
CODE LOOPS IN BOTH PARITIES

ALEŠ DRÁPAL AND PETR VOJTĚCHOVSKÝ

Abstract. We present equivalent definitions of code loops in any characteristic p 6= 0.
The most natural definition is via combinatorial polarization, but we also show how to
realize code loops by linear codes and as a class of symplectic conjugacy closed loops.
For p odd, it is possible to define code loops via characteristic trilinear forms. Related
concepts are discussed.

1. Introduction

The largest sporadic group, the Monster, was discovered by Griess in [14], [15], and its
simplest known construction is due to Conway [5]. One of the crucial steps in Conway’s
construction is a transition from the extended binary Golay code G to a certain loop P,
called the Parker loop, consisting of signed elements of G. The additions in P and G
are the same, except that the sign arithmetic in P is governed by rather delicate rules
based on the code structure of G. See [5] or [6, Chapter 29] for details.

In [16], Griess showed that an analogous transition from a code to a loop can be done
for any doubly even linear binary code, resulting in a class of Moufang loops, called even
code loops here. (Griess called them code loops.)

Even code loops have been studied extensively, as witnessed by: characterization of
even code loops by means of combinatorial polarization [1, Section 13], characterization
of even code loops as Moufang loops with a unique nonidentity square [3], characteri-
zation of even code loops as small Frattini Moufang 2-loops [17], calculation of the sign
within even code loops [18], [23], construction of 2-local subgroups of sporadic groups
from even code loops [1, Section 14], classification of small even code loops [24].

In order to construct p-local subgroups of the Monster for p = 3, 5 and 7, Richardson
[29] gave a definition of an odd code loop based on self-orthogonal codes over Fp. He also
pointed out similarities between the even and odd code loops, notably a connection to
combinatorial polarization.

Motivated by Richardson’s pioneering work, this paper is an attempt to arrive at the
“correct” definition of code loops in any characteristic p 6= 0. While the definition of
even code loops has been settled, we argue that Richardson’s definition of odd code
loops should be generalized to more closely resemble the even case.

To wit, we present three equivalent ways in which odd and even code loops can be
defined: via combinatorial polarization, via linear codes, and as a class of symplectic con-
jugacy closed p-loops. When p is odd, another equivalent definition is via characteristic
trilinear forms.
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A. Drápal supported by Grant Agency of the Czech Republic grant 201/09/0296. A preliminary
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Although equivalent, the four definitions are somewhat heterogeneous and depend on
concepts from several different areas, which we gather in Section 2. The definitions are
then given in Section 3. The classical case of even code loops can be found in Section 4,
with several novel proofs. Our goal in Section 4 is not to give the most elementary proofs,
but to take advantage of well-known results in loop theory. A certain universal code
construction is presented in Section 5. We use it in Section 6 to show the equivalence
of definitions for odd code loops via codes and via forms, and also to compare our
definition with Richardson’s original definition of odd code loops. Odd code loops via
forms are shown to be equivalent to odd code loops via polarization in Section 7, and
via conjugacy closed loops in Section 8. We briefly discuss properties of code loops and
the isomorphism problem for code loops in Section 9. Finally, Section 10 offers several
insights into the four equivalent definitions, and explores related concepts.

It is our expressed hope that the algebraic foundations of code loops developed in this
paper will eventually lead to a better understanding of p-locals in sporadic groups—a
topic that is not pursued here.

2. Prerequisites

Throughout the paper, p is a prime, Fp is the p-element field, Zp is the cyclic group
of order p, and all algebras are finite. Unless otherwise stated, all sums are taken over
all subscripts appearing in the summands. For instance,

∑
ak is the sum over all k, and∑

i<j aibjck is the sum over all i, j, k such that i < j, where the domains for i, j, k are
understood from the context.

2.1. Loops. A quasigroup Q is a set with a binary operation, written as juxtaposition,
such that every left translation Lx : Q → Q, y 7→ xy and every right translation
Rx : Q → Q, y 7→ yx is a bijection of Q. A loop is a quasigroup Q with neutral element,
i.e., an element 1 ∈ Q such that 1x = x1 = x for every x ∈ Q. Note that groups are
precisely associative loops.

To save space and improve legibility, we use the dot convention to indicate priority
of multiplication. For instance, xy · z stands for (xy)z.

Let Q be a loop. For x, y ∈ Q, let L(x, y) = L−1
yx LyLx, R(x, y) = R−1

xy RyRx, and
T (x) = L−1

x Rx be the inner mappings of Q. A subloop H of Q is normal if it is invariant
under all inner mappings of Q. In such a case we write H E Q, and Q/H is the usual
factor loop Q modulo H.

The commutator of x, y ∈ Q is the unique element [x, y] ∈ Q such that xy = yx · [x, y].
The associator of x, y, z ∈ Q is the unique element [x, y, z] ∈ Q such that (xy)z =
x(yz) · [x, y, z]. We also introduce the commutator mapping C : Q2 → Q, (x, y) 7→ [x, y]
and the associator mapping A : Q3 → Q, (x, y, z) 7→ [x, y, z]. When there is a normal
subloop H of Q such that C(x, y) = C(x′, y′) and A(x, y, z) = A(x′, y′, z′) whenever
xH = x′H, yH = y′H and zH = z′H, we can view C and A as mappings from (Q/H)2

and (Q/H)3, respectively.
The nucleus of Q is the subloop N(Q) = {x ∈ Q; [x, y, z] = [y, x, z] = [y, z, x] = 1 for

every y, z ∈ Q}. The center of Q is the normal subloop Z(Q) = {x ∈ N(Q); [x, y] =
[y, x] = 1 for every y ∈ Q}.

A loop Q is conjugacy closed if L−1
x LyLx is a left translation and R−1

x RyRx is a right
translation of Q for every x, y ∈ Q. A loop Q is Moufang if x(y(xz)) = ((xy)x)z holds,
and extra if x(y(zx)) = ((xy)z)x holds in Q. A loop is diassociative if every two of its
elements generate an associative subloop. Moufang loops are diassociative.
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For a loop Q, let Z0(Q) = 1, and let Zi+1(Q) be the unique normal subloop of
Q containing Zi(Q) such that Zi+1(Q)/Zi(Q) = Z(Q/Zi(Q)). Then Z1(Q) = Z(Q),
Zi(Q) E Z(Q) for every i, and 1 = Z0(Q) ≤ Z1(Q) ≤ Z2(Q) ≤ · · · is the upper central
series of Q. We say that Q is (centrally) nilpotent of class n if n is the least integer
such that Zn(Q) = Q.

Given a normal subloop H of Q, let (H,Q) be the intersection of all normal subloops
K of Q such that HK/K ≤ Z(Q/K). Define Q0 = Q, and Qi+1 = (Qi, Q). Then QiEQ
for every i, and Q = Q0 ≥ Q1 ≥ Q2 ≥ · · · is the lower central series of Q. The normal
subloop Q1 = (Q,Q) is also denoted by Q′, and it is the least normal subloop H of Q
such that Q/H is an abelian group.

By a result of Bruck [2, Lemma VI.1.2], the upper and lower central series interact in
a way familiar from group theory. That is, if Qβ+1 ⊆ Zα+1(Q) for some α and β, then
also Qβ ⊆ Zα+2(Q) and Qβ+2 ⊆ Zα(Q).

A p-loop is a loop of order pa for some a ≥ 0. For Moufang loops, this is equivalent
to the condition that the order of every element is a power of p.

A bijection f : Q → Q is a (right) pseudoautomorphism with (right) companion c ∈ Q
if f(xy)c = f(x) · f(y)c holds for every x, y ∈ Q.

For an introduction to the theory of loops, see [2] and [26].

2.2. Central extensions of loops. There is no loop-theoretical analog to Schreier’s
results on group extensions, but central extensions of loops generalize from groups easily.
For more about loop extensions, see [19], [10], [21], and [25].

Anticipating a more special situation, let F , V be loops. Then Q is an extension of
F by V if F E Q and Q/F is isomorphic to V . The extension is central if F ≤ Z(Q).

Given an abelian group F and a loop V , a mapping θ : V 2 → F is a cocycle if
θ(1, v) = θ(v, 1) = 1 for every v ∈ V . For a cocycle θ : V 2 → F , denote by Vθ the
groupoid defined on F × V by

(2.1) (a, u)(b, v) = (abθ(u, v), uv).

It is not hard to see that Vθ is a loop with neutral element (1, 1) and F ≤ Z(Vθ). Thus
Vθ is a central extension of F by V . In fact, every central extension arises in this way,
cf. [2]:

Theorem 2.1. Let F be an abelian group and V a loop. The following conditions are
equivalent:

(i) Q is a central extension of F by V ,
(ii) Q = Vθ for some cocycle θ : V 2 → F .

We will mostly deal with extensions of the abelian group of a field F by a vector
space V over F . In such a case, we write the loop operations in F and V additively,
and hence the multiplication in Vθ is given by

(a, u)(b, v) = (a + b + θ(u, v), u + v).

If θ is clear from the context, we denote the commutator and associator mappings in Vθ

by C and A, as in Subsection 2.1. Else we use Cθ and Aθ for emphasis.
A straightforward calculation yields:

Lemma 2.2. Let Q = Vθ, where V is a vector space over F and θ : V 2 → F is a
cocycle. Then the commutator mapping C can be viewed as a mapping V 2 → F and the
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associator mapping A can be viewed as a mapping V 3 → F , namely

C(u, v) = θ(u, v)− θ(v, u),(2.2)
A(u, v, w) = θ(u, v) + θ(u + v, w)− θ(v, w)− θ(u, v + w)(2.3)

for every u, v, w ∈ V .

2.3. Symplectic p-loops and small Frattini p-loops. A p-loop Q is said to be sym-
plectic if it possesses a central subloop F of order p such that V = Q/F is an elementary
abelian p-group. Thus, by Theorem 2.1, Q is a symplectic p-loop if and only if Q = Vθ

for a vector space V over Fp and a cocycle θ : V 2 → Fp.
An element x of a loop Q is a non-generator if whenever S ∪ {x} generates Q then

already S generates Q. Analogously to the situation in group theory, the Frattini subloop
Φ(Q) of a loop Q consists of all non-generators of Q.

The Frattini subloop retains some (but not all) of the familiar properties of the Frattini
subgroup. In particular, Bruck proved [2, pp. 97–99]: (i) Φ(Q) is the intersection of all
maximal subloops of Q, (ii) if Q is nilpotent then Φ(Q) is a normal subloop of Q, (iii)
if Q is a nilpotent p-loop then Φ(Q) is the least normal subloop of Q such that Q/Φ(Q)
is an elementary abelian p-group.

Following Hsu [17], we say that a p-loop Q is small Frattini if |Φ(Q)| divides p, and
central small Frattini if it also satisfies Φ(Q) ≤ Z(Q).

As we have mentioned in the introduction, Hsu showed that even code loops are
precisely small Frattini Moufang 2-loops. In addition, he showed that small Frattini
Moufang p-loops are central small Frattini (and, importantly, that they are groups
whenever p > 3). To generalize this result, let us have a look at nilpotent small Frattini
p-loops:

Proposition 2.3. Let Q be a p-loop. Then the following conditions are equivalent:
(i) Q is symplectic,
(ii) Q is nilpotent small Frattini,
(iii) Q is nilpotent central small Frattini.

Proof. Clearly, (iii) implies (ii). Assume that (ii) holds. If |Φ(Q)| = 1 then Q is elemen-
tary abelian and (i) follows. Suppose that |Φ(Q)| = p, so Φ(Q) ∼= Zp. If Q is elementary
abelian, (i) holds. Else 1 < Q′ = Φ(Q), and thus Q > Q′ = Q1 > Q2 = 1 = Z0(Q) is
the lower central series. In particular, Q2 ≤ Z0(Q), and so Q′ = Q1 ≤ Z1(Q) = Z(Q),
proving (i).

Finally, assume (i), that is, there is F ≤ Z(Q) such that |F | = p and Q/F is elemen-
tary abelian. Then Φ(Q) ≤ F , and (iii) follows. ¤

By [12] and [13], Moufang p-loops are nilpotent. By [20], conjugacy closed p-loops
are nilpotent. We therefore have:

Corollary 2.4. Let Q be a small Frattini loop that is Moufang or conjugacy closed.
Then Q is central small Frattini.

Lemma 2.5. Every two-element normal subloop is central.

Proof. Let H = {1, h} be a normal subloop of Q. Since every inner mapping ϕ of Q
fixes H globally and ϕ(1) = 1, we have ϕ(h) = h. But Z(Q) = {x ∈ Q; ϕ(x) = x for
every inner mapping ϕ}, so H ≤ Z(Q) follows. ¤

Hence, a 2-loop Q is symplectic precisely when it possesses a normal subloop F of
order 2 such that Q/F is an elementary abelian group.
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2.4. Conjugacy closed loops and symmetry of the associator mapping. Condi-
tions relating the associator and commutator have been investigated already by Bruck
[2], in an analogy to the commutator calculus of group theory. The condition

(2.4) 2[x, y] = [x, y, x− y]

is very natural for symplectic conjugacy closed p-loops, cf. Lemma 2.8, and it will play
an important role in our investigation of code loops.

We start with a characterization of conjugacy closed loops in terms of associators and
commutators, due to Kinyon, Kunen and Phillips:

Theorem 2.6 (Lemma 2.8 of [20]). A loop Q is conjugacy closed if and only if the
associator is a symmetric function of its arguments and all commutators are in the
nucleus of Q.

Since the commutators are in fact central in loops Vθ, by Lemma 2.2, we conclude
that symplectic p-loops are conjugacy closed if and only if the associator mapping is
symmetric.

Furthermore, by [7, Theorem 4.4 and Corollary 4.5], in any conjugacy closed loop of
nilpotency class two we have [u, v, w] = [uv,w][u,w]−1[v, w]−1. Hence

(2.5) A(u, v, w) = C(u + v, w)− C(u,w)− C(v, w)

holds in a symplectic p-loop with symmetric associator. This equation already hints at
combinatorial polarization (see below).

For p odd, symplectic conjugacy closed p-loops were characterized by Drápal [8] by
means of modifications of symplectic abelian p-groups:

Theorem 2.7 (Theorem 7.1 of [8]). Let p be an odd prime, and let (G,+) be an abelian
group containing a subgroup F of order p such that V = G/F is an elementary abelian
group. Let f : V 3 → F be a symmetric trilinear form, and let g : V 2 → F be an
alternating bilinear form. Define a new multiplication ◦ on G by

x ◦ y = x + y + f(x + F, x + F, y + F )/2 + g(x + F, y + F ).

Then (G, ◦) = G[f, g] is a symplectic conjugacy closed p-loop. Furthermore, every sym-
plectic conjugacy closed p-loop is of the form G[f, g] for some G, f , g as above.

The group (G,+) from Theorem 2.7 is either an elementary abelian p-group, or it is
the direct product of an elementary abelian p-group with the cyclic group of order p2.

For a loop element x and an integer n, define the left nth power x(n) of x by x(n) =
Ln

x(1). For instance, x(4) = x(x(xx)).

Lemma 2.8. Let p be an odd prime, and let G, F , V = G/F , f , g and Q = G[f, g] be
as in Theorem 2.7. Then:

(i) x(p) = px for every x ∈ Q.
(ii) (G,+) is an elementary abelian p-group if and only if x(p) = 0 for every x ∈ Q.
(iii) [x, y, z] = f(x, y, z) for every x, y, z ∈ Q.
(iv) Q satisfies 2[x, y] = [x, y, x− y] if and only if g = 0.
(v) If (G,+) is elementary abelian then Q = Vθ, where θ : V 2 → F is given by

θ(u, v) = f(u, u, v)/2 + g(u, v).

Proof. Induction on k shows that the left translation Lx in Q satisfies

Lk
x(y) = kx + y + kh(x, y) +

(
k

2

)
h(x, x),
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where h(u, v) = f(u, u, v)/2 + g(u, v). In particular, Lp
x(y) = px + y and x(p) = Lp

x(0) =
px, since im(h) ⊆ F and F is of odd order p. This proves (i) and (ii).

Since g(x, y) + g(x + y, z) = g(y, z) + g(x, y + z), direct calculation yields

[x, y, z] = (f(x, x, y) + f(x + y, x + y, z)− f(y, y, z)− f(x, x, y + z))/2 = f(x, y, z),

proving (iii).
As g(x, y) = −g(y, x), we have

[x, y] = 2g(x, y) + (f(x, x, y)− f(y, y, x))/2 = 2g(x, y) + f(x, y, x− y)/2.

Using this formula and (iii), we see that (2.4) holds if and only if g = 0, establishing
(iv).

Assume that (G,+) is an elementary abelian p-group, i.e., G = F × V . Since f , g
are defined modulo F and their images are contained in F , the multiplication formula
in G[f, g] becomes

(a, u) ◦ (b, v) = (a + b + f(u, u, v)/2 + g(u, v), u + v),

proving (v). ¤

2.5. Combinatorial polarization and n-applications. Combinatorial polarization
has been introduced by Ward [31]. Proofs of all results mentioned in this subsection can
be found either in [31] or in [9].

The notion of an n-application was developed by Ferrero and Micali [11] as a gener-
alization of quadratic forms, which are precisely 2-applications. n-applications were
studied (especially the question whether every n-application must be a polynomial
mapping—the answer is “no”) in a series of four papers by Prószyński [27]–[28].

Let V be a vector space over F , and P : V → F a mapping satisfying P (0) = 0. For
n ≥ 1, the nth derived form ∆nP : V n → F of P is defined by

(2.6) ∆nP (u1, . . . , un) =
∑

{i1,...,im}⊆{1,...,n}
(−1)n−mP (ui1 + · · ·+ uim),

where the summation runs over all nonempty subset of {1, . . . , n}.
Then ∆nP is clearly a symmetric form for every n > 1, and it is not hard to see that

the defining identity (2.6) is equivalent to the recurrence relation

(2.7) ∆nP (u, v, w3, . . . , wn) = ∆n−1P (u + v, w3, . . . , wn)

−∆n−1P (u,w3, . . . , wn)−∆n−1P (v, w3, . . . , wn).

We say that P has combinatorial degree n if ∆nP 6= 0 and ∆n+1P = 0. It is clear
from (2.7) that P has combinatorial degree n if and only if ∆nP 6= 0 is a symmetric
n-additive form. In particular, when F is a prime field, P has combinatorial degree n if
and only if ∆nP 6= 0 is a symmetric n-linear form.

A mapping P : V → F is a polynomial mapping if with respect to some basis
{e1, . . . , en} of V (and hence with respect to any basis of V ) we have P (

∑
λiei) ∈

F [λ1, . . . , λn]. A polynomial mapping is said to be reduced if each of its exponents is
smaller than |F |.

Recall that all algebras in this paper are finite. The Lagrange interpolation theorem
therefore implies that every mapping F → F can be identified with a unique reduced
polynomial over F , and an induction on the dimension of V shows that the same con-
clusion holds for every mapping V → F , cf. [9].
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By a result of [31], the combinatorial degree of a reduced polynomial mapping over
Fp is equal to its polynomial degree. (The combinatorial degree of polynomial mappings
can be easily calculated over any field, cf. [30] or [9].)

We say that P : V → F is an n-application if ∆nP : V n → F is a symmetric n-linear
form, and

P (λu) = λnP (u)

for every λ ∈ F , u ∈ V .
We call a symmetric form f : V n → F characteristic, a term we coined in [9], if

f(u1, . . . , un) = 0 whenever ui1 = · · · = uip for some 1 ≤ i1 < · · · < ip ≤ n, where
p = char(F ).

The following three theorems were obtained (more generally) in [9]:

Theorem 2.9. Let V be a vector space over F , n ≥ 1 and P : V → F , P (0) = 0. Then
∆nP : V n → F is a characteristic form.

Theorem 2.10. A reduced polynomial mapping P : V → F satisfies P (λu) = λnP (u)
for every λ ∈ F , u ∈ V if and only if the degree of every monomial of P is congruent to
n modulo |F | − 1.

Theorem 2.11. Let {e1, . . . , ed} be a basis of V over Fp and let f : V n → Fp be a
characteristic n-linear form. Define P : V → Fp by

P (
∑

λiei) =
∑

0≤ti<p, t1+···+td=n

λt1
1 · · ·λtd

d

t1! · · · td! f(t1 ∗ e1, . . . , td ∗ ed),

where ti ∗ ei means that ei is repeated as an argument of f precisely ti times.
Then P is a reduced homogeneous polynomial of degree n (and hence an n-application)

satisfying ∆nP = f .

Let us have a closer look at the case n = 3:

Proposition 2.12. Let {e1, . . . , ed} be a basis of V over Fp and let f : V 3 → Fp be a
characteristic trilinear form.

(i) If p > 3, there is a unique 3-application P : V → Fp satisfying ∆3P = f , namely

P (
∑

λiei) =
∑

i<j<k

λiλjλkf(ei, ej , ek) +
1
2

∑

i6=j

λ2
i λjf(ei, ei, ej) +

1
6

∑

i

λ3
i f(ei, ei, ei).

(ii) If p = 3, then P : V → Fp defined by

P (
∑

λiei) =
∑

i<j<k

λiλjλkf(ei, ej , ek) +
1
2

∑

i 6=j

λ2
i λjf(ei, ei, ej)

is a 3-application satisfying ∆3P = f , and any other 3-application R : V → Fp

satisfying ∆3R = f differs from P by a linear polynomial.
(iii) If p = 2, then P : V → Fp defined by

P (
∑

λiei) =
∑

i<j<k

λiλjλkf(ei, ej , ek)

is a 3-application satisfying ∆3P = f , and any other 3-application R : V → Fp

satisfying ∆3R = f differs from P by a quadratic polynomial.
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Proof. The three formulae are special cases of the general formula in Theorem 2.11,
where we use the fact that f(u, u, u) = 0 when p ≤ 3 and f(u, u, v) = 0 when p = 2.

Assume that R : V → Fp is another 3-application satisfying ∆3R = f . By Theorem
2.10, every monomial of R has degree congruent to 3 modulo p − 1. Since f = ∆3R is
trilinear, R has (combinatorial) degree at most 3.

Suppose that p > 3. It follows that every monomial of R has degree 3. Then R must
coincide with P , else R − P is a cubic polynomial, and so 0 = f − f = ∆3R −∆3P =
∆3(R− P ) 6= 0, a contradiction.

Now suppose that p = 3. It follows that every monomial of R has degree 3 or 1, and
we can argue as above that the cubic monomials of R and P coincide.

Similarly for p = 2. ¤

2.6. Linear codes and polarization. A linear code, often just a code, is a subspace of
a vector space. Let U ≤ Fn

p be a code. The Hamming weight |u| of u = (u1, . . . , un) ∈ U
is the number of nonzero coordinates ui of u.

A binary code U is said to be of level r if 2r divides |u| for every u ∈ U . Binary codes
of level 2 are known as doubly even. A code U is self-orthogonal if

∑
uivi = 0 for every

u, v ∈ U .
Given two vectors u, v in Fn

2 , we denote by u∩ v the vector w such that wi = 1 if and
only if ui = 1 = vi.

Here is the crucial link between binary vectors and polarization:

Lemma 2.13 (Lemma 11.8 of [1]). Let U be a doubly even code and P : U → F2 a
mapping defined by P (u) = |u|/4 mod 2. Then

∆2P (u, v) = |u ∩ v|/2 mod 2,

∆3P (u, v, w) = |u ∩ v ∩ w| mod 2

for every u, v, w ∈ U .

And here is the universality of binary codes with respect to polarization:

Theorem 2.14 (Theorem 3.2 of [30]). Let V be a vector space over F2 and let P : V →
F2 be a mapping of combinatorial degree r+1. Then there is a binary code U isomorphic
to V (as a vector space) and of level r such that P (u) = |u|/2r mod 2 for every u ∈ U .

In fact, we will only need a special case of Theorem 2.14 with r = 2, which has been
established already in [3].

3. The definitions

We are now going to define code loops in four ways. The main result of this paper is
to show that the four definitions are equivalent. Recall that x(n) stands for Ln

x(1).

Definition 3.1 (Code loops via polarization). Let V be a vector space over Fp, θ :
V 2 → Fp a cocycle, and Q = Vθ. Suppose that there is P : V → Fp such that Aθ = ∆3P ,
Cθ(u, v) = ∆2P (−u, v), and P (λu) = λ3P (u) for every λ ∈ Fp and u, v ∈ V . If p ≥ 3,
assume that x(p) = 1 for every x ∈ Q. Then Q is a code loop via polarization.

Definition 3.2 (Code loops via code). Let U be a code over Fp. If p = 2, assume that
U is doubly even. If p = 3, assume that

∑
ui = 0 for every u = (u1, . . . , un) ∈ U .
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If p = 2, let θ : U2 → Fp be a cocycle satisfying

θ(u, u) =
|u|
4

mod 2,

θ(u, v) + θ(v, u) =
|u ∩ v|

2
mod 2,

θ(u, v) + θ(u + v, w) + θ(v, w) + θ(u, v + w) = |u ∩ v ∩ w| mod 2

for every u, v, w ∈ U . If p ≥ 3, define θ : U2 → Fp by θ(u, v) =
∑

u2
i vi.

Then Q = Uθ is a code loop via code.

Definition 3.3 (Code loops via conjugacy closed loop). Let Q be a symplectic conjugacy
closed p-loop satisfying 2[x, y] = [x, y, x − y]. If p ≥ 3, assume that x(p) = 1 for every
x ∈ Q. If p = 3, assume also that [x, x, x] = 1 for every x ∈ Q. Then Q is a code loop
via conjugacy closed loop.

For odd primes we also define:

Definition 3.4 (Odd code loops via form). Let V be a vector space over Fp, p ≥ 3.
Let f : V 3 → Fp be a characteristic trilinear form, and let θ : V 2 → Fp be defined by
θ(u, v) = f(u, u, v)/2. Then Q = Vθ is an odd code loop via form.

4. Even code loops

Using existing literature, it is not difficult to establish the equivalence of the three
definitions of even code loops. We present a short proof with several novel ideas, and
we also show that even code loops can be characterized by seemingly weaker conditions.

Throughout this section, let p = 2.
We start with an observation due to Aschbacher, cf. [1, Lemmas 12.11 and 12.18].

Lemma 4.1. Let Q = Vθ. Then A(u, u, v) = 0 = A(u, v, v) holds if and only

(4.1) θ(u, u + v) = θ(u, u) + θ(u, v), and θ(u + v, v) = θ(u, v) + θ(v, v).

Moreover, when (4.1) holds then C = ∆2P , where P (u) = θ(u, u).

Proof. By Lemma 2.2, A(u, u, v) = 0 = A(u, v, v) is equivalent to (4.1). Then

θ(u + v, u) = θ(u + v, (u + v) + v) = θ(u + v, u + v) + θ(u + v, v),

so

(4.2) θ(u + v, u + v) = θ(u + v, v) + θ(u + v, u) = θ(u, v) + θ(v, v) + θ(u, u) + θ(v, u).

Thus, with P (u) = θ(u, u), we have ∆2P (u, v) = θ(u + v, u + v) + θ(u, u) + θ(v, v) =
θ(u, v) + θ(v, u) = C(u, v), again by Lemma 2.2. ¤

The following result shows that the associator mapping is obtained by polarization
under very weak assumptions:

Lemma 4.2. Let Q = Vθ and assume that A satisfies A(u, u, v) = A(u, v, v) = 0 and
A(u, v, w) = A(u,w, v) for every u, v, w ∈ V . Then A = ∆3P , where P (u) = θ(u, u).

Proof. Let P (u) = θ(u, u). Then the equality ∆3P = A holds if and only if

(4.3) θ(u, u) + θ(v, v) + θ(w, w) + θ(u + v, u + v) + θ(u + w, u + w)

+θ(v+w, v+w)+θ(u+v+w, u+v+w) = θ(u, v)+θ(u+v, w)+θ(v, w)+θ(u, v+w).
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From (4.2), we have

θ(u + v, u + v) = θ(u, u) + θ(u, v) + θ(v, u) + θ(v, v),

θ(u + w, u + w) = θ(u, u) + θ(u,w) + θ(w, u) + θ(w,w),

θ(u + v + w, u + v + w) = θ(u, u) + θ(u, v + w) + θ(v + w, u) + θ(v + w, v + w).

Upon substituting these three equalities into the left hand side of (4.3) and canceling
as many summands as possible, we obtain

θ(u,w) + θ(v, u) + θ(w, u) + θ(v + w, u) = θ(v, w) + θ(u + v, w).

After adding θ(v, u + w) to both sides and rearranging, we get

θ(v, u)+θ(v+u,w)+θ(u,w)+θ(v, u+w) = θ(v, w)+θ(v+w, u)+θ(w, u)+θ(v, u+w),

which is merely A(v, u, w) = A(v, w, u). ¤
Proposition 4.3 (Even code loops via polarization). Let V be a vector space over F2

and let θ : V 2 → F2 be a cocycle. The following conditions are equivalent for Q = Vθ:
(i) Q is an even code loop via polarization, i.e., there is P : V → F2 such that

P (0) = 0, C = ∆2P , and A = ∆3P .
(ii) A = ∆3P , where P (u) = θ(u, u).
(iii) A satisfies A(u, u, v) = A(u, v, v) = 0 and A(u, v, w) = A(u,w, v).
(iv) A is a characteristic trilinear form.
(v) Q is Moufang.
(vi) Q is extra.

Proof. All derived forms are characteristic by Theorem 2.9, so (i) implies (iii). By
Lemma 4.2, (iii) implies (ii). When (ii) holds then C = ∆2P by Lemma 4.1, and
P (0) = θ(0, 0) = 0, proving (i). Hence (i), (ii), (iii) are equivalent.

(v) is equivalent to (vi) since extra loops are precisely Moufang loops with squares in
the nucleus, by [4, Corollary 2], and we have (a, u)(a, u) = (θ(u, u), 0) ∈ Z(Q).

(ii) ⇔ (v): Recall that ∆3P (u, v, w) = ∆2P (u + v, w) + ∆2P (u, w) + ∆2P (v, w),
C(u, v) = θ(u, v) + θ(v, u), and A(u, v, w) = θ(u, v) + θ(u + v, w) + θ(v, w) + θ(u, v + w).
When (ii) holds then C = ∆2P by Lemma 4.1, and so ∆3P = A is equivalent to
C(u + v, w) + C(u,w) + C(v, w) = A(u, v, w), which is

(4.4) θ(w, u + v) + θ(u, w) + θ(w, u) + θ(w, v) = θ(u, v) + θ(u, v + w).

With x = (a, u), y = (c, w), z = (b, v), the Moufang identity x(y(xz)) = ((xy)x)z
becomes

(4.5) θ(u, v) + θ(w, u + v) + θ(u, u + v + w) = θ(u,w) + θ(u + w, u) + θ(w, v).

Now, Lemma 4.1 can be used whether (ii) or (v) is assumed, since Moufang loops are
diassociative. We therefore have

θ(u, u + v + w) = θ(u, u) + θ(u, v + w), θ(u + w, u) = θ(u, u) + θ(w, u)

in either case, and these equations establish the equivalence of (4.4) and (4.5).
(v)⇒ (iv): Assume that (v) holds. Then A = ∆3P with P (u) = θ(u, u), by (ii), and so

A is a characteristic form. It remains to show that A is trilinear. By [2, Lemma VII.2.2],
the right inner mapping R(x, y) is a pseudoautomorphism with companion [x, y]. Since
commutators are central in Vθ, R(x, y) is an automorphism. Using centrality of associa-
tors, we also note that R(x, y)t = (tx ·y)(xy)−1 = (t ·xy)(xy)−1[t, x, y] = t[t, x, y], and so
(rs)[rs, x, y] = R(x, y)(rs) = R(x, y)r·R(x, y)s = r[r, x, y]·s[s, x, y] = (rs)[r, x, y][s, x, y].
Upon canceling rs, we conclude that the associator mapping is trilinear.



CODE LOOPS IN BOTH PARITIES 11

Since (iv) trivially implies (iii), we are through. ¤
We are now ready for the characterization of even code loops:

Theorem 4.4 (Even code loops). Definitions 3.1–3.3 of even code loops are equivalent.

Proof. Let Q = Uθ be an even code loop via code. By Lemma 2.13, P : U → F2 defined
by P (u) = |u|/4 mod 2 satisfies ∆2P (u, v) = |u ∩ v|/2 mod 2 and ∆3P (u, v, w) =
|u ∩ v ∩ w| mod 2. By Lemma 2.2, we then have C = ∆2P , A = ∆3P , so Q is an even
code loop via polarization.

Let Q = Vθ be an even code loop via polarization. Then the associator mapping
is symmetric, commutators are in the nucleus, and hence Q is a symplectic conjugacy
closed 2-loop by Theorem 2.6. Since Q is Moufang by Proposition 4.3, it is diassociative,
and hence the condition (2.4) holds trivially. Thus Q is an even code loop via conjugacy
closed loop.

Finally, assume that Q is an even code loop via conjugacy closed loop. Since Q is
a symplectic 2-loop, Q = Vθ for some θ. By Theorem 2.6, A is symmetric. By (2.5),
A(u, u, v) = C(0, v)−C(u, v)−C(u, v) = 0, so A is characteristic. Proposition 4.3 then
implies that A = ∆3P , C = ∆2P , and P (0) = 0 for some P : V → F2 of combinatorial
degree at most 3. By [3] or by Theorem 2.14, there is a doubly even code U isomorphic
to V such that P (u) = |u|/4 mod 2. As above, we calculate ∆2P (u, v) = |u ∩ v|/2
mod 2, ∆3P (u, v, w) = |u ∩ v ∩ w| mod 2, and so Q is an even code loop via code by
Lemma 2.2. ¤

5. A universal code construction

In order to show the equivalence of Definitions 3.1–3.3 for even code loops, we needed
Theorem 2.14 (with r = 2) to obtain doubly even codes with prescribed Hamming
weights of codewords and their intersections. Theorem 5.6 below will play an analogous
role in the odd case.

Lemma 5.1. For b1, . . . , bp−1 ∈ Fp, the system of equations

11a1 + 21a2 + · · · + (p− 1)1ap−1 = b1

12a1 + 22a2 + · · · + (p− 1)2ap−1 = b2
...

. . .
...

1p−1a1 + 2p−1a2 + · · · + (p− 1)p−1ap−1 = bp−1

has a unique solution a1, . . . , ap−1 ∈ Fp.

Proof. The determinant of the system is essentially a Vandermonde determinant,∣∣∣∣∣∣∣∣∣

11 21 · · · (p− 1)1

12 22 · · · (p− 1)2
...

. . .
1p−1 2p−1 · · · (p− 1)p−1

∣∣∣∣∣∣∣∣∣
= 1 · 2 · · · (p− 1) ·

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
11 21 · · · (p− 1)1
...

. . .
1p−2 2p−2 · · · (p− 1)p−2

∣∣∣∣∣∣∣∣∣
,

and thus is equal to 1 · 2 · · · (p− 1) ·∏0<i<j<p(i− j) 6≡ 0 (mod p). ¤
For a field F let F ∗ = F \ {0} denote the multiplicative group of F .

Lemma 5.2. Given b1, . . . , bp−1 ∈ Fp, there exists an n ≤ (p−1)2 and x1, . . . , xn ∈ F∗p
such that

(5.1)
n∑

i=1

xr
i = br
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holds for every 1 ≤ r ≤ p − 1. Moreover, we can assume that each i ∈ F∗p occurs less
than p times among x1, . . . , xn, and under this assumption n is uniquely determined
and x1, . . . , xn are uniquely determined up to their order.

Proof. Assume that x1, . . . , xn satisfy (5.1) for every 1 ≤ r ≤ p−1. Should some i ∈ F∗p
occur at least p times among x1, . . . , xn, we could delete p occurrences of i from x1, . . . ,
xn without affecting the sums (5.1). We can therefore assume that each i ∈ F∗p occurs
among x1, . . . , xn precisely ai times, where 0 ≤ ai < p. Consequently, n ≤ (p− 1)2.

With ai as above, the condition (5.1) is equivalent to

1ra1 + 2ra2 + · · ·+ (p− 1)rap−1 = br

for every 1 ≤ r ≤ p− 1, and we are done by Lemma 5.1. ¤

Let A = (aij) be an n×m matrix and B an r×s matrix. Let A⊗B be their Kronecker
product, that is, the nr ×ms block matrix




a11B · · · a1mB
...

. . .
...

an1B · · · anmB


 .

Denote by A⊗t the Kronecker power A⊗ · · · ⊗A, where A appears t times.
The following result is well known and easy to prove, cf. [22, 2.4.13]:

Lemma 5.3. Let A be an n × n matrix and B an m × m matrix. Then |A ⊗ B| =
|A|m · |B|n.

Corollary 5.4. Let A be an n× n matrix and t ≥ 1. Then |A⊗t| = |A|tnt−1
.

Lemma 5.2 is a special case (d = 1) of this result:

Lemma 5.5. Let d ≥ 1, and for every 1 ≤ λ1, . . . , λd ≤ p− 1 let bλ1,...,λd
∈ Fp. Then

there exists an n ≤ (p− 1)d+1 and x1 = (x1,i), . . . , xd = (xd,i) ∈ (F∗p)n such that

(5.2)
n∑

i=1

xλ1
1,i · · ·xλd

d,i = bλ1,...,λd

for every 1 ≤ λ1, . . . , λd ≤ p − 1. Moreover, we can assume that each d-tuple
(j1, . . . , jd) ∈ (F∗p)d appears less than p times among (x1,i, . . . , xd,i), 1 ≤ i ≤ n, and
under this assumption n is uniquely determined and x1, . . . , xd are uniquely determined
up to a simultaneous permutation of coordinates 1, . . . , n.

Proof. Assume that x1, . . . , xd satisfy (5.2) for every 1 ≤ λ1, . . . , λd ≤ p − 1. Should
some j = (j1, . . . , jd) ∈ (F∗p)d occur at least p times among (x1,i, . . . , xd,i), we could
delete p corresponding coordinates from each xk without affecting the sums (5.2). We
can therefore assume that each j ∈ (F∗p)d occurs among (x1,i, . . . , xd,i) precisely aj times,
where 0 ≤ aj < p. Consequently, n ≤ (p− 1)d+1.
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Just as in the proof of Lemma 5.2, we can write down the system of (p − 1)d linear
equations in variables aj . For d = 2, we get, with r = p− 1,

1111a1,1 + · · ·+ 11r1a1,r + · · ·+ r111ar,1 + · · ·+ r1r1ar,r = b1,1

. . . . . . . . .
...

111ra1,1 + · · ·+ 11rra1,r + · · ·+ r11rar,1 + · · ·+ r1rrar,r = b1,r

. . . . . . . . .
...

1r11a1,1 + · · ·+ 1rr1a1,r + · · ·+ rr11ar,1 + · · ·+ rrr1ar,r = br,1

. . . . . . . . .
...

1r1ra1,1 + · · ·+ 1rrra1,r + · · ·+ rr1rar,1 + · · ·+ rrrrar,r = br,r.

The coefficients in the system correspond to the matrix A⊗A, where

A =




11 · · · r1

...
. . .

...
1r · · · rr


 .

For a general d ≥ 1, it is now easy to see that we obtain a system with coefficient matrix
A⊗d. We know from the proof of Lemma 5.1 that |A| 6≡ 0 (mod p), and thus |A⊗d| 6≡ 0
(mod p) by Corollary 5.4. ¤

Lemma 5.5 produces vectors x1, . . . , xd of optimal (shortest possible) length solving
(5.2) for every 1 ≤ λ1, . . . , λd ≤ p− 1. We now allow λi = 0, too, but we do not claim
anymore that the construction is optimal. While evaluating (5.2) with zero exponents,
we adopt the convention 00 = 1.

Theorem 5.6 (Universal code construction). Let d ≥ 1, and for every 0 ≤ λ1, . . . ,
λd ≤ p − 1 let bλ1,...,λd

∈ Fp. Then there exists an n > 0 and vectors x1 = (x1,i), . . . ,
xd = (xd,i) ∈ Fn

p such that (5.2) holds for every 0 ≤ λ1, . . . , λd ≤ p − 1. It is possible
to choose x1, . . . , xd so that they are linearly independent and hence generate a code of
length n and dimension d.

Proof. We will build the vectors x1, . . . , xd inductively, starting with empty vectors x1,
. . . , xd, or with some linearly independent vectors x1, . . . , xd, if linear independence is
desired.

Given a subset I of X = {1, . . . , d}, we say that (5.2) holds for I if it holds for every
0 ≤ λ1, . . . , λd ≤ p− 1 such that λi 6= 0 whenever i ∈ I. Given a subset I of the power
set 2X , we say that (5.2) holds for I if it holds for every I ∈ I. Note that, for trivial
reasons, (5.2) holds for I = ∅.

For the inductive step, assume that (5.2) holds for some I ⊆ 2X . Further assume
that I is an upset in 2X with respect to inclusion, that is, if I ∈ I and I ⊆ J ∈ 2X then
J ∈ I. Let I be a maximal subset of X such that I 6∈ I. We now extend the vectors x1,
. . . , xd so that (5.2) holds for the upset I ∪ {I}:

Extend all vectors xi with i 6∈ I by suitably many zeros. This will guarantee that
(5.2) remains valid for I, no matter how {xi; i ∈ I} will be extended later, since for
every J ∈ I there is i ∈ J \ I. By Lemma 5.5, we can extend the vectors {xi; i ∈ I} so
that (5.2) holds for I, too.

Starting with I = ∅ and repeating the inductive step 2d times in any suitable order
(the first step will therefore be with I = X), we conclude that (5.2) holds for I = 2X . ¤
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6. Odd code loops: Forms versus codes

In this section we show that odd code loops via forms are precisely odd code loops
via codes.

Lemma 6.1. Let Q = Uθ be an odd code loop via code. Then Q is an odd code loop via
form.

Proof. Define f : U3 → Fp by f(u, v, w) = 2
∑

uiviwi. Then θ(u, v) =
∑

u2
i vi =

f(u, u, v)/2. Moreover, f is clearly symmetric and trilinear. When p = 3, we have
f(u, u, u) =

∑
u3

i =
∑

ui = 0 by assumption on U , so f is characteristic. ¤
To prove the converse of Lemma 6.1, we need to construct a code from a characteristic

trilinear form. The following easy lemma shows that it suffices to do this on a basis:

Lemma 6.2. Let Q = Vθ be an odd code loop via form f : V 3 → Fp, with θ(u, v) =
f(u, u, v)/2. Let {e1, . . . , ed} be a basis of V , and let ϕ : V → V ′, ej 7→ xj be an
isomorphism of vector spaces. Assume that frst = f(er, es, et) =

∑
i xr,ixs,ixt,i for every

1 ≤ r ≤ s ≤ t ≤ d. Then θ(u, v) = (1/2)
∑

i(ϕ(u)i)2ϕ(v)i for every u, v ∈ V .

Proposition 6.3. Odd code loops via forms are precisely odd code loops via codes.

Proof. In view of Lemma 6.1, it remains to show that odd code loops via forms are odd
code loops via codes.

Let Q = Vθ, f , {e1, . . . , ed}, frst be as in Lemma 6.2. By the same lemma, our task is
to construct a basis x1, . . . , xd of a code over Fp so that frst =

∑
i xr,ixs,ixt,i for every

1 ≤ r ≤ s ≤ t ≤ d. In other words, we need to construct linearly independent vectors
x1, . . . , xd so that∑

i

xr,ixs,ixt,i = frst, for 1 ≤ r < s < t ≤ d,

∑

i

x2
r,ixs,i = frrs,

∑

i

xr,ix
2
s,i = frss, for 1 ≤ r < s ≤ d,(6.1)

∑

i

x3
r,i = frrr,

∑

i

x2
r,i = 0, for 1 ≤ r ≤ d.

When p > 3, this is immediately accomplished by Theorem 5.6. When p = 3, we
have

∑
i x

3
r,i =

∑
i xr,i, and thus instead of

∑
i x

3
r,i = frrr we demand

∑
i xr,i = frrr in

(6.1). So even when p = 3 we are done by Theorem 5.6, and the resulting code satisfies∑
i xr,i = frrr = 0, since f is characteristic. ¤
Note that we could construct a self-orthogonal code in the proof of Proposition 6.3,

if needed, by imposing the additional condition
∑

i xr,ixs,i = 0 for 1 ≤ r < s ≤ d.

6.1. Compatibility with Richardson’s definition. In [29], Richardson defined odd
code loops and suggested a generalization. Here is his definition:

Let U be a self-orthogonal code over Fp, and let z ∈ U be such that:
(i) all coordinates of z are nonzero,
(ii) z is invariant under all permutation matrices found in the automorphism group

of U .
For u, v ∈ U , let θ(u, v) =

∑
z−1
i u2

i vi. Then Q = (U, z) = Uθ defined on Fp×U by (2.1)
is an odd code loop in the sense of Richardson.

Lemma 6.4. Every odd code loop in the sense of Richardson is an odd code loop via
form.
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Proof. Let Q = (U, z) be an odd code loop in the sense of Richardson. Consider g : U3 →
Fp, g(u, v, w) =

∑
z−1
i uiviwi. Then θ(u, v) = g(u, u, v), and g is symmetric trilinear.

When p = 3, we have g(u, u, u) =
∑

i z
−1
i u3

i =
∑

i ziui = 0, since U is self-orthogonal,
and so g is characteristic. ¤

But not every odd code loop via form is an odd code loop in the sense of Richardson,
as Example 6.5 shows.

Example 6.5. Let F = F5, α a generator of F ∗, and V a 3-dimensional vector space
over F with basis {e1, e2, e3}. Let f : V 3 → F be the symmetric trilinear form defined
by

f111 = α, f112 = α3, f113 = 0, f122 = 0, f123 = 0,
f133 = 1, f222 = 1, f223 = α, f233 = 0, f333 = 1,

where we write fijk instead of f(ei, ej , ek). Then one can verify (by computer) that f
satisfies f(v, v, v) 6= 0 for every 0 6= v ∈ V .

Let Q = Vθ, where θ(u, v) = f(u, u, v)/2. Then Q is an odd code loop via form such
that Aθ(v, v, v) = f(v, v, v) 6= 0 for every 0 6= v ∈ V .

Let (U, z) be an odd code loop in the sense of Richardson, and let g(u, v, w) =∑
z−1
i uiviwi. Then (U, z) is an odd code loop via form, and we therefore have A(z, z, z) =

g(z, z, z) =
∑

z2
i = 0 by Lemma 2.8 (iii). Hence Q is not isomorphic to (U, z).

On the other hand, Richardson suggested to generalize his definition to encompass
all loops Q = Vθ with θ(u, v) = f(u, u, v), where f : V 3 → Fp is symmetric trilinear.
This generalization coincides with our definition via form when p > 3, but when p = 3
we impose the additional constraint f(u, u, u) = 0 for every u, i.e., we demand that
f is characteristic. In view of Theorem 2.9, this constraint is necessary if we wish to
maintain a connection to combinatorial polarization.

We conclude this section by showing that the special vector z in Richardson’s defini-
tion is in fact not needed, since the all-1 vector can always take its place, possibly on
account of a longer self-orthogonal code.

Recall that the radical of a symmetric trilinear form f : V 3 → Fp is the subspace
Rad(f) = {u ∈ V ; f(u, v, w) = 0 for every v, w ∈ V }. In Richardon’s definition,
the codeword z belongs to the radical of the associated form g(u, v, w) =

∑
z−1
i uiviwi.

Indeed, g(z, u, v) =
∑

uivi = 0 thanks to self-orthogonality.

Lemma 6.6. Let V be a self-orthogonal code with basis {e1, . . . , ed+1}, f : V 3 → Fp a
characteristic trilinear form, and z ∈ V ∩ Rad(f). Then there is a self-orthogonal code
V ′ containing the all-1 vector 1, and there is an isomorphism ϕ : V → V ′ such that
ϕ(z) = 1, ϕ(ei) = xi for every i, and

∑
i xr,ixs,ixt,i = f(er, es, et) for every 1 ≤ r, s,

t ≤ d + 1.

Proof. Without loss of generality, let z = ed+1. We need to construct linearly indepen-
dent vectors x1, . . . , xd+1 generating a self-orthogonal code such that (6.1) holds and
xd+1 = 1. By Theorem 5.6, there exist vectors x1, . . . , xd satisfying (6.1),

∑
i xr,ixs,i = 0

for every 1 ≤ r < s ≤ d, and
∑

i xr,i = 0 for every 1 ≤ r ≤ d. (When p = 3 we use the
assumption frrr = 0.)

Having xd+1 = 1 imposes additional conditions on the vectors x1, . . . , xd. Namely,
the first equation of (6.1) yields

∑
i xr,ixs,i = frs(d+1) = 0 (which already holds), the

second yields
∑

i x
2
r,i = frr(d+1) = 0 (which already holds), the third yields

∑
i xr,i =

fr(d+1)(d+1) = 0 (which already holds), the fourth yields
∑

i x
3
d+1,i = f(d+1)(d+1)(d+1) = 0,

and the fifth equation of (6.1) yields
∑

i x
2
d+1,i = 0. To make xd+1 orthogonal to all
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other basis vectors, we must have
∑

xr,i = 0 for every 1 ≤ r ≤ d (which already holds).
To make xd+1 self-orthogonal, we demand

∑
i xd+1,i = 0. We accomplish

∑
i xd+1,i =∑

i x
2
d+1,i =

∑
i x

3
d+1,i = 0 at once by extending x1, . . . , xd by suitably many zeros so

that the length of V ′ is divisible by p. ¤

7. Odd code loops: Forms versus polarization

Lemma 7.1. Let p ≥ 3, and let Q = Vθ be such that the associator map A is a
characteristic trilinear form. Let P be the unique homogeneous cubic polynomial V →
Fp satisfying ∆3P = A. Then A(u, u, u) = C(2u, u) = 6P (u) and 2∆2P (−u, v) =
A(u, v, u− v) holds for every u, v ∈ V .

Proof. The existence and uniqueness of P follow from Proposition 2.12. We have

A(u, u, u) = θ(u, u) + θ(2u, u)− θ(u, u)− θ(u, 2u) = C(2u, u),

by Lemma 2.2, and

A(u, u, u) = ∆3P (u, u, u) = P (3u)− 3P (2u) + 3P (u) = (27− 3 · 8 + 3)P (u) = 6P (u)

since P is homogeneous and cubic.
Let p > 3. The equality 2∆2P (−u, v) = A(u, v, u− v) holds if and only if

2∆2P (−u, v) = ∆3P (u, v, u− v) = ∆2P (u + v, u− v)−∆2P (u, u− v)−∆2P (v, u− v),

which holds if and only if

2P (−u + v)− 2P (−u)− 2P (v)

= P (2u)−P (u+ v)−P (u− v)−P (2u− v)+P (u)+P (u− v)−P (u)+P (v)+P (u− v)

= P (2u)− P (u + v)− P (2u− v) + P (u− v) + P (v).

Using P (λu) = λ3P (u) again, the above equality is equivalent to

(7.1) 3P (−u + v)− 3P (v)− 6P (u) + P (u + v) + P (2u− v) = 0.

Using A(u, u, u) = 6P (u) and the symmetry and trilinearity of A, we have

3P (−u + v) = (3/6)(−A(u, u, u) + 3A(u, u, v)− 3A(u, v, v) + A(v, v, v)),

−3P (v) = (−3/6)A(v, v, v),

−6P (u) = (−6/6)A(u, u, u),

P (u + v) = (1/6)(A(u, u, u) + 3A(u, u, v) + 3A(u, v, v) + A(v, v, v)),

P (2u− v) = (1/6)(8A(u, u, u)− 12A(u, u, v) + 6A(u, v, v)−A(v, v, v)),

so (7.1) holds.
Let p = 3 and u =

∑
λiei, v =

∑
µiei. By Proposition 2.12 (ii) and P (−u) = −P (u),

we have

2∆2P (−u, v) = 2(P (v − u) + P (u)− P (v))

=
∑

i6=j

A(ei, ei, ej)[(µi − λi)2(µj − λj) + λ2
i λj − µ2

i µj ]

+ 2
∑

i<j<k

A(ei, ej , ek)[(µi − λi)(µj − λj)(µk − λk) + λiλjλk − µiµjµk].
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On the other hand, since A(w,w, w) = 6P (w) = 0, we have

A(u, v, u− v) =
∑

i,j,k

λiµj(λk − µk)A(ei, ej , ek)

=
∑

i6=j

A(ei, ei, ej)[λiµi(λj − µj) + λiµj(λi − µi) + λjµi(λi − µi)]

+
∑

i<j<k

A(ei, ej , ek)[λiµj(λk − µk) + λiµk(λj − µj) + λjµi(λk − µk)

+ λjµk(λi − µi) + λkµi(λj − µj) + λkµj(λi − µi)].

A tedious comparison of the coefficients of A(ei, ei, ej) and A(ei, ej , ek) in the two ex-
pressions then yields 2∆2P (−u, v) = A(u, v, u− v). ¤

Lemma 7.2. Every odd code loop via form is an odd code loop via polarization.

Proof. Assume that Q = Vθ is an odd code loop via form f , θ(u, v) = f(u, u, v)/2. By
Lemma 2.8(ii), x(p) = 1 for every x ∈ Q. Using Lemma 2.8(iii) with g = 0, we get
A = f . By Lemma 7.1, there is a (unique) homogeneous cubic polynomial P : V → Fp

such that ∆3P = A. We therefore have P (λu) = λ3P (u), so it remains to show that
C(u, v) = ∆2P (−u, v), which by Lemma 7.1 is equivalent to 2C(u, v) = A(u, v, u − v).
But we have 2C(u, v) = 2θ(u, v) − 2θ(v, u) = f(u, u, v) − f(v, v, u) = f(u, v, u − v) =
A(u, v, u− v). ¤

Proposition 7.3. Odd code loops via form are precisely odd code loops via polarization.

Proof. It remains to show that an odd code loop Q = Vθ via polarization of P : V → Fp

is an odd code loop via form.
Since A = ∆3P is symmetric, Theorem 2.6 implies that Q is a symplectic conju-

gacy closed p-loop. By Theorem 2.7, Q = G[f, g] for some abelian group (G,+),
symmetric trilinear form f and an alternating bilinear form g. By Lemma 2.8(iii),
f = A = ∆3P is characteristic trilinear, so P is a 3-application. By Proposition
2.12, there is a homogeneous cubic polynomial R : V → Fp that differs from P
by a linear polynomial. Hence ∆3P = ∆3R, ∆2P = ∆2R, and Lemma 7.1 yields
2∆2P (−u, v) = 2∆2R(−u, v) = A(u, v, u − v). We have C(u, v) = ∆2P (−u, v) by as-
sumption, and so 2C(u, v) = A(u, v, u − v). Lemma 2.8(iv) then implies that g = 0.
Since x(p) = 1 for every x ∈ Q, (G,+) is elementary abelian by Lemma 2.8(ii), and we
are done by Lemma 2.8(v). ¤

8. Odd code loops: Forms versus conjugacy closed loops

Proposition 8.1. Odd code loops via form are precisely odd code loops via conjugacy
closed loop.

Proof. When Q = Vθ is an odd code loop via form f , we can view it as the loop G[f, 0] of
Theorem 2.7, where (G, +) = (Fp×U,+) is elementary abelian. By Lemma 2.8, x(p) = 1
for every x ∈ Q, and (2.4) holds. When p = 3, A(x, x, x) = f(x, x, x) = 0. Hence Q is a
code loop via conjugacy closed loop.

Conversely, let Q be an odd code loop via conjugacy closed loop. By Theorem 2.7
and Lemma 2.8, we can assume that Q = Vθ where θ(u, v) = f(u, u, v)/2 + g(u, v), f
is symmetric trilinear and g is alternating bilinear. The assumption [x, x, x] = 1 then
guarantees that A = f is characteristic even when p = 3, and since (2.4) holds, we have
g = 0 by Lemma 2.8. Thus Q is a code loop via form f . ¤
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In summary:

Theorem 8.2 (Odd code loops). The four definitions 3.1–3.4 of odd code loops are
equivalent.

9. Some basic properties of odd code loops

The properties of odd code loops established by Richardson in [29, pp. 1468–9] remain
valid for our odd code loops. In fact, Richardson’s proofs can be used almost verbatim,
accounting merely for a change in notation. We restate them here for the sake of
completeness.

An element of a loop is power-associative if it generates an associative subloop, i.e.,
a group. A loop is power-associative if each of its elements is power-associative.

Lemma 9.1. Let Vθ = F × V be a loop such that A(au, bv, cw) = abcA(u, v, w) for
every a, b, c ∈ F and u, v, w ∈ V . Then x ∈ Vθ is power-associative if and only if
A(x, x, x) = 0.

Proof. If x is power-associative then certainly A(x, x, x) = 0. Conversely, assume that
A(u, u, u) = 0 for some x = (a, u) ∈ V . Since (a, u)(b, v) = (a + b + θ(u, v), u + v), any
element in the subloop generated by x is of the form (a1, a2u), where a1, a2 ∈ F . Now,
A(a2u, b2u, c2u) = a2b2c2A(u, u, u) = 0 for every a2, b2, c2 ∈ F by our assumption, and
so x is power-associative. ¤
Corollary 9.2. When p = 3, odd code loops are power-associative.

Proof. Consider an odd code loop via form f . Then A = f is characteristic, and we are
done by Lemma 9.1. ¤
Lemma 9.3. An odd code loop is commutative if and only if it is an elementary abelian
p-group.

Proof. Let Q = Vθ be an odd code loop via form f . The commutator and associator map-
pings are related according to (2.4). Thus, if Q is associative, it is commutative. Con-
versely, assume that Q is commutative. Then 2θ(u,−v) = A(u, u,−v) = −A(u, u, v) =
−2θ(u, v) = −2θ(v, u) = −2A(v, v, u) = −2A(−v,−v, u) = −2θ(−v, u) = −2θ(u,−v),
so θ(u,−v) = 0 for every u, v ∈ V . ¤
Corollary 9.4. Assume that p > 3. Then an odd code loop is power-associative if and
only if it is an elementary abelian p-group.

Proof. Let Q = Vθ be a power-associative odd code loop. Then 0 = A(u−v, u−v, u−v) =
A(u, u, u)+3A(u, v, v)−3A(u, u, v)−A(v, v, v) = −3A(u, v, u)−3A(u, v,−v) = −6C(u, v)
by (2.4). Hence Q is an elementary abelian p-group by Lemma 9.3. ¤

We conclude this section with a solution to the isomorphism problem for code loops:

Theorem 9.5 (Theorem 12.17 of [1]). Let Vθ, Vϑ be even code loops. Then Vθ is
isomorphic to Vϑ if and only if (Pθ, Cθ, Aθ) is conjugate to (Pϑ, Cϑ, Aϑ) under GL(V ),
that is, there is ϕ ∈ GL(V ) such that Pθ(u) = Pϑ(ϕu), Cθ(u, v) = Cϑ(ϕu, ϕv), and
Aθ(u, v, w) = Aϑ(ϕu, ϕv, ϕw) for every u, v, w ∈ V .

Theorem 9.6 (Theorem 7.2 of [8]). Let Vθ1, Vθ2 be odd code loops via characteristic
trilinear forms f1, f2 : V 3 → Fp, respectively. Then there exists an isomorphism Vθ1 →
Vθ2 that maps Fp × 0 onto Fp × 0 if and only if f1, f2 are similar, that is, there is
ϕ ∈ GL(V ) such that f1(u, v, w) = f2(ϕu, ϕv, ϕw) for every u, v, w ∈ V .
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10. Concluding remarks

10.1. Realizing characteristic trilinear forms as associators of code loops.
When p is odd, every characteristic trilinear form V 3 → Fp can be trivially realized
as the associator of an odd code loop, by Definition 3.4. An analogous result is true for
p = 2:

Proposition 10.1. Let V be a vector space over Fp, θ : V 2 → Fp a cocycle, and Vθ a
code loop. Then Aθ is a characteristic trilinear form.

Conversely, given a characteristic trilinear form f : V 3 → Fp, there is a cocycle
θ : V 2 → Fp such that Q = Vθ is a code loop and Aθ = f . When p > 2, it suffices to
take θ(u, v) = f(u, u, v)/2. When p = 2, it suffices to take

(10.1) θ(
∑

λiei,
∑

µkek) =
∑

i<j

λiλjµkf(ei, ej , ek),

where {e1, . . . , ed} is a basis of V .

Proof. There is nothing to show in the odd case.
When Vθ is an even code loop then Aθ is a characteristic trilinear form by Proposition

4.3. Conversely, let f : V 3 → F2 be a characteristic trilinear form, and let θ be defined
as in (10.1). Then

(10.2) θ(
∑

λiei,
∑

µjej) =
∑

i<j<k

(λiλjµk + λiλkµj + λjλkµi)f(ei, ej , ek).

With u =
∑

λiei, v =
∑

µjej , w =
∑

νkek, we have

Aθ(u, v, w) = θ(u, v) + θ(u + v, w) + θ(v, w) + θ(u, v + w) =
∑

i<j<k

cijkf(ei, ej , ek),

where

cijk =λiλjµk + λiλkµj + λjλkµi

+ (λi + µi)(λj + µj)νk + (λi + µi)(λk + µk)νj + (λj + µj)(λk + µk)νi

+ µiµjνk + µiµkνj + µjµkνi

+ λiλj(µk + νk) + λiλk(µj + νj) + λjλk(µi + νi)

=λiµjνk + µiλjµk + λiµkνj + µiλkνj + λjµkνi + µjλkνi =
∑

i6=j 6=k 6=i

λiµjνk.

Since f(u, u, v) = 0, we conclude that Aθ = f . Then Vθ is an even code loop, by
Proposition 4.3. ¤

The somewhat mysterious formula (10.1) is an interpretation of f(u, u, v)/2 over F2.
Indeed, take a characteristic trilinear form f : V 3 → F2, and note that

f(
∑

λiei,
∑

λjej ,
∑

µkek)

= 2
∑

i<j

λiλjµkf(ei, ej , ek) +
∑

λ2
i µjf(ei, ei, ej) = 2

∑

i<j

λiλjµkf(ei, ej , ek)

with respect to some basis {e1, . . . , ed} of V .
It is therefore not unreasonable to say that a characteristic trilinear form f can be

realized as an associator Aθ of a code loop by setting θ(u, v) equal to “half of f(u, u, v)”
in both the odd and even cases.
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10.2. The mapping P . When p = 2, Definition 3.1 reduces to A = ∆3P , C = ∆2P ,
and P (0) = 0. But Proposition 4.3(iii) shows that seemingly much weaker conditions
are sufficient. Roughly speaking, the condition A(u, u, v) = 0 = A(u, v, v) forces the
loop Q to be diassociative, while A(u, v, w) = A(u,w, v) implies that A is a symmetric
function, and thus that Q is a conjugacy closed loop. In particular, the polarization
relations are obtained for free.

Our results imply that the mapping P satisfies ∆4P = 0 for every p, which is certainly
not obvious from Definition 3.1.

An interesting question is how much freedom do we have in choosing P in Definition
3.1 for a given code loop Vθ.

When p > 3, P is uniquely determined already by the condition ∆3P = A, by Propo-
sition 2.12. (This also means that the unpleasant sign change in C(u, v) = ∆2P (−u, v)
cannot be disposed of.) Moreover, if f : V 3 → Fp is a characteristic trilinear form such
that θ(u, v) = f(u, u, v)/2, we have

P (u) = A(u, u, u)/6 = f(u, u, u)/6 = θ(u, u)/3,

by Lemma 7.1.
When p = 2, P is determined up to a linear polynomial with zero constant term (since

∆3P = A, ∆2P = C, and P (0) = 0 is assumed). Moreover, it is possible to choose P
as P (u) = θ(u, u)(= θ(u, u)/3), by Proposition 4.3. With this choice, P (u) = θ(u, u) is
the squaring map, as (a, u)(a, u) = (θ(u, u), 0) holds in an even code loop Vθ.

When p = 3, P is determined up to a linear polynomial R satisfying R(λu) = λ3R(u)
already by the condition ∆3P = A, by Proposition 2.12. Moreover, unless P = 0, there
is no a ∈ F∗3 for which P (u) = aθ(u, u) works, since θ(u, u) = f(u, u, u)/2 = 0.

10.3. Weak forms of associativity. It is a coincidence that symplectic conjugacy
closed 2-loops are precisely symplectic Moufang 2-loops. One of the messages of this
paper is that the investigation of code loops should follow the trail of conjugacy closed
loops, not Moufang loops.

The condition (2.4) of Definition 3.3 holds automatically when p = 2, since even code
loops are diassociative.

Power-associativity of odd code loops for p = 3 is an artifact of combinatorial polar-
ization, and it has to be explicitly enforced in Definitions 3.2–3.4 (by the assumptions∑

ui = 0, [x, x, x] = 1, and f is characteristic, respectively). It is perhaps not obvious
that the condition [x, x, x] = 1 is independent of the remaining assumptions in Definition
3.3, but the following example shows that it is:

Example 10.2. Let V be a vector space over F3 with basis {e1, e2}. Let f : V 3 → F3

be the symmetric trilinear form defined by f(ei, ej , ek) = 0 for every 1 ≤ i, j, k ≤ 2,
except for f(e2, e2, e2) = 1. Let (G, +) be the elementary abelian 3-group F3 × V , and
let Q = G[f, 0] be as in Theorem 2.7. Then by Theorem 2.7 and Lemma 2.8, Q is a
symplectic conjugacy closed 3-loop in which (2.4) holds and x(3) = 1 for every x ∈ Q,
but [x, x, x] = f(x, x, x) does not vanish for some x ∈ Q.

Finally, let us have a look at the condition

(10.3) x(p) = 1

from Definitions 3.1, 3.3.
We claim that if (10.3) holds in a code loop Q than the seemingly stronger condition

Lp
x(y) = y holds as well. For p = 2, this is obvious from diassociativity of Q. When

p ≥ 3, note that the proof of Lemma 2.8 in fact shows not only that (G,+) is elementary
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abelian precisely when (10.3) holds, but also that (G,+) is elementary abelian precisely
when Lp

x(y) = y.
We remark that (10.3) must be dropped from Definitions 3.1, 3.3 for p = 2, else we

would only obtain elementary abelian 2-groups, by Proposition 4.3.
The following example shows that (10.3) is independent of the remaining conditions

in Definition 3.1:

Example 10.3. As in [7], let (Q, ∗) be defined on Z25 by x ∗ y = x + y + 5x2y. Then
Q is a symplectic conjugacy closed loop in which x(5) = 1 does not hold for all x ∈ Q.
But the mapping P : Z5 → Z5, x 7→ 2x3 satisfies P (λu) = λ3P (u), ∆3P = A, and
C(−u, v) = ∆2P (u, v) for every u, v ∈ Z5.

Lastly, the condition (10.3) on left powers can in code loops be replaced by the
condition Rp

x(1) = 1 on right powers. Indeed, induction on k in G[f, g] yields

Rk
x(y) = y + kx + g(y, x)k + g(x, x)k(k − 1)/2

+ f(y, y, x)k/2 + f(y, x, x)(k − 1)k/2 + f(x, x, x)(k − 1)k(2k − 1)/12,

and thus Rp
x(y) = y+px+f(x, x, x)(p−1)p(2p−1)/12. Since p divides (p−1)p(2p−1)/12

when p > 3, we get Rp
x(y) = px + y for p > 3, and we see that Rp

x(0) = 0 holds if and
only if (G,+) is an elementary abelian p-group. When p = 3, we are done by Corollary
9.2.

However, there exists a symplectic conjugacy closed 3-loop of order 9 in which x(xx) =
1 holds but (xx)x = 1 does not. To see what happens when (10.3) is dropped from
Definition 3.3, see [8].
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