω1δin−1 for i1, . . . , in−1 ∈ {1, . . . , n}.

Suppose there is only one distinct iterate of A at ω1δ1. Then

Aω1δ1 = ω1δi1 = ω1δ1.

Then we have

An−1ω1δ1 = Anω1δ1 = . . . = Arω1δ1. (6.2)

Suppose now there are two distinct iterates of A at ω1δ1. Then ω1δ1 6= ω1δi1 .
If Aω1δi2 = ω1δi1 then

ω1δi3 = Aω1δi2 = Aω1δi1 = ω1δi2 = ω1δi1

and we can conclude again that (6.2) holds. Otherwise, A2ω1δ1 = ω1δ1 and
thus An−1ω1δ1 = ω1δ1 or An−1ω1δ1 = ω1δi1 . Either way, we have

A2+(n−1)ω1δ1 = An−1ω1δ1. (6.3)

Suppose instead that there are three distinct iterates of A at ω1δ1. Thus ω1δ1,
ω1δi1 and ω1δi2 are distinct. If ω1δi3 = ω1δi2 then Arω1δ1 = An−1ω1δ1 = ω1δi3

so (6.2) holds again. If ω1δi1 = ω1δi3 then Aω1δ1 ∈
{
ω1δ1, ω1δi2

}
and (6.3)

holds. If ω1δ1 = ω1δi3 then An−1ω1δ1 ∈
{
ω1δ1, ω1δi1 , ω1δi2

}
and we have

A3+n−1ω1δ1 = An−1ω1δ1. (6.4)

Generalizing this observation, suppose that all the iterates ω1δ1, ω1δi1 , . . . ,
ω1δin−1 are distinct. Since there are only n possibilities for Anω1δ1, we conclude

that Anω1δ1 = ω1δ1 or ω1δij for some j ∈ {1, . . . , n− 1}. But then

At+(n−1)ω1δ1 = An−1ω1δ1 (6.5)
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for some t ∈ {1, 2, . . . , n}. Notice (6.3) and (6.4) are special cases of (6.5).

Let us now suppose (6.5) holds for some t ∈ {1, . . . , n}. Since r = kt+ (n− 1)
for some k ∈ N we have

Arω1δ1 =Akt+n−1ω1δ1 =
(
At
)k
An−1ω1δ1

=
(
At
)k−1

AtAn−1ω1δ1 =
(
At
)k−1

An−1ω1δ1

=
(
At
)k−2

AtAn−1ω1δ1 =
(
At
)k−2

An−1ω1δ1

= . . . = An−1ω1δ1.

In a similar way, we can prove that Arωjδi = An−1ωjδi for j = 1, . . . ,m and
i = 1, . . . , n, so the proof is complete. 2

Corollary 6.5 If A is an n× n unitary matrix then A[n] = I.

As examples, A15 = A3 for any 4× 4 stochastic matrix and A64 = A4 for
any 5 × 5 stochastic matrix. We now give a final example. Let (a, b, c) be a
stochastic vector and form the stochastic matrix

A =


b ∨ c a 0

a b a

0 c b ∨ c

 .

We then have

A2 =


1 0 a

0 a ∨ b 0

0 c c ∨ b


and A2n+1 = A, A2n = A2 for n ∈ N. This example illustrates an impor-
tant difference between Boolean Markov chains and traditional Markov chains
given by real stochastic matrices. An important property of traditional Markov
chains is that the sites (called states in the traditional case) can be decom-
posed into equivalence classes. This is important because sites in the same
equivalence class share a similar behavior [3].

To be precise, let M = [pij]n×n be a real stochastic matrix, i.e. pij ≥ 0
and

∑n
i=1 pij = 1 for every j = 1, . . . , n. The real pij represents the transition

probability from site j to site i. A site i is accessible from a site j if there
exists n ∈ N such that (Mn)ij > 0, and we then denote j → i. It is easy to
check that → is transitive and that the relation ←→ defined by i←→ j ⇐⇒
(i→ j ∧ j → i) is an equivalence relation on the sites of the Markov chain.
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Let us now extend this concept to Boolean Markov chains whose transi-
tion matrix is a Boolean stochastic matrix A. Thus, j → i whenever (An)ij > 0
for some n ∈ N. For the example above, we note that 1→ 2 and 2→ 3 yet 1 6→
3. Thus→ is not transitive. If we define←→ by i←→ j ⇐⇒ (i→ j ∧ j → i)
then we have, in the above example, that in fact 1 ←→ 2 and 2 ←→ 3 yet
1 = 3. Hence ←→ is no longer an equivalence relation.
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