
Noisy Road Network Matching

Yago Diez1?, Mario Lopez2, and J. Antoni Sellarès1?

1 Universitat de Girona, SPAIN,
{ydiez,sellares}@ima.udg.edu

2 University of Denver, USA,
mlopez@du.edu

Abstract. Let N and M be two road networks represented in vector form and covering rectangular
areas R and R′, respectively, not necessarily parallel to each other, but with R′ ⊂ R. We assume
that N and M use different coordinate systems at (possibly) different, but known scales. Let B and A
denote sets of “prominent” road points (e.g., intersections) associated with N and M, respectively. The
positions of road points on both sets may contain a certain amount of “noise” due to errors and the finite
precision of measurements. We propose an algorithm for determining approximate matches, in terms of
the bottleneck distance, between A and a subset B′ of B. We consider the characteristics of the problem
in order to achieve a high degree of efficiency. At the same time, so as not to compromise the usability
of the algorithm, we keep the complexity required for the data as low as possible. As the algorithm
that guarantees to find a possible match is expensive due to the inherent complexity of the problem, we
propose a lossless filtering algorithm that yields a collection of candidate regions that contain a subset
S of B such that A may match a subset B′ of S. Then we find possible approximate matchings between
A and subsets of S using the matching algorithm. We have implemented the proposed algorithm and
report results that show the efficiency of our approach.

1 Introduction

Spatial analysis of GIS data often requires relating data obtained from two or more different sources. The
process of aligning the geometry of two data sets, usually with the purpose of transferring the attributes
from one set to the other, is an example of this, referred to as conflation. This type of operation may be
needed, for instance, in order to relate a TIGER R© file [15] of city streets with a digitized legacy map or with
a non-georeferenced map developed in-house. Under such circumstances, it is possible that the two data sets
are based on two different coordinate systems, one or both of which are not known precisely or at all.

We consider here the problem of matching a vector data set M to a subset of another vector data set N ,
where N and M are specified using different and unknown coordinate systems at different but known scales
(map scale is basic information, usually known, even in legacy maps). Here, N and M cover rectangular
areas R and R′, respectively, with R′ ⊂ R, and the goal is to find an affine transformation (a sequence of
rotations, scalings, translations) that locates R′ within R. The data sets may contain small imprecisions in
geometry, where each true point lies within a circle of radius ε from its specified coordinates. We refer to
this problem as noisy road network matching and define it formally at the end of this section. Note
that even though the algorithms are described in terms of road network data, they can be easily extended
to other vector formats such as coverages.

While there is a growing body of literature for the problem of relating two data sets with the same
coordinate system (see [11,12,14], for example) or, equivalently, with different but known coordinate systems,
[3] is the only work we are aware of capable of matching data originating from two different and partially
unknown coordinate systems. In [3], the authors assume that R and R′ are parallel to each other, thus the
target transformation consists of scaling and translation only, and cannot accommodate rotations. In our
work, we assume that the map scales are known (as is usually the case for most maps), but the rectangular
areas may be arbitrarily rotated and translated with respect to each other. Thus, our work and that of [3]
tackle different but, in a sense, complementary aspects of a similar problem.

An example of the type of data we are dealing with is illustrated in Figure 1.
In this paper we present an algorithm for the case of Road Network Matching using the results of [5] as a

starting point. One of the specific characteristics of this problem is the presence of “additional” information
? Partially supported by the Spanish Ministerio de Educación y Ciencia under grant TIN2007-67982-C02-02.

Fig. 1. A road network N and subnetwork M with bounding box R′.

such as adjacency relationships between intersections or road types. Our algorithm benefits from this auxiliary
information. However, in order to keep the algorithm independent of our data sources, we have only used
information that can be considered as “evident” to observers.

Our algorithm first examines the line segments of N and M in order to extract the endpoints of the input
segments. For each such endpoint p, we store a list Adj(p) of its neighbors. For road networks, it is reasonable
to assume that the degree of every point is bounded by a small constant, representing the maximum number
of roads that may meet at any intersection. This process results in sets A and B of road points from M
and N respectively, each of which may either be an intersection point (a point of degree bigger than two), a
segment interior point (a point of degree two) or a segment endpoint (a point of degree one). Here, we assume
that the shape of the map is well described by the positions of intersection points, as this information tends
to be stable across maps of the same region. Accordingly, from now on we will only consider intersections
whenever we refer to (road) points. Also, since the map scales are known, it is easy to represent both point
sets using the same normalized scale. Additionally, we also associate with every road point a list of the type
of roads that converge on it (such as highway, presence of tunnel, one-way street, etc.). The road categories
are defined in terms of the Census Feature class codes (CFCC) present in TIGER/line R© files.

We assume that the position of points in both sets A and B may contain a certain amount of noise due
to the measurement errors or the finite precision of input devices. This is modelled by assuming that the
actual position of the points involved may vary by a distance up to a fixed quantity ε.

We are now ready to formally define our problem.
Let A and B be two road point sets of the same cardinality, expressed using the same normalized scale

(i.e., a unit of distance means the same thing in both sets).
An adjacency-degree preserving bijective mapping f : A → B maps each point a ∈ A to a distinct and

unique point f(a) = b ∈ B so that |Adj(a)| = |Adj(b)| .
Let F be the set of all adjacency-degree preserving bijective mappings between A and B. The bottleneck

distance between A and B is defined as:

db(A,B) = min
f∈F

max
a∈A

d(a, f(a)) .

The Noisy Road Network Matching (NRNM) problem can now be formulated as follows. Given
two road point sets A, B, |A| = n, |B| = m, n ≤ m, and ε ≥ 0, determine a rigid motion (translations plus
rotations) τ for which there exists a subset B′ of B, |B′| = n, such that db(τ(A),B′) ≤ ε.

If τ is a solution to the NRNM problem, every road point of τ(A) approximately matches a distinct
and unique point of B′ of the same degree, and we say that A and the subset B′ of B approximately match
or are noisy congruent.

We now discuss the main differences between our paper and the similar problem described in [3]. We
then briefly address the results upon which our approach is based.

– We use the bottleneck distance because we believe it is more realistic than the Hausdorff distance used
in [3], in the context of road network matching (RNM). The reason for this is that Hausdorff distance
does not require the points in the two sets to be matched one-to-one. However, for our problem it seems
reasonable to require that no two road points in one map be matched to the same road point in the other.
This could lead to an input set A matching a set B with fewer points, a clearly undesirable situation.

Figure 2 illustrates this problem. A possible set B (indicated by dots) matches a ”smaller” set (indicated
by squares) under the Hausdorff distance, but not under bottleneck distance.

t t

Fig. 2. Two sets of road points that match under Hausdorff distance (for a suitable ε) even though they should not
match in the NRNM problem.

– We allow rotations and translations only. Scaling is possible only by assuming that the map scales are
known, as is usually the case in practice.

– Another important difference is that the algorithm in [3] computes candidate matchings by finding the
transformation T (scaling plus translation) that exactly matches a pair of points from A to a pair from
B. It is not hard to find examples where this type of transformation would miss a correct match between
A and a subset of B. For example, Figure 3 contains two sets (one indicated by squares and the other
by dots) of three points each. Part (a) of the figure shows that a match is possible (for a suitable ε).
After computing T using the leftmost two points of each set (illustrated in part (b)), the two leftmost
pairs coincide but we have increased the distance for the third pair to a value bigger than ε, wrongly
concluding that no match can occur. The same happens if we choose any other pair.

– Finally, depending on the values considered for parameter ε the practical complexity of the problem
changes dramatically. In [3] only very small values of ε are considered (the resulting problem is called
Nearly Exact Matching in the reference). Our algorithm works for any value of ε and, in Section 4, we
present further discussion of the role of ε.

b) t t

t t

t

a) t

Fig. 3. a) Three pairs of points, where the pair on the left overlaps and the distances between the two points of each
other pair is the same and less than ε. The two sets match in the position presented. b) If we force two pairs to overlap
(by scaling one of the sets), no match occurs.

The algorithm presented in this paper uses ideas from Noisy Point Set Matching (NPSM) algorithms.
The study of this problem was initiated by Alt et al [1] who presented an exact O(n8) time algorithm
for finding the transformation that produces the best match between two sets of the same cardinality n.
Combining [1] with the techniques proposed by Efrat et al [6] the time can be reduced to O(n7 log n). Both
algorithms suffer from high computational cost due to the inherent complexity of the problem and both use
complex data structures that are difficult to implement. The running time is improved here by a lossless
filtering preprocess similar to the one proposed in [5] for the problem of colored point set matching. For the
choice of practical values of parameter ε we also use concepts from pattern matching, as presented in [13].

Finally, as this paper tackles a practical problem, we believe that the evaluation of its efficacy must be
done with the greatest rigor. With this goal , we follow the ideas presented in [10] in order to make our
experiments as meaningful as possible.

2 NRNM Algorithm

In this section we present a nontrivial adaptation of the algorithm in [5] to the NRNM problem. We focus
on the aspects that are directly relevant to our problem and only briefly sketch the previous algorithm.

The NRNM algorithm consists on two phases: enumeration and testing. The enumeration phase makes
the problem finite by partitioning all possible rigid motions of A into equivalence classes and choosing a

representative motion τ for each class. The testing phase runs a matching algorithm between every set τ(A)
and set B. To speed up calculations during this phase, additional information about road points is considered.
The information used should be evident to any observer and, thus, largely independent from the source of
the data. Examples of this type of information include the type of road considered and the connectivity of
each road point. This will be further discussed in Section 3.

2.1 Enumeration

Generating every possible rigid motion that brings set A onto a subset of B is infeasible due to the continuous
nature of movement. Following the algorithm presented in [1] and also used in [6,5], we partition the set of
all rigid motions into equivalence classes in order to make their handling possible.

This is achieved by realizing that, for any motion that is a solution of the NRNM problem, there exists
another that is also a solution with the property that two points in A lie in the boundaries of the noise disks
of the two points in B to which they are matched.

Consequently, O(n2m2) 4-tuples of points are considered. For each 4-tuple, we need to work with O(nm)
pairs of points in order not to miss any possible matching, obtaining O(nm) critical events. The computation
of the critical events requires working with high degree algebraic curves known as coupler curves of four bar
linkages [9]. Summed over all tuples the total number of critical events encountered in the course of the
algorithm is O(n3m3). For each of these critical events we will need to run the Testing algorithm presented
in Section 2.2. The whole NRNM matching algorithm can be summarized as follows:

1. Picture B in R2 with a circular noise region surrounding each of its points.
2. Move a rigid copy of set A over B until two points in A hit the boundaries of two of the noise regions.
3. Move set A without loosing this condition. Every time any other point in A enters the noise region of

any point in B, test for matching using the algorithm in section 2.2.
4. Iterate until all the possible ways in which any two points in A can hit the boundaries of two of the noise

regions of any two points in B have been tested.

The O(n2m2) 4-tuples and O(n3m3) critical events express the intrinsic complexity of the problem we
are dealing with. They also represent the source of most of the computational effort needed to solve the
problem. We will provide experiments to support this statement in Section 4. In general, this cost cannot be
decreased as there exist situations where the maximum costs are met. However, in the case of the NRNM
problems there are ways to reduce it.

Approaches to reduce the cost can be divided into two main types: a) Cutting the computational time
needed for every critical event, and b) Reducing the number of 4-tuples and, thus, critical events to be
examined. In the first group we find the use of efficient data structures and the “fine tuning” of their imple-
mentations. In the second we consider two main strategies. The first one aims at dividing the road points in
finer categories and is achieved by considering more information associated to each of them. This information
includes adjacency and other evident information, such as CFCC codes. These codes are described in the
TIGER/lines R© technical documentation as ”codes that describe the most noticeable characteristics of a
feature”. More details on this can be found in Section 3.

2.2 Testing

For each 4-tuple we consider every critical event resulting from the enumeration part. These critical events
are represented as a series of subintervals of [0, 2π). We consider a value φ in each of these subintervals and
its corresponding motion τφ. We need to test if there exists a perfect matching between τ(A) and some
subset of B. Whenever the testing part determines a matching of cardinality n we record τφ and proceed.

We provide Algorithm 1 as a summary of the Enumeration and Testing sections.
The testing algorithm uses ideas from graph theory to look for perfect matchings between τ(A) and

some subset of B. The algorithm uses two main operations that need to be performed efficiently: a) neighbor
(D(T), q): for a query point q, use data structure D(T) which stores a point set T , to return a point in T
whose distance to q is at most ε, or ∅, if no such element exists; b) delete(D(T), s): deletes point s from
D(T). For our implementation we use the skip quadtree, a data structure that combines the best features of
a quadtree and a skip list [7].

Algorithm 1 Search for noisy matching (A,B)

{Generate all possible equivalence classes:
ENUMERATION}
for all 4-tuples ai, aj , bk, bl do

for every couple (am, bp) do
Calculate curve σijklm

Im,p ← Intersection((bp)ε, σijklm(x))
{Critical Events} = {Critical Events} ∪ Im,p

end for
end for

{Search for possible matching in every equivalence class: TESTING}
x=0
while x < 2Π do

x ← next critical event
τ ← associated rigid motion(x)
if (matching(τ(A),B)) then
{Use algorithm in the ”testing” section }
Record((τ))

end if
end while

3 Lossless Filtering Preprocess

Most of the computational cost of the NRNM algorithm arises from having to consider all possible n2m2

quadruples of points described in Section 2.1. Although in some cases it will be necessary to examine all
4-tuples (for example when both sets have the same cardinality), in others there will be subsets of B that
cannot possibly contain matches (for example because they do not contain enough points) and we will be able
to avoid looking at the 4-tuples that contain points in these regions. We adapt the lossless filtering preprocess
presented in [5]. This preprocess discards subsets of B according to a series of geometric parameters that are
invariant under rigid motion. These parameters help us to describe and compare the shapes of A and the
different subsets of B that we explore. This ability to discard parts of B amounts to a pruning of the search
space which results in a reduction of the total computational time.

The lossless filtering preprocess yields a collection of candidate zones which are regions that contain a
subset S of B such that A may approximately match one or more subsets B′ of S. By doing this we transform
the initial problem in a number of smaller and independent subproblems and discard those parts of the search
space that do not meet the requirements imposed by the geometric parameters. After this preprocessing, we
solve the NRNM problem between A and every S with the algorithm we have already presented.

Figure 3 describes the structure of our solution.

3.1 Lossless Filtering Algorithm

The lossless filtering preprocess consists of two algorithms: quadtree construction and search. The quadtree
construction algorithm also consists of two subparts: A compressed quadtree building algorithm that uses the
points in B as sites (without considering their degree), and an algorithm that adds the information related
to the geometric parameters being used at each node. The search algorithm traverses the quadtree looking
for candidate zones. Below, we provide a more detailed explanation of our solution.

The subdivision of R2 induced by a certain level of the quadtree consists of axis-parallel squares. At first
this does not seem to help because of the requirement to allow set A to undergo rotations, but we can easily
avoid this problem by just searching for a certain axis-parallel square in the quadtree big enough to contain
set A even if it appears rotated. As stated before, we will also require that the square we are looking contains
a portion of B similar to A, in terms of some (rotation invariant) geometric parameters. By doing this, we
will be able to temporarily forget about all the possible motions that set A may undergo and concentrate
on those zones of the quadtree where they may actually appear by performing a type of search that is much
better suited to the quadtree data structure.

The geometric parameters we use are divided into two main groups:

– General Parameters. In this first group we find all parameters that can be considered in point set
matching problems where categories are considered. In our cases the categories depend on the degree of
adjacency of the (road) points:
a) parameters based on the fact that we are working with (road) point sets: number of points and

histogram of degrees present in the point set.
b) parameters based on distances between (road) points: maximum and minimum distance between

points of every different degree.
– Road Network specific parameters c) Histogram of the CFCC codes present in the point set.

For every geometric parameter we will define a parameter compatibility criterion that will allow us to
discard zones that cannot possibly contain a subset B′ of B that approximately matches A. See Figure 4 for
an example.

B

A

Fig. 4. There cannot be any B′ that approximately matches A within the top-left quadrant of B because A contains
six disks (representing points) and that quadrant contains only five.

We have chosen these parameters, amongst many others, because they are easy to obtain and fairly
independent from the data source. In our experiments we have worked mainly with TIGER/lines R© data
files. These files contain much information that may have been of great help for our algorithm, such as a
unique id number for every road intersection point present in the database. Even when this information
would have greatly reduced the time of our calculations, one of our goals was to ensure the usability of our
algorithm in different situations, so we have restricted our attention to parameters “evident to any observer”.
With this in mind, we have used the degree of every road point and also the CFCC codes, as they describe
the most noticeable characteristics of a feature. Furthermore, both degree and CFCC codes must be present
in all records of a TIGER/lines R© file.

The cost of adding these geometric parameters to the quadtree of set B is in O(m2).

It is important to stress that ours is a conservative algorithm, so we do not so much look for candidate
zones as rule out those regions where no candidate zones may appear. A technical issue that arises at this
point is that, although our intention was to describe our candidate zones as squares of size s, this will not
always be possible, and we will also have to consider groups of two or four squares of size s. Notice that the
earlier the discards are made, the bigger the subsets of B that are discarded.
Search Algorithm

The search algorithm identifies all squares that cover a subset of B where candidate zones, compatible
with A, may be located. This results in three different kinds of candidate zones associated to, respectively
one, two or four nodes (see Figure 5) of the tree. The subsets B′ that we are looking for may lie anywhere
inside those zones.

Fig. 5. Position of the candidate zones in the grid. Overlapping: (a) a single grid-square (corresponding to a single
quadtree node), (b) two (vertically or horizontally) neighboring nodes, or (c) four neighboring nodes. In this example
we observe occurrences of set A in zones of the first two types and an ellipse showing where occurrences of the third
type (not present) would appear.

Consequently, the zones considered throughout the search are easily described in terms of the nodes of
QB and gradually decrease in size, until they reach s, following the descent of the quadtree. Given that two
or four nodes defining a candidate zone need not be in the same branch of QB, at some point we may need
to explore two or four branches simultaneously. Algorithm 2 outlines the main search function.

The Search algorithm runs in O(m) time. The total cost of the lossless filtering algorithm is O(m2).

3.2 Overall computational costs

Combining the costs of the lossless filtering preprocess and the Enumerating and Testing algorithms it can
be seen that the total cost of the matching algorithm is O(n4m3 log m). This bound is tight. This shows that
from a formal point of view, our process takes, at its worst, the same computational time as the algorithm
that does not use the lossless filtering step. Consequently we benefit from any reduction of the computational
time that the filtering achieves without any increase in the asymptotic costs.

The cost is high mainly because of the inherent geometric complexity of the problem. In Section 4 we
quantify the important improvement in computational costs achieved by using the lossless filtering algorithm,
and also by discarding the maximum number of 4-tuples, as described in Section 2.2.

4 Implementation and results

In this section we present experiments that show the degree of efficiency of our algorithms. We have worked
with TIGER/lines R© files for the counties of Denver (files TGR08031), Adams (TGR08001) and Arapahoe
(TGR08005). As we have only used information concerning the position of road points, their connectivity
and their associated CFCC codes, it was enough to work with .RT1 files. These files can be found at [15]
and the corresponding documentation at [16].

Algorithm 2 Search 1(node N)
for all sons S of N do

if (S is parameter compatible with A) then
if (We have not reached the node size to stop the search) then

Call Search 1(S)
else {We have found a candidate node}

Report candidate zone
end if

end if
end for
{Continue in pairs of nodes if necessary (four possibilities)}
for all S1, S2 pairs of neighboring sons of N do

if (The couple (S1, S2) is parameter compatible with A) then
if (We have not reached the node size to stop the search) then

Call Search 2(S1, S2)
else {We have found a candidate pair}

Report candidate zone
end if

end if
end for
{Finally, continue in the quartet formed by the four sons if necessary}
(S1, S2, S3, S4): Quartet formed by the sons of N.
if ((S1, S2, S3, S4) are parameter compatible with A) then

if (We have not reached the node size to stop the search) then
Call Search 4 (S1, S2, S3, S4)

else {We have found a candidate quartet}
Report candidate zone

end if
end if

We have implemented all our algorithms in C++ under a Linux environment. We used the g++ compiler
without compiler optimizations. All tests were run on a Pentium D machine with a 3 GHz processor.

We consider the set obtained from this data as our set B. To obtain set A, we choose a subset of set
B. To choose this subset we randomly choose a point p in B, consider an axis-parallel rectangle that has p
lower-left vertex. Then we rotate it a random angle obtaining a set as depicted in Figure 1. Once we have
chosen our set A, we apply a random transformation to it that includes:

– Random rotation around one of its points.
– A translation of random vector whose components are bounded by the dimensions of set B.
– A small perturbation applied independently to each of its points in order to simulate noise in data. The

modulus of this perturbation is bounded by ε.

In most tests, set B is fixed and sets A of varying sizes are chosen this way.
The amount of noise ε allowed in the data impacts the practical complexity of the problem and, conse-

quently, the computational times obtained. We illustrate this statement with the two extreme cases.

1. ε = 0. In this case, the problem would most likely, in practice, not have a solution. As the calculations
made to build set A introduce a certain amount of error (due to rounding, truncation and representation)
if we required ε to be exactly 0, then there would be no exact match to be found. This behavior can also
apply to very small values of ε.

2. ε = ∞. In this case we consider a value of ε too big (meaning, at least bigger than the diameter of set
B). In this case, any rigid motion that brings set A inside a circle of radius ε that contains B would be
a solution to our problem. This behavior is clearly undesirable. Such a big value of ε stands for knowing
very little about the real positions of the points in set B and any solution found based on this type of
data is meaningless.

These two extreme cases show that too small values of ε may result in the algorithm missing the solution
due to numerical problems, and too big ones may result in meaningless solutions. It is thus very important to
consider reasonable values of ε. To do this, we followed the ideas presented in [13] and studied the empirical
values of the average shortest distance of set B, tB defined in the reference as tB = rB

2|B| where rB is the radius
of set B. We have tested different values of ε and present results on ε = tB. We also provide some further
discussion on this subject on Section 4.4.

4.1 Additional Improvements

In addition to the strategies described until now to reduce the running times of the algorithms (that do so
from a theoretical point of view) we have also used some practical strategies that we describe now.

– We observed that the number of road points of degree greater than 5 in our data sets was much smaller
than the number of points of degree less than or equal to 5. Taking advantage of this, in every candidate
zone we performed an intermediate filtering step looking for a match but considering only road points of
degree greater than 5. If this matching was found, we proceeded with the rest of the points and otherwise
there was no need to keep on searching in that zone.

– When working with a particular 4-tuple of points, all remaining points in A and S have to be tested to
decide if they may be matched. This decision is affirmative if one of the points lies in the interior of a
coupler curve described by the other. This involves complex calculations, but points that are “too far
away” from, for example, the point that we take as the initial point of the coupler curve will never be
matched. To reduce the number of pairs considered, we approximated the diameter of the coupler curves
by sampling some points on them and calculating their discrete diameter. This resulted in avoiding
calculations for most of the points, improving the techniques presented in [5].

Finally, we have to consider the fact that, as we are only looking for one possible match, the computational
costs of our experiments also depend on how “early” the algorithm visits the 4-tuple that leads to the solution.
To minimize the effect of this, in those discussions where the time spent by the algorithm is the main subject
(as is the case of Section 4.2) we will present average times (spent to find a number of sets A of the same
size, chosen randomly) instead of results of just one experiment.

4.2 Effects of the Lossless Filtering algorithm

The performance of the algorithm depends on the effectiveness of the lossless Filtering step and the param-
eters chosen but, in the worst case, it meets the best (theoretical) running time up to date.

Focusing in our observations of our experiments we can say that in the best case, the initial problem is
transformed into a series of subproblems with cardinality n′ close to n = |A|, producing a great saving of
computational effort. To be fair, we also have to mention that in the worst case, when both sets have similar
cardinality, filtering doesn’t help. In fact, using the lossless filtering preprocessing step may even increase
the running time. In this section we try to quantify this saving in computational time due to filtering.
Figure 6 compares the behavior of the Matching algorithm with and without the lossless filtering algorithm
(represented by times T1 and T2 in the figure, both in seconds). We fixed set B to be a subset of 5000
road intersections of the county of Denver and tried sets A of different sizes. For every size, we present the
mean of the times spent by ten sets of the same size. This lossless filtering algorithm uses all the parameters
described earlier.

We must state that the sizes considered here are small given the huge computational costs of the algorithm
without lossless filtering. It is clear from the figure that, even when the theoretical computational costs are
still high due to the complexity inherent to the problem, using the lossless filtering results in significant
computational savings.

4.3 Discussion on geometric parameters

In this section we provide results that measure the effectiveness of the different geometric parameters used
during the lossless filtering algorithm. Table 1 presents the number of candidate zones and computational

Fig. 6. Running times not using lossless filtering step (T1) and using it (T2). X axis represents the mean values of
the cardinals of sets A in every test and axis Y represents time in seconds.

costs for the search algorithm resulting from: 1) using only the ”number of points” (Num.) parameter; 2)
using (1) plus the histogram of points degrees (Histo.); 3) using (1), (2) plus the ”maximum and minimum
distance between points of the same degree” (Dist.) parameters; 4) adding to the previous three the CFCC
codes associated to each road intersection point.

For the tests we used two main data sets. The first one contains 12052 road intersections in the county
of Denver. The second contains, in addition, data about road intersections in the counties of Adams and
Arapahoe totaling 39950 road intersections. We run the lossless filtering algorithm for different sets A of
varying sizes. Table 1 presents the number of candidate zones obtained for every filtering criteria and the
time consumed in each case by the search algorithm, the time needed to build the quadtree data structure
was approximately 16 seconds for the first data set, and approximately 150 seconds for the second.

|A| |B| Num. Num./Histo. Num./Histo./Dist. Num./Histo./Dist./CFCC
#zones Time(s) #zones Time(s) #zones Time(s) #zones Time(s)

25 12052 217 << 0.01 188 << 0.01 187 << 0.01 31 << 0.01
100 12052 194 << 0.01 61 << 0.01 52 0.19 52 0.19
250 12052 57 << 0.01 19 << 0.01 19 0.016 9 0.17
500 12052 21 << 0.01 17 << 0.01 16 << 0.01 10 << 0.01
750 12052 20 << 0.01 15 << 0.01 14 5.41 8 5.41
1000 12052 19 << 0.01 10 << 0.01 8 1.57 6 1.59
2000 39925 52 << 0.01 16 << 0.01 12 7.55 6 7.53
5000 39925 8 << 0.01 4 << 0.01 4 0.12 2 0.14
10000 39925 12 << 0.01 4 << 0.01 4 0.01 2 0.03
12500 39925 11 << 0.01 4 << 0.01 4 << 0.01 2 << 0.01

Table 1. Effects of the different geometric parameters on the lossless filtering algorithm.

We observe that the number of candidate zones is always lower when we use more “elaborate” geometric
parameters. The main reduction in the number of candidate zones is usually obtained when the histogram
of road intersection degrees is considered, but in most cases this reduction continues when distances between
road intersections of the same degree and CFCC codes are considered. We also want to highlight two special
cases:

– We noticed that the number of candidate zones obtained for sets of parameters (2) and (3) differ more in
the second data set. As this stands for considering the distances of road intersections of the same degree
or only their histogram, this may be caused by a more regular distribution of road intersections inside
the city of Denver than in the other counties considered.

– In some cases, the number of candidate zones obtained for sets of parameters (3) and (4) is the same. The
difference in this case is whether we consider or not CFCC codes. In some of the test cases, all the roads

that formed the intersections of set A had the same code (A41 which, according to the TIGER/lines R©
documentation, stands for Local, neighborhood, and rural road, city street, unseparated). We studied the
distribution of road CFCC codes for both data sets and found that more than 93.5% of the roads in
Denver and about 90% on Denver, Adams and Arapahoe fall in this category.

With respect to computational times, the time needed to perform the search algorithm is bigger when we
use more geometric parameters, but still much less than the cost of the Matching algorithm. In conclusion,
the use of more geometric parameters results in the output of less, and better, candidate zones. Moreover,
although the use of more geometric parameters slightly increases computational time, the cost of the lossless
filtering algorithm is still much smaller than that of the Matching algorithm.

4.4 Computational Performance

Here we seek to evaluate the performance of the whole algorithm, with all improvements, in some “real life”
situation. We ran tests where set B corresponds to the road intersection points in the county of Denver
(cardinality 12052) and used different sets A chosen randomly inside rectangles of varying sizes. Table 2
shows:

– The cardinalities of the sets involved in the test.
– The average number of candidate zones examined before finding the solution. This value is presented in

order to provide an idea on how effective the filtering step is in transforming the initial problem into a
series of smaller subproblems with similar cardinalities between B′ and A.

– Finally, we present data on the number of 4-tuples and pairs examined. This data helps us to highlight
where the main computational effort is, as it is directly related to the time spent by the algorithm.

|A| |B| n′ #4-tuples #pairs Time(s)

10 12052 55 6 93 15.31
50 12052 111 7 218 31.84
75 12052 481 18 1381 73.17
100 12052 653 1 670 27.38
150 12052 1880 4 3484 243.97
200 12052 1089 5 7918 849.65
250 12052 1088 20 19856 2464.71
300 12052 1888 5 2697 404.56

Table 2. Performance of the complete algorithm.

Concerning the mean value of n′, denoted n′, we observe that the filtering algorithm manages to take away
most of the complexity of the problem. This works better for smaller sets, as the algorithm is able to locate
candidate zones built by smaller nodes in the quadtree. We can also observe that the total computational
cost of the algorithm is greatly influenced by the number of 4-tuples or pairs examined, as tests for sets of
similar sizes may need very different computational effort (this is illustrated by the rows corresponding to
|A| = 200 and |A| = 250). Consequently, the main part of the computational effort can be attributed to the
complexity inherent to the problem. Finally the computational time increases with |A|, although we believe
that it is kept to reasonable levels given the complexity of the calculations involved.
Other values of ε

To complement the discussion on the values of ε provided at the beginning of this section, we present
some tests for different values of ε.

As expected, as the value of ε decreases, so does the number of 4-tuples that lead to a solution (arriving
to zero in the limit case described previously). This results in an increase of the total computational time
due to having to “search more” before finding a solution. Also, smaller values of ε result in fewer 4-tuples
and pairs to be checked, or sometimes allow for better filtering and smaller candidate zones. Both of these
considerations result in a decrease of computational time. Which of the two tendencies is more important?
Basically it depends on the data set being searched, for most of our study cases, smaller values of ε required
higher computational time, but in some others (generally for bigger realizations of set A) the opposite held.
Table 3 shows examples of the two cases and even one where both tendencies produce similar computational
times for both values of ε.

ε |A| |B| n′ #4-tuples #couples Time(s)

tB 10 12052 55 4 25 22.51
tB
2

10 12052 55 1 18 22.48

tB 31 12052 99 162 2892 79.87
tB
2

31 12052 99 1 135 19.23

tB 230 12052 540 13 9192 472.08
tB
2

230 12052 1089 14 22183 2114.26

Table 3. Compared performance for different values of ε.

5 Conclusions

In this paper we have presented, to the best of our knowledge, the first formalization of the NRNM problem
in terms of the bottleneck distance. We have studied the specific characteristics of the problem in order to
obtain an algorithm that takes advantage of them, without compromising its practical value, independent of
the data source being used. We have presented theoretical and practical discussions on this algorithm and
obtained running times that are fast, in light of the inherent complexity of the problem. Finally, we have
presented experiments that have allowed us to highlight the most important aspects of the algorithm as well
as to gain insight into important characteristics of the problem we were dealing with.

References

1. H. Alt, K. Mehlhorn, H. Wagener and E. Welzl. Congruence, similarity and symmetries of geometric objects.
Discrete & Computational Geometry, 3:237–256, 1988.

2. R.P. Brent. Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973.
3. C. Chen, C. Shahabi, M. Kolahdouzan, and C.A. Knoblock. Automatically and Efficiently Matching Road

Networks with Spatial Attributes in Unknown Geometry Systems. 3rd Workshop on Spatio-Temporal Database
Management (STDBM’06), September 2006.

4. C. Chen. Automatically and Accurately Conflating Road Vector Data, Street Maps and Orthoimagery. PhD
Thesis, 2005.

5. Y.Diez, J.A. Sellarès. Efficient Colored Point Set Matching Under Noise. ICCSA 2007, Lecture Notes on Com-
putational Science 4705, 26-40, Springer-Verlag, 2007.

6. A. Efrat, A. Itai and M.J. Katz. Geometry helps in Bottleneck Matching and Related Problems. Algorithmica,
31:1–28, 2001.

7. D. Eppstein, M.T. Goodrich, and J.Z. Sun. The skip quadtree: a simple dynamic data structure for multidimen-
sional data. 21st ACM Symposium on Computational Geometry, 296–305, 2005.

8. J.E. Hopcroft and R.M. Karp. An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs. S IAM Journal
on Computing, 2(4):225–231, 1973.

9. K.H. Hunt. Kinematic Geometry of Mechanisms (Chapters 4,7), Oxford University Press, 1978.
10. D.S. Johnson. A Theoretician’s Guide to the Experimental Analysis of Algorithms, Goldwasser M, Johnson DS,

McGeoch CC, editors. Proceedings of the fifth and sixth DIMACS implementation challenges. Providence, RI:
American Mathematical Society, 2002.

11. A. Saalfeld. Conflation: Automated Map Compilation, International Journal on Geographical Information Sys-
tems, 2(3):217–228, 1988.

12. V. Walter and D. Fritsch. Matching Spatial Data Sets: a Statistical Approach. International Journal of Geo-
graphical Information Science, 13(5):445–473, 1999

13. P.B. Van Wamelen, Z. Li, S.S. Iyengar, A fast expected time algorithm for the 2-D point pattern matching
problem. Pattern Recognition. 37(8) 2004, 1699–1711.

14. J.M. Ware and C.B. Jones. Matching and Aligning Features in Overlayed Coverages. 6th ACM International
Symposium on Advances in Geographic Information Systems, 28–33, 1998.

15. U.S. Census Bureau Topologically Integrated Geographic Encoding and Referencing system, TIGER R©,
TIGER/Line R© and TIGER R©-Related Products http://www.census.gov/geo/www/tiger/.

16. U.S. Census Bureau TIGER/Line R© files, Technical documentation. First Edition 2006.
http://www.census.gov/geo/www/tiger/tiger2006fe/
TGR06FE.pdf .

