IRREDUCIBLE REPRESENTATIONS OF C*-CROSSED
PRODUCTS BY FINITE GROUPS

ALVARO ARIAS AND FREDERIC LATREMOLIERE

ABSTRACT. We describe the structure of the irreducible represen-
tations of crossed products of unital C*-algebras by actions of finite
groups in terms of irreducible representations of the C*-algebras
on which the groups act. We then apply this description to derive a
characterization of irreducible representations of crossed-products
by finite cyclic groups in terms of representations of the C*-algebra
and its fixed point subalgebra. These results are applied to crossed-
products by the permutation group on three elements and illus-
trated by various examples.

1. INTRODUCTION

What is the structure of irreducible representations of C*-crossed-
products A x, G of an action « of a finite group G on a unital C*-
algebra A? Actions by finite groups provide interesting examples, such
as quantum spheres [1, 2] and actions on the free group C*-algebras
3], among many examples, and have interesting general properties, as
those found for instance in [9]. Thus, understanding the irreducible
representations of their crossed-products is a natural inquiry, which we
undertake in this paper.

Our research on this topic was initiated in a paper of Choi and the
second author [4] in the case where G = Zg, i.e. for the action of an
order two automorphism o on a C*-algebra A. In this situation, all
irreducible representations of A X, Zs are either minimal, in the sense
that their restriction to A is already irreducible, or are regular, i.e. in-
duced by a single irreducible representation 7 of A such that 7 and moo
are not equivalent. In this paper, we shall answer the question raised
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at the beginning of this introduction for any finite group GG. Thus, we
suppose given any action « of G on a unital C*-algebra A. In this
general situation, we show that for any irreducible representation Il of
A %, G on some Hilbert space ‘H, the group G acts ergodically on the
commutant ITI(A)" of TI(A), and thus, by a theorem of Hoegh-Krohn,
Landstad and Stormer [7], we prove that II(A)’ is finite dimensional.
We can thus deduce that there is a subgroup H of G such that II is
constructed from an irreducible representation ¥ of A x, H, with the
additional property that the restriction of ¥ to A is the direct sum of
finitely many representations all equivalent to an irreducible represen-
tation m of A. In addition, the group H is exactly the group of elements
h in G such that © and 7 o oy, are equivalent. The canonical unitaries
of A x, G are mapped by II to generalized permutation operators for
some decomposition of H. This main result is the matter of the third
section of this paper.

When G is a finite cyclic group, then we show that the representation
¥ is in fact minimal and obtain a full characterization of irreducible
representations of A x, G. This result can not be extended to more
generic finite groups, as we illustrate with some examples. In addition,
the fixed point C*-subalgebra of A for a plays a very interesting role
in the description of minimal representations when G is cyclic. We
investigate the finite cyclic case in the fourth section of this paper.

We then apply our work to the case where G is the permutation group
S5 on three elements {1,2,3}. It is possible again to fully describe all
irreducible representations of any crossed-product A x, &3, and we
illustrate all the cases we can encounter by examples. This matter is
discussed in the last section of this paper.

We start our paper with a section on generalities on crossed-products
of C*-algebras by finite groups, including a result on a character-
ization of irreducible regular representations. This section also al-
lows us to set some of our notations. We now fix some other nota-
tions which we will use recurrently in this paper. Given a Hilbert
space ‘H which we decompose as a direct sum ‘H = H; @ ... ® H,, of
Hilbert subspaces, we shall write an operator 7" on H as an m X m

matrix whose (4, j)-entry is the operator p;Tp; where py,...,p,, are
the orthogonal projections from H onto respectively Hy, ..., H,,. If
ty,...,t, are operators on, respectively, Hy, ..., H,,, then the diago-

nal operator with entries ¢4, ..., t,, will be denoted by t; ®...®t,,, i.e.
Tty (&, u6,) = (L&, . ty,,) for all (§,...,&) EH1I D ... D
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H,,. If 71,...,m,, are representations of some C*-algebra A acting re-
spectively on Hy, ..., H,,, then the representation 71 ®...PHm,, of A on
H is defined by (11 & ... & 7y) (@) = m1(a) D ... D m,(a) for all a € A.
The identity operator of ‘H will be denoted by 14 or simply 1 when no
confusion may occur. More generally, when an operator ¢ on a Hilbert
space H is a scalar multiple A1y (A € C) of the identity of H we shall
simply denote it by A and omit the symbol 15, when appropriate.

We shall denote by f|g, the restriction of any function f : F — F
to a subset Fy of . The set T is the unitary group of C, i.e. the set
of complex numbers of modulus 1.

2. CrosseED-PropucT By FINITE GROUPS

In this paper, we let A be a unital C*-algebra and « an action on
A of a finite group G by *-automorphisms. A covariant representation
of (4, «,G) on a unital C*-algebra B is a pair (m,V) where 7 is a *-
homomorphism from A into B and V' is a group homomorphism from
G into the unitary group of B such that for all ¢ € G and a € A
we have V(g)m(a)V (g7') = moay(a). The crossed-product C*-algebra
Ax,G is the universal C*-algebra among all the C*-algebras generated
by some covariant representation of (A, «,G). In particular, A x, G
is generated by a copy of A and unitaries U9 for ¢ € G such that
Ush = ysUt, U9 = (U9)" and U%alU? " = a,(a) for all g,h € G and
a € A. The construction of A x, G can be found in [8] and is due
originally to [11].

By universality, crossed-products by finite groups have a very simple
form which we now describe.

Proposition 2.1. Let G be a finite group of order n and write G =
{90, - - gn_1} with go the neutral element of G. Let o be the embedding
of G in the permutation group of {0,...,n —1} given by o,(i) = j if
and only if gg; = g; for all i,5 € {0,....,n—1} and g € G. We
now define V, to be the matriz in M,(A) whose (i,j) entry is given
by 14 if 04(i) = j and O otherwise, i.e. the tensor product of the
permutation matriz for o, and 1y, (A). Let ¢ : A — M, (A) be the
*-monomorphism:

a

wICLEA'—> agl(a)

agn—l (CL)
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Then A x, G is *~isomorphic to @yec(A)V,. In particular:

@AUQ:ANQG.

geG

Proof. The embedding of G into permutations of G is of course the
standard Cayley Theorem. We simply fix our notations more precisely
so as to properly define our embedding . A change of indexing of
G simply correspond to a permutation of the elements in the diagonal
of ¥ and we shall work modulo this observation in this proof. For
b e M,(A) we denote by b;  its (i,7')-entry for ¢,i" € {1,...,n}.

An easy computation shows that:

Vap(a)Vg-1 = ¢ (ay(a))

and V,V), =V, for all g,h € G and a € A. Therefore, by universal-
ity of A x, G, there exists a (unique) *-epimorphism 7 : A x, G —
Dgect)(A)Vy such that 1, =1 and n(U?) =V, for g € G. Our goal is
to prove that 7 is a *-isomorphism.

First, we show that @,cqAUY is closed in A %, G.

Let (ab,,...,am ™), oy in A" such that <Z”_1 aZnU9j> is a con-

e 7=0 meN
vergent sequence in A x, G. Now:

n—1 n—1
0 (Z az'nUgj) = ¥(al,)V,
j=0 J=0

By definition, we have o,,(0) = i for all i € {0,...,n—1}. Let
j€A{0,...,n—1}. Then V7, = 14 and V¥, = 0 for all i €
{0,...,n—1}\ {j}. Hence, (77 (Z;;l ai'nUQJ')) =al, for all m €

Lj+1
N. Since 7 is continuous, and so is the canonical projection b €

M,(A) — bijy1 € A, we conclude that (al,),,.y converges in A.

Let ¢/ € A be its limit. Then (al,,...,a% "), oy converges in A" to
(a®...,a™"). Thus, (Z;:OI a{nUf’J) , converges to Z’;& aU% €

Dgec AU and thus @y AUY is closegein A %, G. Since @yeqAUY is
dense in A x, G by construction, we conclude that Ax,G = @4 AUY.

Now, we show that 7 is injective. Let ¢ € A x, G such that n(c) = 0.
Then there exists ag,...,a,_1 € A such that ¢ = Z;‘;Dl a;U%. Let
j €{0,...,n—1}. Then n(c) = 0 implies that n(c);+11 = a; = 0 for
all j € {0,...,n — 1} and thus ¢ = 0. So 7 is a *-isomorphism and our
proof is concluded. O
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As we will focus our attention on the crossed-products by finite cyclic
groups in the fourth section of this paper and Proposition (2.1) is par-
ticularly explicit in this case, we include the following corollary:

Corollary 2.2. Let o be an automorphism of order n of a unital C*-
algebra A. Then A X, Z,, is *~isomorphic to:

([ o a9 as _ a, | )
ol(ay) o(ay)  o(az)  o(ag)
o*(an—1y 0*(a,) o*(ay) . .. € M,(A)
| 0" Haz) 0" Haz) o0 0" Haw) 0" Har) |
L ai,...,a, € A J
0 1 0
where U' mapped to -0 and A is embedded diagonally
0o : .1
10 0
a
o(a)
as a € A — ) . In particular, A X, Z, =
o™ 1(a)

Ap AU @ ... AU L.
Proof. Simply write Z,, = {0,...,n — 1} so that:

01 0
L
0 : 1
10 0
The result is a direct computation of &}_;1(A) (V)" O

We now turn our attention to the irreducible representations of A x,
G. Proposition (2.1) suggests that we construct some representations
from one representation of A and the left regular representation of
G. Of particular interest is to decide when such representations are
irreducible. We will use many times the following lemma [6, 2.3.4 p.
30], whose proof is included for the reader’s convenience:

Lemma 2.3 (Schur). Let my and 7o be two irreducible representations
of a C*-algebra A acting respectively on Hilbert spaces Hy and Hs.
Then w1 and 7o are unitarily equivalent if and only if there exists a
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nonzero operator T : Hy — Hy such that for all a € A we have
Tmi(a) = ma(a)T. Moreover, if there exists such a nonzero intertwining
operator, then it is unique up to a nonzero scalar multiple.

Proof. If m; and w9 are unitarily equivalent then there exists a unitary
T such that for all a € A we have Tmi(a) = ma(a)T. In particular,
T # 0. Moreover, assume that there exists 7" such that T"m; = mT".
Then T*T'my = T*m, T = m{T*T"'. Hence since 7 is irreducible, there
exists A € C such that 7" = \T.

Conversely, assume that there exists a nonzero operator T': Hy —
‘H; such that for all a € A we have:

(2.1) Tm(a) =m(a)T.

Then for all a € A:

T*Tﬂ'l (a) = T*WQ(CL>T.
In particular T*T'mi(a*) = T*me(a*)T for all a € A. Applying the
adjoint operation to this equality leads to my(a)T*T = T*m3(a)T and
thus:

T*Tri(a) = m(a)T*T.
Since 7 is irreducible, there exists A € C such that T*T = Al4,. Since
T # 0 we have X\ # 0. Up to replacing T by iT where p? = || and
1 € R we thus get T*T = 14,. Thus T is an isometry. In particular,
TT* is a nonzero projection.

Similarly, we get mo(a)TT* = TT*m9(a) and thus TT* is scalar as
well. Hence TT* is the identity again (As the only nonzero scalar
projection) and thus 7' is a unitary operator. Hence by (2.1), m; and
9 are unitarily equivalent. U

Given a Hilbert space H, the C*-algebra of all bounded linear oper-
ators on H is denoted by B (H).

Theorem 2.4. Let G be a finite group with neutral element e and «
an action of G on a unital C*-algebra A. Let m : A — B(H) be a
representation of A and let \ be the left reqular representation of G
on ly(G). Let 6, be the function in l2(G) which is 1 at g € G and 0
otherwise. Define Il : A xo, G — B ({3 (G) @ H) by

I(a)(d,®E) = 6,7 (g1 (a))€, and
I(g) = Ag)@1n,

Then 11 is wrreducible if and only if 7w is irreducible and w s not unitarily
equivalent to wo ay for any g € G\ {e}.
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Proof. Assume now that 7 is irreducible and not unitarily equivalent to
7o o, whenever g € G\ {e}. Suppose that II is reducible. Then there
exists a non-scalar operator €2 in the commutant of IT (A x, G). Now,
we observe that the commutant of {\ (¢) ® 1y : g € G} is p (G)RB (H),
where p is the right regular representation of GG. Hence, there exist an
operator T, on H for all g € G such that Q) = deG p(g9) ®T,. For
every £ € H and a € A, we have

<Zp(g)®Tg>H(a)(5o®§) = <Zp ) (do @ (a)§)

geG geG
= Z 0y @ Tym (a
geG
and

<Zp ) (Bo®¢&) = I(a) (Zag@@ng)

geG

Therefore, for every g € G and for all a € A:
(2.2) T (ag-1(a)) Ty =Tym (a).

Since € is non scalar, there exists gy € G\ {e} such that T, # 0. By
Lemma (2.3), Equality (2.2) for gy implies that 7 and 7 o a,, which
are irreducible, are also unitarily equivalent since T,, # 0. This is a
contradiction. So II is irreducible.

We now show the converse. First, note that if 7 is reducible then
there exists a projection p on H which is neither 0 or 1 such that p
commutes with the range of 7. It is then immediate that 1®p commutes
with the range of II and thus IT is reducible.

Assume now that there exists g € G\ {e} such that 7 and 7o« are
unitarily equivalent. Then there exists a unitary V' such that for every
ae€A:

m(a) =Vr (o (a) V"
Let us show that p(g) ® V is in the commutant of II (A x, G). We
only need to check that it commutes with II (a) for a € A.
(p(9) @ V)IL(a) (0h @&) = dng @V (an-1 (a)), and
(a)(p(9)@V)(0r®E) = 0ng@m(agrap(a)) VE.
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Since Vr (ay-1 (a)) = 7 (ag—1ap-1 (a))V, we conclude that the two
quantities are equal, and that II is reducible.

Hence, if II is irreducible, then 7 is irreducible and not equivalent to
moa, for any g € G\ {e}. O

Theorem (2.4) provides us with a possible family of irreducible rep-
resentations of the crossed-product. The representations given in The-
orem (2.4) are called regular representations of A x, G, whether or not
they are irreducible.

However, we shall see that there are many irreducible representations
of A x, G which are not regular. Easy examples are provided by
actions of finite cyclic groups by inner automorphisms on full matrix
algebras, where the identity representation is in fact the only irreducible
representation of the crossed-product. More generally, the conditions
that 7 is irreducible and 7 o «, are not equivalent for g € G\{e} are
not necessary. These observations will be placed into a more general
context as we now address the question raised at the start of this paper
in the next section.

3. AcTIiONS OF FINITE GROUPS

This section is concerned with establishing results describing the irre-
ducible representations of crossed-products by finite groups. The main
tool for our study is to understand such actions from the perspective
of the spectrum of the C*-algebra. In this paper, the spectrum A of
a C*-algebra A is the set of unitary equivalence classes of irreducible
representations of A.

We start by two simple observations. Let « be the action of a finite
group G on some unital C*-algebra A. Let 71 and 75 be two equivalent
irreducible representations of A, so that there exists a unitary u such
that umiu* = m,. Then trivially w(m 0 ag-1) u* = 79 0 o1 for all
g € G. Moreover, m o ay-1 has the same range as m; and thus is
irreducible as well. These two remarks show that for all g € G there
exists a map a, of G on A defined by mapping the class of an irreducible
representation m of A to the class of moay-1. Since (70 ay-1)0oay-1 =
T O Q(pyg)~15 WE have @, o @y = @iy, and trivially @, is the identity on
A. Thus @ is an action of G on A.

Given a representation Il of the crossed-product A x, G, we define

the support of II as the subset X of A of all classes of irreducible
representations of A weakly contained in II4. Our main interest are
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in the support of irreducible representations of A x, G which we now
prove are always finite.

3.1. Finiteness of irreducible supports. Let GG be a finite group
of neutral element e. Let G be the dual of G i.e. the set of unitary
equivalence classes of irreducible representations of G. By [6, 15.4.1, p.
291] the cardinal of G is glven by the number of conjugacy classes of G,
so G is a finite set. Let pE G and ) be any irreducible representation
of G of class p acting on a Hilbert space H. Then A is the (irreducible)
representation g € G+ A(g) acting on the conjugate Hilbert space H
6, 13.1.5, p. 250]. We define 7 as the class of representations unitarily
equivalent to \.

Let B be a unital C*-algebra and « an action of G on B by *-
automorphisms. We now recall from [7] the definition and elementary
properties of the spectral subspaces of B for the action o of G. Let p €
G. The character of p is denoted by x,. All irreducible representations

of G whose class in G is p act on vector spaces of the same dimension
which we denote by dim p. We recall from [6, 15.3.3, p. 287] that for

any p,p € G we have:
X,(e) = dimp

and:

0 it p#p,
Xo ¥ X (9 h;xﬁ P (gh™) = {(dimp)_lxp(g) if p=p.

The spectral subspace of B for « associated to p € G is the space
B, defined by:

B, = {di%ﬁp) Zxﬁ(g)%(b) S B} )

geG

i.e. the range of the Banach space operator on B defined by:

(3.1) P,:be B— diTé(’p) Zxﬁ(g)ag(b).
geG

In particular, the spectral subspace associated to the trivial represen-
tation is the fixed point C*-subalgebra By of B for the action « of G.



10 ALVARO ARIAS AND FREDERIC LATREMOLIERE

Now, we have:

RBya) = Sl dlmG 33 wlahny (hag(@)

geG heG
- IGI |G Z(pr gh™)xz( )) J(a)
geG \heG
! it p#p
3.2 _ . i /
( ) { d|G(|p) ZQGG Xﬁ(g)ag(a) if p=p.

Hence Pg = P, so P, is a Banach space projection and P,P, = 0 for
all p’ # p so these projections are pairwise orthogonal.
Moreover, for any g, h € G, from [6, 15.4.2 (2) p. 292]:

1G5t 4 is conjugated with A
3.3 Ry =9 Ol DI cOnns ’
(3.3) Zxﬂ(g)xp( ) { 0 otherwise.

peC

where for g € G the quantity C(g) is the number of elements in G
conjugated to g. In particular, note that since g € G\ {e} is not
conjugated to e, we have by Equality (3.3) that:

(3.4) pr )dim p = pr = 0.

peG peCG

Furthermore, because each irreducible representation p of G appears
with multiplicity dim p in the left regular representation of G one can
show [6, 15.4.1, p. 291] that:

(3.5) > (dimp)* = |G].

pe@
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Hence for all b € B:
SRM) = 3 dlfg(‘p) S %, (@) (D)

pel ped g€G
1 .
= @Z > " dim (p) x,(g) | g(b)
geG pE@

— ’—é| Zdim(p)x(e) a.(b) by Equality (3.4)

peé
1
(3.6) = @ > " dim(p)® | b= b by Equality (3.5).

Hence > s P, = Idp. Thus by (3.2) and (3.6) we have:
(3.7) B=PB,

pel
We now establish that the restriction of any irreducible representa-
tion of a crossed-product of some unital C*-algebra A by G is the direct
sum of finitely many irreducible representations of A.

Theorem 3.1. Let G be a finite group and A a unital C*-algebra. Let
a be an action of G by *-automorphism on A. Let II be an irreducible
representation of A X, G on some Hilbert space H. We denote by UY
the canonical unitary in A X, G corresponding to g € G. Then:
e The action g — AdII(UY) on B(H) leaves the commutant
I (A) of I(A) invariant, and thus defines an action 3 of G
on I1 (A),
e The action (3 is ergodic on II (A),
e The Von Neumann algebra 11 (A)' is finite dimensional,
o The representation 1114 of A is equivalent to the direct sum of
finitely many irreducible representations of A.

Proof. Let M = II(A)". Denote U, = II(UY) for all g € G. Let T € M.
Let a € A and g € GG. Then:

USTUS I(a) = USTUST(a)USUY
= UpTI (ag-1(a)) Uy
= Upll(ag-1(a)) TUF
= USUSTI(a)USTUY
= (a)ULTUS.
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Hence URTU" € Mfor all g € G and T' € M. Define 3,(T) = UTUF
for all g € G and T € M. Then g € G — (3, is an action of G' on M.

Let now T € 90 such that 3,(T) = T for all ¢ € G. Then T
commutes with Uf; for all ¢ € G. Moreover by definition of 91, the
operator T commutes with II(A). Hence T" commutes with II which is
irreducible, so T' is scalar. Hence [ is ergodic.

Let p be an irreducible representation of G (since G is finite, p is
finite dimensional). By [7, Proposition 2.1], the spectral subspace 9,

of M for [ associated to p is finite dimensional. Since 9 = @peézmp

by Equality (3.7) and since G is finite by [6, 15.4.1, p. 291] we conclude
that 901 is finite dimensional.
Denote 114 by m4. Let pi,...,pr be projections in 9, all minimal

and such that >>F_ p; = 1. Lets € {1,..., k}. Then by definition of 92,
the projection p; commutes with 74. Hence p;m4p; is a representation
of A. Let ¢ be a projection of p,/H such that p; commutes with p;m ap;.
Then ¢ < p; and ¢ € M, so ¢ € {0,p;} since p; is minimal. Hence
P ap; is an irreducible representation of A. Therefore:

k k
Ty = (sz) T 4 since Zpi =1,
i=1 i=1

k
= ZpﬂrApi since p; = p; € M.
i=1
Hence 74 is the direct sum of finitely many irreducible representations
of A. O

3.2. Minimality of the irreducible supports. The following is our
key observation which will drive the proofs in this section:

Observation 3.2. Let II be an irreducible representation of A x, G
and let mq = Ilj4. Then for each g € G the representations w4 and
T 0 g are unitarily equivalent. Hence, the decompositions in direct
sums of irreducible representations of A for ma and w4 o oy are the
same.

This observation is the basis of the next lemma, which is instrumental
in the proof of the theorem to follow.

Lemma 3.3. Let « be an action of a finite group G on a unital C*-
algebra A. Let 11 be an irreducible representation of A X, G and let 74
be the restriction of Il to A. Then there exists a finite subset ¥ of the

spectrum A of A such that all irreducible subrepresentations of w, are
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in 3. Moreover, all the elements of ¥ in a given orbit for a have the
same multiplicity in 4.

Proof. Let ¥ be the subset of the spectrum Aof A consisting of all
classes of irreducible representations weakly contained in m4. By The-
orem (3.1), since II is irreducible, 7 4 is a finite direct sum of irreducible
representations of A so ¥ is nonempty and finite.

Let g € G. Now, by Observation (3.2), since 74 o o,—1 is unitarily
equivalent to 74, its decomposition in irreducible representations is the
same as the one for m4. Thus, if n € ¥ then a,(n) € X. Since ay is

a bijection on A and thus is injective, and since ¥ is finite, @y is a
permutation of 3.

Let X, be the orbit of ¢ € ¥ under @ and write 74 =7 & ... B 1)
using Theorem (3.1), where 7y, ..., are irreducible representations
of A, with the class of 7, being ¢. Now, for g € G, let ny g, ..., N (g)q
be the integers between 1 and k such that 7,  is equivalent to m o
ay. In particular, m(g) is the multiplicity of m; o ay in m4. Then

<7Tn1’e S...0 an(l)’e> o ay must be the subrepresentation 7,,  @...®

T Of Ta. So m(g) = m(e) by uniqueness of the decomposition.

Hence for all g the multiplicity of @,(¢) is the same as the multiplicity
of . O

We now establish the main theorem of this paper, describing the
structure of irreducible representations of crossed-products by finite
groups. A wunitary projective representation of G is a map A from
G into the group of unitaries on some Hilbert space such that there
exists a complex valued 2-cocycle o on G satisfying for all g, h € G the
identity Ay, = o (g, h)AgAy.

Theorem 3.4. Let G be a finite group and o be an action of G on
a unital C*-algebra A by *-automorphisms. Let I1 be an irreducible
representation of A X, G on some Hilbert space H. Then there exists
a subgroup H of G and a representation w of A on some Hilbert space
J such that, up to conjugating I1 by some fixed unitary, and denoting
the index of H in G by m = G : H we have the following:

For any subset {g1,...,gm} of G such that g is the neutral element
of G and Hg; N Hg; = {q1} fori# j while G = UjL Hg;, we have:

(1) The representations T o ag, and T o ay, are disjoint for i,j €
{1,...,m} and i # j (so in particular, they are not unitarily
equivalent),
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(2) There exists an irreducible representation my of A on a Hilbert
subspace Hy of J and some integer r such that J = C" ® H,
and m = lor ® 71,

(3) For any h € H there exists a unitary V" on Hy such that
Vhry (Vh)* =m oay, and h € H — V" is a unitary projective
representation of H on Hq,

(4) We have H = T,y & ... & J,,, where for alli =1,...,m the
space Jy, 1s an isometric copy of J,

(5) In this decomposition of H we have for all a € A that:

m(a)

(3 8) H(CL) — mo &92 (a)
T ooy, (a)
(6) In this same decomposition, for every g there exists a permu-
tation 09 of {1,...,m} and unitaries U} : Jy, — To(g,) Such
that:

ij=1,0..m
where O is the Kronecker symbol:

(3.9) 5b_{ L ia=b,

a 0 otherwise.

Moreover:
H={geG:0%1)=1}.

(7) The representation ¥ of A x, H on J defined by ¥(a) = 7(a)
for all a € A and V(U") = U} for h € H is irreducible.
Moreover, there exists an irreducible unitary projective repre-
sentation A of G on C" such that on J = C" ® Hy, while
VU(a) = lor @ mi(a), we also have Y(U") = Ul = Aj, @ V.

Proof. Let II be an irreducible representation of A x, G. Denote II 4

by ma. By Theorem (3.1), there exists a nonzero natural integer k

and irreducible representations my, ..., of A, acting respectively on

Hilbert spaces Hi, ..., Hy such that up to a unitary conjugation of II,

we have H = H; @ ... ® Hy and in this decomposition, for all a € A:
m1(a)

a(a) = T2 (a)

mr(a)
At this stage, the indexing of the irreducible subrepresentations of
74 is only defined up to a permutation of {1,...,k}. We start our
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proof by making a careful choice of such an indexing. To do so, first
choose 7 arbitrarily among all irreducible subrepresentations of 4.
Our next step is to set:

H = {g € G:m oayis equivalent to m}.

We now show that H is a subgroup of G. For all h € H we denote by V"
the (unique, up to a scalar multiple) unitary such that Vhr, (V)" =
m1 0 a,. Then if g, h € H we have:

T10ag-1 = (moay)oay-1 =V (moas) Ve

= VIV im Vi

1

SO 71 © (argp,—1 is unitarily equivalent to 7y and thus gh™" € H by defini-
tion. Since H trivially contains the neutral element of GG, we conclude
that H is a subgroup of G.

Let {g1,...,9m} a family of right coset representatives such that g;
is the neutral element of G [10, p. 10], i.e. such that for i # j we have
Hg;NHg; = {g1} while G = U7, Hg;. In particular, fori € {2,...,m}
we have g; # ¢; and by definition of H this implies that 7 o oy, is not
equivalent to .

Then let 7o, ..., m,, be all the representations equivalent to ;. We
then choose m,,4+1 to be a subrepresentation of m4 equivalent to m; o
ag,. Again, we let m,,11,...,m,, be all the representations which are
equivalent to 7, 1. More generally, we let 7, 11,...,7,,, be all the
subrepresentations of m4 equivalent to 7, o ay, for all j € {1,...,m}.
All other irreducible subrepresentations of 7,4 left, if any, are indexed
from n,, + 1 to k and we denote their direct sum by A.

Note that A contains no subrepresentation equivalent to any repre-
sentation m o oy for any g € G. Indeed, if ¢ € G then there exists
h € H and a unique j € {1,...,m} such that g = hg;. Thus:

10 Qg =T 0Q,0Q,, = yh (7‘(‘1 oagj) vl

and thus 7 o ay is equivalent to one of the representations 7y,...,m,,,
by construction. Also note that if 71 o «, is equivalent to 7 o ay,
then gigj’1 € H which contradicts our choice of {gi,...,gn} unless
i = j. Hence, for i # j the representations 7, o oy, and 7, 0 oy, are not
equivalent.

Now, if ¢,,...,¢,, represent the unitary-equivalence classes of the
representations my, m 0y, ..., T 0y, then ¥y = {¢,,...,¢,,} is the
orbit of ¢, for the action @ of G on A Therefore, there exists r > 1
such that n; = jr+ 1 for all j = 1,...,m by Lemma (3.3), i.e. all the
representations 7 o oy, (¢ = 1,...,m) have multiplicity r in 7 4.
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Thus, (up to equivalence on IT) and writing H = @¥_,’H; and in this
decomposition:

(3.10) T — TMP...0m,. D 7Tr+1@...@7'(2r b---
h,—/ . J/

—~—
each equivalent to each equivalent to m10ag,
DTy D Tpeg1 D ... D T

N ~~ o
A

= m®...0m,, DA

—_———

disjoint from A.

Let g € G. Still in the decomposition H = H; & ... & Hj with our
choice of indexing, let us write:

9 9 g
ay Ayp -0 Ay
9 9 g
ay, Qe -+ G
21 22 2k
9y — 779 —
II(U9%) =Ujf) = ] _
9 9 g
L R
for some operators afj from H; to H; with 4,5 =1,... k.

Since Ufma(a) = ma(ay(a))Uf}, we can write:

[ afym adyme - Ay
(3.11) ATy AT -cc AT
| alym al,me - al Ty

[ (m100y) ai; (mo ay) afy -+ (mo ay) agk

- (ma 0 O‘g) ag, (mpo 0‘9) agey -+ (myo O‘g) agk

| (Troag)af, (mroag)aly - (T oay)aj,

As a consequence of Equality (3.11), we observe that for all i,5 €
{1,...,k} we have:
(3.12) ag;my = (m; 0 ag) af;.
First, let ¢ > mr. Then the equivalence class of 7; is not in the
orbit ¥ of ¢, for @ by construction. Hence m; o o, is not unitarily
equivalent to m; o v, for any v € G. On the other hand, let j < mr.
The representation 7; is equivalent to m; o oy, for some [ € {1,...,m}
by our choice of indexing. Therefore, 7; o oy and m; are not unitarily
equivalent, yet they both are irreducible representations of A. Hence
by Lemma (2.3) applied to Equality (3.12) we conclude that aj; = 0.
Similarly, m; and 7; o a; are not equivalent so a?i =0 as well.
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Hence:

- g g -

aj, ce aim, 0 Ce 0

9 g
Ug _ amrl amr,mr g 0 9 0
I — C. ce
0 0 a’mr+l,mr+l amr—l—l,k

g9 g

. 0 - 0 Ak mr 41 T Ay

If we assume that n,, = mr < k then for all ¢ € G the unitary U3
commutes with the nontrivial projection 0@ ... @ 0®1® ... ® 1 of H,

- -—
mr times k—mr times

and so does m4. Yet II is irreducible, so this is not possible and thus
ny, = k. Thus X = 3, is an orbit of a single ¢ € A for @ and there is
no A left in Equality (3.10). In particular, the cardinal of ¥; is m.
Since by construction 7, is unitarily equivalent to m; o oy, for all
Jj=0,...,m—1and z =1,...,r, there exists a unitary wj,, . from H;
onto Hjyy. such that wj, . (71 0ay.)w),,, = Tjri. (note that we can
choose w; = 1). We define on H = H; @ ... ® Hy, the diagonal unitary:

wi
0=
o

Denote by Ad 2 is the *-automorphism on the C*-algebra of bounded
operators on ‘H defined by T — QTQ*. Then up to replacing I by
AdQ oIl, we can assume that ;4. = m oy, forall j € {1,...,m}
and z € {1,...,r}. Given an irreducible representation 7 of A and any
nonzero natural integer z we shall denote by z - 1 the representation
n®...dn. Thus, if we set m =r-m; we see that 74 can be written as
—_———

z times
in Equality (3.8) with 7 o o, disjoint from 7o oy, for i,j € {1,...,m}
and i # j.

Let again g € G. We now use the same type of argument to show that
Uf is a “unitary-permutation shift”. Let j € {0,...,m — 1}. Let ¢ €
{1,...,m} such that g;g € Hg, — by our choice of g1, ..., g, there is
a unique such ¢. Let i € {0,...,m —1}\{¢} and z,h € {1,...,r}. By
construction, the representation (r - m,j45) o ¢, is unitarily equivalent
to 7 - Ty and disjoint from r - m,4,. Yet by Equality (3.12) we have
again that:

agi—l—z,rj—l—h,/rri‘f‘z = (er""h © CYg) a’?i—&—z,rj—l—h‘
Thus afn”wﬁh = 0 by Lemma (2.3) since 7,4+, and 7,44 © o are not
equivalent yet irreducible. Thus, if for all z € {0,...,m — 1} we define
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the Hilbert subspace J, = H.,11 @ ... ®H.41)r of H then we conclude
that U} (J;) C Jyand H=TJo® ... ® Jm-1. Moreover, by uniqueness
of ¢ we also obtain that:

(3.13) U (7)) €

and thus Uf (J;) = J;. Define 09(j) = ¢. Then 09 is a surjection
of the finite set {1,...,m} by (3.13), so 09 is a permutation. If ¢ is

defined as in Equality (3.9) then, if we set U/ = Uﬁwj then:
(3.14) (r-(mj 0 ay)) U} = U7 (r - my)
and
g _ |17959907)

foralli=1,...,m.

Since Uy is unitary, so are the operators Uy, ..., U,,. In particular,
J; and Jy are isometric Hilbert spaces for all j = 0,...,m — 1. Note
that (r-m) o a, acts on J;—1 for ¢ = 1,...,m by construction. We

now denote r - 7 by m and J = Jp.

Now, by construction ¢9(1) = 1 if and only if there exists an operator
WonJi®...® T, such that U = Uy & W, which is equivalent
to Uim = (m o ay) U{. By construction, this is possible if and only if
ge H.

Let now h € H. Hence UlrU! " = 7o . If we set U(a) = 7(a)
and W(U") = U, we thus define a representation of A x, H on Jy. Let
b € Ax, H. Then there exists g € G +— ag such that b= > _,a,U".
Hence I1(b) = >_ ., ma(ag)Usy. Let @ be the projection of H on Jo.
Then:

QUMQ = > w(a)QUAQ

geG
(3.15) = ) ()l =V (Z ahUh> :
heH heH

Since II is irreducible, the range of II is WOT dense by the double
commutant theorem. Hence, since the multiplication on the left and
right by a fixed operator is WOT continuous, we conclude that QIIQ)
is WOT dense in B (QH). Therefore, by Equality (3.15), we conclude
by the double commutant Theorem again that W is an irreducible rep-
resentation of A %, H.

Last, note that since 7y is irreducible, if h, g € H then since:

| 7AC VR VL S VU VR P
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there exists A, € T such that V9" = X\ ,V9V". Hence g € H — V9
is a projective representation of H on H;. Note that although the
unitaries V" are only defined up to a scalar, there is no apparent reason
why one could choose A to be the trivial cocycle unless the second
cohomology group of H is trivial. We now note that Jy = J = C"®H;
by construction. Now, for all h € H we set v, = 1cr ® V. Again, vy,
is a projective representation of H. Moreover, for h € H:

Utvim = mUM.

Since 7 = r - 1, Lemma (2.3) implies that there exist a unitary A, €
M, (C) such that Uv; = A, ® 1y,. Hence U} = Aj, @ V. Now, for
h,g € H we have UMU? = U} which implies that:

(M@ V") (Mg @ V) = MAy @ VIVI = Ay @ V.

Hence h — Ay is a unitary projective representation of H on C" with
cocycle X. Moreover, if T commutes with the range of A then T ® 1
commutes with the range of W, which contradicts the irreducibility
of U. Hence A is irreducible. This completes the description of the
representation W. ]

For generic groups, the representation ¥ of Theorem (3.4) may not
be minimal, i.e. its restriction to A may be reducible. The simplest way
to see this is by consider a finite group GG admitting a representation A
on C" for some n € N. Then A extends to an irreducible representation
IT of the crossed-product C x, G where « is the trivial action. Thus,
II,c, which decomposes into a direct sum of irreducible representations
of C, must in fact be the direct sum of n copies of the (unique) identity
representation of C. Note that in this case II = W using the notations
of Theorem (3.4). Thus, for any n € N one can find an example where
U is irreducible yet not minimal. This situation will be illustrated
with a much less trivial example in Example (5.6) where G will be
permutation group on three elements. However, the representation W
must be minimal when the group G is chosen to be a finite cyclic group.
We develop the theory for these groups in the next section.

Because the representation W of Theorem (3.4) is of central interest
in the decomposition of II, we establish the following criterion for ir-
reducibility for such representations. Note that the next theorem also
describes the situation where the commutant of II is a factor.

Theorem 3.5. Let H be a discrete group. Let U be a representation
of Axq H on a Hilbert space H and assume there exists an irreducible
representation w1 of A on a Hilbert space Hy such that H = C" ® Hy,
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T 0 ay, 18 equivalent to w1 for all h € H and V(a) = le¢r @ w(a) for
all a € A. Then there exist two unitary projective representations A
and V of H on C" and H, respectively such that U(U") = A, @ VI,
Moreover, the following are equivalent:

(1) W is irreducible,
(2) The representation A is irreducible.

Proof. By assumption, for h € H there exists a unitary V" such that
Vi, (Vh)* = 7 o ¢y, and this unitary is unique up to a constant by
Lemma (2.3). From the last section of the proof of Theorem (3.4), we
get that h € H — V" is a projective representation of H for some
2-cocycle A\ and, since m; is irreducible, there exists a projective repre-
sentation A of H on C" such that ¥(U") = Aj, ® V", and moreover if
U is irreducible then so is A.

Suppose now A is irreducible. Let T' € [V (A x, H)]'. Since T' com-
mutes with ¥ (A) = 1lcr ® 1 (A), it follows that T = D ® 14y, for
some D € M, (C). Now T commutes with U(U") for all h € H, so
D commutes with A, for all g € H. Hence D is scalar and ¥ is irre-
ducible. 0

We also note that the group H is not a priori a normal subgroup of
G. Tt is easy to check that the following two assertions are equivalent:

(1) H is a normal subgroup of G,
(2) For all g € G, the unitary Uj; is block-diagonal in the decom-
position H=Jy® ... ® Jn_1 if and only if g € H.

In particular, when G is Abelian then for g € G we have ¢9(1) = 1
if and only if ¢9 = Id.

We conclude by observing that the representation ¥ involves pro-
jective representations of H. We now offer an example to illustrate
this situation and shows that this phenomenon occurs even when G is
Abelian. We shall see in the next section that finite cyclic groups have
the remarkable property that such unitary projective representations
do not occur.

Example 3.6. Let p,q be two relatively prime integers. Let N =
exp (2i7r§>. Denote by U, the group of ¢™ roots of unity in C. Let

a be the action of Z, on C (U,) defined by a1(f)(z) = f(Az). Then
the crossed-product A = C(U,) X4 Zy is isomorphic to M,(C). The
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canonical unitary is identified under this isomorphism with:

01 0 O
0 1
10 -0

while the generator z € U, — z of C' (Uy,) is mapped to:
1

P

The dual action v of the Abelian group G = Z, x Z; on C(U,) X4 Z,
can thus be described by:

!
Y. (U) = exp (22’7#%) U and -y, (V) = exp (2@'71%) 1%

for all (z,2') € G. Now, for (z,2') € G we set A(z,2') = X U*V7 .
Note that G is generated by ¢ = (1,0) and £ = (0,1) and A(¢) = U
while A(§) = V. Since VU = AUV, the map A is a unitary projective
representation of G on C? associated to the group cohomology class of
exp (imo) where o is defined by:

o((2,2), (9, y)) = g (2 — 2'y) .

Moreover, the dual action is of course an inner action, and more pre-
cisely:
Vo (a) = UVZaV U
= A(z,2)aA (z2,2)".

Welet N': z,2" € G— A(2,z). Then an easy computation shows that
A is a unitary projective representation of G on C? associated to the

cocycle defined by exp (—imo), and N'({) =V and N'(§) = U.
Let B= Ax,G. Let us define the representation U of B on C* @ C?
by:
Ua) = 1®a,
VeU,
U = UaV.

B
I
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First, we observe that:
VUV (a)V(U) = 1@Ual* = ¥(y.(a)),
V(U)W(a) U (U = 1@ VaV* = U(y(a)).
Therefore U is indeed defining a representation of B. Moreover:
v(U7) = Ng) © Alg)

for g € G. Since N is irreducible, V is irreducible as well by Theorem
(3.5). Last, the commutant of W(A) is My (C), i.e. the restriction of
U to A is the direct sum of two copies of the identity representation of

A.

We now turn to the special case of cyclic groups where the represen-
tation W of Theorem (3.4) is always minimal, i.e. its restriction to A is
always an irreducible representation of A. We shall characterize such

minimal representations in terms of the fixed point C*-subalgebra A,
of A.

4. Actions oF FINITE CycLic GROUPS

Let A be a unital C*-algebra and o be a *-automorphism of A of
period n, for n € N, i.e. ¢ = Idy. We shall not assume that n is
the smallest such natural integer, i.e. ¢ may be of an order dividing
n. The automorphism ¢ naturally generates an action of Z, on A by
letting «,(a) = o*(a) for all z € Z, and k € Z of class z modulo
n. The crossed-product A x, Z, will be simply denoted by A %, Z,,
and the canonical unitary U' € A x, Z, corresponding to 1 € Z, will
simply be denoted by U. The C*-algebra A x, Z, is universal among
all C*-algebras generated by a copy of A and a unitary u such that
u™ =1 and vau* = o(a).

Theorem (3.4) already provides much information about the struc-
ture of irreducible representations of A X, Z,. Yet we shall see it is
possible in this case to characterize these representations in terms of
irreducible representations of A and of the fixed point C*-subalgebra
A;q of A for 0. Of central importance in this characterization are min-
imal representations of A for ¢ and their relation to irreducible rep-
resentations of A;. We start this section with the exploration of this
connection. Next, we propose a full characterization of irreducible rep-
resentations of A X, Z,,.
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4.1. Minimal Representations. An extreme case of irreducible rep-
resentation for crossed-products is given by:

Definition 4.1. Let II be an irreducible representation of A x, G is
called minimal when its restriction to A is irreducible. Moreover, if w is
an irreducible representation of A such that there exists some irreducible
representation 11 of A x, G whose restriction to A is 7, then we say
that w is minimal for the action o of G.

Such representations play a central role in the description of irre-
ducible representations of A x, Z, when ¢ is an automorphism of pe-
riod n. We propose to characte/rize them in term of the fixed point
C*-subalgebra A; of A. The set Z,, of irreducible representations of Z,,
is the Pontryagin dual of Z,, which we naturally identify with the group
U,, of n*® roots of the unit in C. Let A € U,,. Thus k € Z,, — \" is an
irreducible representation of Z, and the spectral subspace Ay of A for
A is given by {a : o(a) = Aa}. Indeed, A, is by definition the range of
the projection Py : a € A +— %Zz;é A*o*(a) by Equality (3.1), and
it is easy to check that P\(a) = a <= o(a) = Aa from the definition
of P/\.

Theorem 4.2. Let o be a *-automorphism of a unital C*-algebra A of
period n. Let 11 be an irreducible representation of A X, Z, on a Hilbert
space H and let w4 be its restriction to A. Let 3 be the spectrum of
Un == 7(U). Now, ¥ is a subset of Uy,; let us write ¥ = {A1,...,\p}
and denote the spectral subspace of Un associated to \; by H;. With
the decomposition H = &,_, Hy, we write, for all a € A:

0511((1) a12(a) . alp(a)
(4.1) ra(a) = Om:(a) 22 (a) . a2p:(a)
ap(a) ap(a) - aula)

Then for k,j € {1,...,p} the map o is a linear map on A/\jﬁ
and null on EBH#\],EAM. Moreover, the maps o, are irreducible *-
representations of the fized point C*-algebra A;.
Furthermore, the following are equivalent:
e The representation T of A is irreducible, i.e. 11 is minimal,
o The *-representations ouy,..., 0y, are pairwise not unitarily
equivalent, i.e. for all i # j € {1,...,p} the representation
ay; 18 not equivalent to ;.

Proof. Since Uj; = 1, the spectrum of the unitary Uy is a subset ¥ =
{A1, ..., A} of U, for some p € N. We write H = H; & ...® H, where
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'H; is the spectral subspace of Uy for the eigenvalue \; fort=1,...,p,
A1
so that Uy = . Let 4,7 € {1,...,p} and let «;; be the
>\p
map defined by Identity (4.1). First, it is immediate that a; is linear.
Now, a simple computation shows that:

Unr(a)Uy; =
M A\ an(a) - agp(a) A
_ M Lo aya) X
ﬂl(a) AMAgaia(a) --- )\lﬁalp(a)
_ )\2)\10'521(60 ag(a) | AzAp?zgp(a) — r(0(a))
L /\p/\_l(;‘pl (a) /\p)‘_Qazﬁ(a) T apz;(a)

Therefore for all 4,5 € {1,...,p} we have that a;(c(a)) = Miju;(a).
Let a € A, for p € U, ie. o(a) = pa. Then a;;(o(a)) = payj(a).
Therefore either a;j(a) =0 or p = )\1)\_]

In particular, «;; is a representation of A; for all j € {1,...,p}.
Indeed, if @ € Ay then aji(a) = 0 if j # k and thus m4(a) is diagonal.
Since 74 is a representation of A, it follows from easy computations
that «;; are representations of A;.

Now, since A@ AU @ ... ® AU ' = A X, Ly, every element of the
range of II is of the form @?:—(}WA(aj)Uﬂ for ag,...,a,—1 € A. Now,
let i € {1,...,p}. We observe that the (i,7) entry of @;‘:—(}WA(ai)Uﬂ in
the decomposition H = H; @ ... ® H, is given by Z;:& Nagi(a;) =
o <Z;:S N aj>. Hence, the (i,4) entries of operators in the range of
IT are exactly given by the operators in the range of «;;. Now, let T" be
any operator acting on H. Since II is irreducible, by the Von Neumann
double commutant Theorem [5, Theorem 1.7.1], T' is the limit, in the
weak operator topology (WOT), of elements in the range of II. In
particular, the (i,7) entry of 7" in the decomposition H = H1&...&H,
is itself a WOT limit of elements in the range of «;; since the left and
right multiplications by a fixed operator are WOT continuous [5, p.
16]. Therefore, the range of a;; is WOT dense in H;. Thus, by the
double commutant theorem again, «;; is irreducible.

We now turn to characterizing minimal representations. We first
establish a necessary condition.
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Suppose that there exists 4,7 € {1,...,p} with ¢ # j and a unitary
u such that uau* = a;;. In the decomposition H = H; @ ... © H,,
define the block-diagonal unitary

Di=1®..0loudld...ol
N e’ N e’

i—1 times p—1i times

Then by conjugating 74 by D!, we see that we may as well assume
a;; = oj;. Yet, this implies that in the WOT-closure of the range of 74,
every operator has the same (i,4) and (j, 7) entry in the decomposition
H="Hi®...&H,. Hence the range of 74 is not WOT-dense and thus
74 is reducible, so II is not minimal.

We now prove that our necessary condition is also sufficient. Assume
that a1, ..., oy are pairwise not unitary equivalent. The claim is that
7 4 18 irreducible.

Ty - Ty
Let T € (7 (A))". Decompose T = : : with respect
T Tp

to the decomposition H = @Y_H,. Let i # j. First, note that if a € A4,
then «;;(a) = 0. Second, since T' commutes with 74(a) for a € A;, we
have:

(4.2) a;i (a) T = Tija5 (a) for a € A;.

By Lemma (2.3), since a;; and «;; are irreducible and not unitarily
equivalent for ¢ # j, we conclude that 7;; = 0. Moreover, for all
i€{l,...,p} and a € A; we have «;; (a) Tj; = Ty (a). Since «y; is
irreducible, we conclude that T}; is a scalar. Therefore, the operator T
commutes with the operator Up. Since II is irreducible, we conclude
that T itself is a scalar. Therefore, w4 is an irreducible representation
of A and thus IT is minimal. O

Together with Theorem (3.4), Theorem (4.2) will allow us to now
develop further the description of arbitrary irreducible representations
of crossed-products by finite cyclic groups. It is interesting to look
at a few very simple examples to get some intuition as to what could
be a more complete structure theory for irreducible representations of
crossed-products by Z,. First of all, one should not expect in gen-
eral that the spectrum of Uy is a coset of Z,, as the simple action of

azAd{Z

e’b

e } on M, (C) shows. In this case, the identity is the

only irreducible representation of the crossed-product M, (C) X, Zy =
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M, (C) and clearly {i, ei%} is not a coset of Z,. Of course, this is an

example of a minimal representation.

In [4], we showed that all irreducible representations of A X, Zs
where regular or minimal. The following example shows that we can
not expect the same in the general case.

Example 4.3. Let A = M, (C) & M, (C) and define o(M & N) =
WNW*& M with W = (1) (1) . Then o* =1dy and 0>(M @& N) =
WMW*aWNW?*. Now, let m; : Mhi & My € A— M; withi=1,2. Of
course, my, T are the only two irreducible representations of A up to
equivalence, and they are not equivalent to each other (since they have

complementary kernels). Now, we consider the following representation
II of A X, Zy. It acts on C*. We set:

T4 = 1 0:|

i 0 o
and: )
0 1
tn=| b g } .
First, observe that 11 thus defined is irreducible. Indeed, M commutes

with w4 if and only if M = 2\ z with A\, i € C and bry(a) = m1(a)c
with a € A. Now, M commutes with Uy if and only if A\ = u and
Wb = c. Now, let a € My (C) be arbitrary; then bms (a & Wa) =
T (a® Wa)cie.
bWa = abW.

Hence bW s scalar. So b = AW. Thus b commutes with W. But
then for an arbitrary a we have bry (aW @ a) = w1 (aW @ a) bW i.e.
ba = aWbW = ab so b commutes with My (C) and thus is scalar. Hence
b=0. So M =\l for A\ € C as needed.

Moreover, the restriction of 11 to A is my = m ® my. Thus, Ta

is reducible. Now, the fized point C*-algebra A, is the C*-algebra
{MG}M M = { Z Z } sa,b e (C}. Thus, Ai has two irreducible

representations which are not equivalent:
a b
<p1:{ba}€A1r—>a+b

and
@2:[2 Z]EAlHa—b.
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We note that for i = 1,2 we have m; restricted to Ay is p; B ©s.

Now, using the notations of Example (4.3), II is not regular, since
the restriction of any irreducible regular representation to the fixed
point algebra A; is given by the sum of several copies of the same
irreducible representation of A;. Trivially, II is not minimal either
since IIj4 = m; ® m. However, both m; and 7, are minimal for the
action of o2. Moreover, both m; and 7, restricted to A; are the same
representation a;@as. We shall see in the next section that this pattern
is in fact general.

4.2. Characterization of Irreducible Representations. We now
present the main result of this paper concerning crossed products by
finite cyclic groups. In this context, one can go further than Theorem
(3.4) to obtain a characterization of irreducible representations of the
crossed-products in term of the C*-algebras A and A;. The next lemma
is the sufficient condition for this characterization.

Lemma 4.4. Let m; be an irreducible representation of A acting on a
Hilbert space J. Assume that there exists a unitary V on J such that

for some m,k € {1,...,n} with n = mk we have 7100™ = VmV* and
VE =1, and that m is the smallest such nonzero natural integer, i.e.
71 0 07 is not unitarily equivalent to w1 for j € {2,...,m —1}. Then
d the followi t the Hilbert = :
efine the following operators on the Hilbert space H=J @& ...d T
m times
[0 1 0 0]
1
(V) =
0 0 - 0 1
V0 --- 0 0]
and for all a € A:
1 (a)
771 O O'(G)

ma(a) =
700 (a)
Then the unique extension of Il to A X, Z,, is an irreducible represen-
tation of A Xy Z,,.
Proof. An easy computation shows that II thus defined is a represen-
tation of A Xy Z, on H = J®...®J. Write m; = 7 o o' for
—

m times
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1=1,...,m. Let T' be an operator which commutes with the range of
II. Then T' commutes with 74 := Il 4. Writing 7" in the decomposition
H=J0®...®J as:

Ty - Tim
T= : ;
Tml e Tmm
Let 4,5 € {1,...,m}. Since Tma(a) = wa(a)T for all a € A, we
conclude that m;(a)T;; = Ti;mj(a). By Lemma (2.3), since m; and =;

are irreducible and not unitarily equivalent, we conclude that T;; = 0.
Moreover, T;; commutes with 7; which is irreducible, so we conclude
that:

A1
T —
Am
for A,..., A, € C. Since T commutes with Uy we conclude that
A=\ forallie{1,...,m}. Hence II is irreducible. O

We now are ready to describe in detail the structure of irreducible
representations of crossed-products by finite cyclic groups in terms of
irreducible representations of A and Aj;.

Theorem 4.5. Let o be a *-automorphism of period n of a unital C*-
algebra A. Then the following are equivalent:

(1) II is an irreducible representation of A X, Zy,

(2) There exists k,m € N with km = n, an irreducible representa-
tion w1 of A on a Hilbert space J and a unitary V on J such
that VF =1 and Vi (1) V =m0 0™ (+) such that:

0 1
(U) = X
U) 0 1
% 0
and for all a € A:
m1(a)
mioo(a
(a) = 100(a)
71 00™ 1 (a)
where for any i € {1,...,m — 1} the representations w1 and

w1 00" are not equivalent.
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Moreover, if (2) holds then the representation 1 of A Xgm Zy on J
defined by Y(a) = m(a) for a € A and Y(U) =V is a minimal repre-
sentation of A Xom Zyj. Let n be the cardinal of the spectrum of V.. The
restriction of my to Ay is therefore the sum of n irreducible represen-
tations ¢y, ..., @, of Ay which are not pairwise equivalent. Last, the
restriction of oo to Ay is unitarily equivalent to o, ®. . DY, = T4
for allie {0,...,m—1}.

Proof. By Lemma (4.4), (2) implies (1). We now turn to the proof of
(1) implies (2). Let II be an irreducible representation of A X, Z,. By
Theorem (3.4), there exists m € N such that m divides n, an irreducible
representation m; of A on some space H; and r € N with » > 0 such
that, if 7 = r - m; then up to conjugating II by some unitary:

e Foralli =1,...,m—1 the representation woo® is not equivalent
to m,

e The representation m o ¢ is equivalent to m,

e We have the decomposition H = Jy & ... ® J,n_1 where J; is
the space on which (r-7) o 0% acts for i € {0,...,m} and is
isometrically isomorphic to 7,

e In the decomposition, H = Jy&b. ..H J,n_1 there exists unitaries
Uy,...,U, such that:

o U; 0 .- 0

0 0 Uy O :

Un = : 0
O 0 Umfl

U, 0 -~ 0 0

with (7‘['1' ] 0') Uz = Uiﬂ'z’—i-l and Ul . Hi+1 I Hz for all 7 € Zm

Indeed, if G = Z,, in Theorem (3.4) then H, as a subgroup of G, is of
the form (mZ) /nZ with m dividing n, and if welet gy = 0,92 =1, ...,
gm = m — 1 then we can check that this choice satisfies the hypothesis
of Theorem (3.4). With this choice, the permutation o' is then easily
seen to be given by the cycle (12 ... m).

We will find it convenient to introduce some notation for the rest
of the proof. By Theorem (3.4), for i € {0,...,m — 1}, after possi-
bly conjugating II by some unitary, we can decompose J; as H,;+1 B
.. @ M), where H,;y; is isometrically isomorphic to H; for all
j € {1,...,r}, so that the restriction of II|4 to the space J; is written

T ®...Hm | oot in this decomposition.
—_——

r times
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We now show how to conjugate Il by a unitary to simplify its ex-
pression further.

If we define the unitary T from H = Jp @ ... B Jpn—1 onto &' Tm-1
by:

UnUpor -+ UL
Us - Us
T:
U
then the unitary Ad (1) o IT(U) of @17, is of the simpler form
0 1 0 -+ 0]
0 0 1
(4.3) AdToIl(U)= | : : -. - 0
0O 0 -+ 0 1
V0 -~ 0 0]

for some unitary V' of J,,—1. Moreover, if we write p; = Ad (U} ... U;)o
71, then:

m

AdTOﬂ'A:@ podit® .. . ®p odi?

j=1

r times

and p; is by definition an irreducible representation of A unitarily
equivalent to .

To simplify notations, we shall henceforth drop the notation AdY
and simply write II for Ad Y olIl. In other words, we replace Il by Ad To
IT and we shall use the notations introduced to study II henceforth, with
the understanding that for all j = 0,...,.m — 1 and k = 1,...,r we
have that 7,4, = m; 0 07, that J; is an isometric copy of Jy and that
H=0®...®Tn-1 with J; = H,j1 @ ... O Hyq1) where w544 acts
on H,;4, which is an isometric copy of H;. Moreover, Uy is given by
Equality (4.3) for some unitary V' of Jo.

We are left to show that each irreducible subrepresentation of w4 is
of multiplicity one, i.e. r = 1. We recall that we have shown above
that H = (mZ) /nZ with n = mk and k € N. Using the notations
of Theorem (3.4), the representation ¥ defined by ¥(a) = m(a) for all
a € Aand ¥(U™) =V is an irreducible representation of A x, H. Now
A x4 H is *-isomorphic to A Xom Zj, by universality of the C*-crossed-
product, and we now identify these two C*-algebras. The image of
U™ € A x, H in the crossed-product A x,m Z;, is denoted by v and
is the canonical unitary of A Xom Zg. Thus by Theorem (3.4) U is
an irreducible representation of A X,m Z; which (up to conjugacy)
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acts on the space C" ® H; and is of the form ¥(a) = 1l¢r ® m1(a) for
a € Aand ¥(v*) = Q(z) ® W(z) for z € Zj where Q and W are
some unitary projective representations of Z; on C" and H; respec-
tively, with 2 being irreducible. Since Z; is cyclic, the range of the
projective representation 2 is contained in the C*-algebra C* (€2(1))
which is Abelian since Q(1) is a unitary. Hence, since (2 is irreducible,
C*(Q(1)) is an irreducible Abelian C*-algebra of operators acting on
C". Hence r =1 and J = H;. Moreover, since U[ff =V &...®V then
Up=VF®...®V* =1y and thus V¥ = 1. Therefore, (2) holds as
claimed.

Last, we also observed that VmV = 1, o ¢* by construction (since
Uk =V @&...®V). Hence by definition, since m; is irreducible, the
representation ¢ of A X, Z, defined by ¢(a) = m(a) for a € A and
Y(U) = V is minimal. Hence, by Theorem (4.2), the restriction of
71 to the fixed point C*-algebra A; is the direct sum of 7 irreducible
representations ¢y, ..., ¢, of Ay such that ¢, and ¢; are not unitar-
ily equivalent for i # j € {1,...,n}, where n is the cardinal of the
spectrum of V. Moreover, since m; = m; o ¢* it is immediate that
m; restricted to A; equals to 7 restricted to A;. This concludes our
proof. 0

Corollary 4.6. LetII be an irreducible representation of Ax,Z,. The
following are equivalent:

(1) Up to unitary equivalence, 11 is an irreducible regular represen-
tation of A X, Zy,, i.e. it is induced by a unique irreducible
representation m of A and:

01
Un = 0
1 0
while T4 = @700’ and 7o o' is not equivalent to wo ol for
,7=1,....n—1 with i # j,
(2) There exists an irreducible subrepresentation m of Il 4 such that
7 oo’ is not equivalent tow fori=1,...,n—1,
(3) There exists a unique irreducible representation ¢ of Ay such
that 11,4, 1s equivalent to n - @,
(4) There is no k € {1,...,n — 1} such that the C*-algebra gener-
ated by TI(A) and UE is reducible.

Proof. 1t is a direct application of Theorem (4.5). O
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We thus have concluded that all irreducible representations of crossed
products by finite cyclic groups have a structure which is a compos-
ite of the two cases found in [4]. Indeed, such representations cycle
through a collection of minimal representations, which all share the
same restriction to the fixed point algebra. The later is a finite sum of
irreducible mutually disjoint representations of the fixed point algebra.

Remark 4.7. Let o be an order n automorphism of a unital C*-algebra
A and let TI be an irreducible representation of A x, Z. We recall [11]
that A X, Z is generated by A and a unitary U such that UaU* = o(a)
for all a € A and is universal for these commutation relations. We
denote IL(U) by Un and I(a) by w(a) for all a € A. Now, note that UJ}
commutes with m since 0™ = 1da and of course Ujj commutes with Uy
so, since 11 is irreducible, there exists A € T such that U = . Now,
define Vi = Uy for any p € T such that p" = X. Then Vi§ =1 and
thus (m, Vi1) is an irreducible representation of A X, Z, which is then

fully described by Theorem (4.5).

In the last section of this paper, we give a necessary condition on
irreducible representations of crossed-products by the group &3 of per-
mutations of {1,2,3}. This last example illustrates some of the behav-
ior which distinguish the conclusion of Theorem (3.4) from the one of
Theorem (4.5).

5. APPLICATION: CROSSED-PRODUCTS BY THE PERMUTATION
GROUP ON {1, 2,3}

As an application, we derive the structure of the irreducible rep-
resentations of crossed-products by the group &3 of permutations of
{1,2,3}. This group is isomorphic to Zs x. Zy where y is defined as
follows: if n and 7 are the respective images of 1 € Z in the groups Zs
and Zs, then the action v of Z, on Zs is given by v.(n) = n*. Thus in
Zs3 X 7o we have TnT = n?, 7> = 1 and n® = 1 (using the multiplicative
notation for the group law). An isomorphism between &3 and Zs X Zs
is given by sending the transposition (1 2) to 7 and the 3-cycle (1 2 3)
to n. From now on we shall identify these two groups implicitly using
this isomorphism.

Theorem 5.1. Let o be an action of &3 on A. Let 11 be an irreducible
representation of Ax,&s. We denote by T and n the permutations (1 2)
and (1 2 3). The set {T,n} is a generator set of S3. We denote by U,
and U, the canonical unitaries in A X, &3 corresponding respectively
to T and n. Then either (up to a unitary conjugation of 11):

o II is minimal, i.e. 14 us irreducible,
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e There exists an irreducible representation m, on Hy of A such
that H = Hy & Hy with 14 = m & 7 0 . Then II(U;) =
0
10
equivalent to m; oa.. Moreover, w1 and 7 o o, are minimal for
the action of n.

o There exists an irreducible representation w1 on Hy of A such
that m and m o oy are non equivalent for i = 1,2 and such
that H ="H 1 ®@H1®H; withma =T @m0, dmioa,2. Then

010
I(U,) =10 0 1 | in this decomposition.
1 00

e Last, there exists an irreducible representation my on Hy of A
such that m o o, is not equivalent to m for o € &3\ {Id} and
H = H{® with:

TA=T1 DM 0a, DM o2 ®m 00 T 0y, T 0 Qe

} in this decomposition. Observe that m; may or not be

and
F001 000 07
001000
100000
TW=10900001|"
000100
00001 0]

while
00010 07
000010
000001
TWI=11 00000
010000
00100 0]

Proof. The C*-algebra A x, &3 is generated by a copy of A and two
unitaries U, and U, that satisfy U? = Uf;’ =1, U;U,U; = Ug and
for all a € A we have U,aU; = a,(a) and U,aU; = ay(a). Notice
that &3 = Zs %, Zy with v, (n) = 7. So we have A X, &3 =
(A X, Zs) Mg Zy where 3 :a € A — a.(a) and B(U,) = Upy = UL
Since A X, Z3 = A+ AU, + AU%, the relation between 8 and «, is
given by:
B (1 + 22Uy + 23U) = (1) + ar (23) Uy + v (22) U

for all x1,79 and x3 € A. We now proceed with a careful analysis of 3
and o, to describe all irreducible representations of A x, Gs.
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Let IT be an irreducible representation of A x, ©3 on some Hilbert
space H. Thus II is an irreducible representation of [A Xy, Zg] Mg L.
We now have two cases: either I, AxayZs is irreducible or it is reducible.

Case 1: H|A>4a,723 is irreducible.: Hence II is minimal for the
action (3 of Z,. This case splits in two cases.
Case la: 74 is irreducible: Then II is minimal for the ac-
tion a of &3 by definition.
Case 1b: 74 is reducible: By Theorem (4.5), there exists
an irreducible representation 7, of A on some Hilbert space
H, such that m, 7 o o, and 7 o 0437 are not unitarily
equivalent, H = H, & Hy, & H; and:

71'1(&)

0
I(U,) = (f and IT (a) = 71 0 ay(a)

o O =
o = O

T 0 aupe(a)

Case 2: Ilj45,z, is reducible.: From Theorem (4.5), or alter-
natively [4], there exists an irreducible representation 7; of
A X, Z3 such that for all z € A x,, Zs we have:

51 = | " L0

0
0 mof(z)
where 7 and 7, o # are not unitarily equivalent.
This case splits again in two cases:
Case 2a: w4 is irreducible: Thus 7; is a minimal repre-
sentation of A X, Zs3. In particular:

Ta(a) = { m(()a> ) ]

71 0 a,(a)

and T (U,) = [0 1}

and II (U,) is a block-diagonal unitary in this decomposi-
tion. However, we can not conclude that 74 and 7400,
are equivalent or non-equivalent. Examples (5.4) and (5.6)
illustrate that both possibilities occur.

Case 2b: 4 is reducible: Then HMM”Zg is described by
Theorem (4.5). Since 3 is prime, only one possibility oc-
curs: there exists an irreducible representation 7 of A such
that 7o, and 7o 0437 are not equivalent and:

m(a) 0 0
M@ =| 0 nlag@) 0
0 0 7 (0y2(a))
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and II (U,) =

H(ﬁ(UH)) =

_ o O

OO =

S = O

. Note that:

0
1

0
0
010

1
0

35

Together with (5.1), we get that H splits into the direct
sum of six copies of the Hilbert space on which 7 acts and:

m(a)

and

m(ay(a))

while

()

OO O~ OO

SO = O OO

0

SO OO O

_0 O O O

0

S oo o+ O

_ o oo oo

SO OO oo

OO OO O

_o o o oo

OO O OO

Thus II is regular induced by 7, and therefore, as II is irre-
ducible, 7 o «, is not equivalent to 7 for any o € &3\{Id}
by Theorem (2.4).

This concludes our proof.

4

We show that all four possibilities above do occur in a nontrivial
manner. We use the generators 7 and 71 as defined in Theorem (5.1).
Denote by e the identity of {1,2,3}. Notice that 72 = n*> = e and
7 =n? and 7?7 = 7, while:

G35 = {6,77,772,7',777',7727'} .
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In particular, {1,7,1?} is a normal subgroup of G3. Now, consider the
universal C*-algebra of the free group on three generators A = C* (F3)
and denote by U;, U, and Uj its three canonical unitary generators.
Then we define the action o of &3 on A by setting a, (U;) = Uy
for any ¢ € &3. We now show that this simple example admits in a
nontrivial way all types of representations described in Theorem (5.1).

Example 5.2. There exists a nontrivial irreducible representation m :
C* (F3) — My (C) such that m and 7 o c, are unitarily equivalent, but
T and 7o oy, are not. Indeed, set:

(1) = ﬁ é} 7 (Uy) = {01 _01} 7 (Uy) = {(1) _01]

We check easily that 7 is an irreducible x-representation. Since

[(1) —01} o arl [(1) —OJ -

™ and 7o a, are unitarily equivalent. To see that m and 7o oy, are not
unitarily equivalent, notice that w (UyUy — UsUy) = 0 but that:

0 2
T(UQUg — U3U2) = |:_2 O:| .

Example 5.3. There exists a non trivial irreducible representation m :
C* (F3) — M3 (C) such that m and w o o, are unitarily equivalent and
7 and mo oy are also unitarily equivalent. Let A = exp (%Q’iﬁ). Define

0 A 0 A\ 0 1
7T(U1)Z|:)\2 O}’ W(UQ):|:)\ O}(mdﬂ(U?’):{lO}'
LetV = [(1) )?2 ] We check that Vo (U) V* =7 (U(,H_l)modg). Then

let W = T(Ug). Then Wr (Ul) W= = 7T(U2), W (UQ) W* = 7T<U1),
and Wr (Us) W* = w(Us). Thus 7 is a minimal representation of
C* (F3) for the action o of Gs.

Example 5.4. There exists an irreducible representation w : C* (F3) —
M3 (C) such that m and wo oy, are unitarily equivalent, but m and 7o o,
are not: Let A = exp (%2#@) and define unitaries T and V by

o-‘é—g 1 0 0
ng—%—{);—; and V=10 X 0
2

g 2 8 00 \

m(U) =VTV?  7(Uy)=V?TV  7(Us)=T.
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It is clear that ™ and m o oy, are unitarily equivalent. We will show
that ™ and 7o . are not unitarily equivalent. Suppose on the contrary
that they are. Then there exists a unitary W such that W = W* = W1

and
WITw =17, W ((VTV)W =V*TV W (V*TV)W =VTV?

From here we conclude that VW'V performs the same transformations,
that 1is

(Vvww)T (VWV)* = T,
(VIWV) [VTVz] = V2TV,
(VWV) [V*TV](V = VTV>
Indeed,
W (VIVHW = VTV so
V [W (VTV2) W} =V [VQTV] =TV.
Then we multiply both sides by V* from the right to get
VWVTV*WV? =T,
Since
(VWV) = VWV =V*WV?,
we get the first equation. Similarly we get the other two.

Since m is irreducible we conclude that there exists a constant ¢ such
that

VWV = cW.
V' has a precise form and when we compute VWV — cW we conclude

that this equation has a non zero solution iff c =1, ¢ = \, or ¢ = A%
Moreover, the solutions have the form:

(2 0 0]

W = 10 0 y| ifc=1
_020_
[0 = 0]

W = |y 0 0| ifc=\
_002_
[0 0 z]

W = [0 y 0] ifc=\?
_zOO_

for some x,y,c € C.
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Now we easily check that T does not commute with any of the three
W'’s. For example,

4 3 4 3
S B A B A o R B O
o2 ol E T8 E |, g
L 5 5 25 5 25 25
3 04 1%2_%21; gy;%x
B P
| 5% — 57 257 25% ~ 259

This of course implies that x =y = z = 0.

Example 5.5. This ezample acts on A = C (T3). Define for f €
C(T?) and (21, 22, z3) € T3:

ar] (f) (Zb 22, 23) = f (Z27 23, Zl)
and

ar (f) (21,22, 23) = f (22,21, 23)
on C(T3). We can build a non trivial irreducible representation m :
C (T?) — C such that T and 7 o o, are not unitarily equivalent and T
and woa, are also not unitarily equivalent. Let x = (x1, 39, x3) € T be
such that x1 # 9, Ty # x3, and x3 # x1.Define w(f) = f(x). Then we
obtain an irreducible representation of the required type as the reqular
representation induced by m, using Theorem (2.4).

Now, Theorem (3.4) allowed for the irreducible subrepresentations
of II}4 to have multiplicity greater than one, for irreducible represen-
tations IT of A x, G. This situation is however prohibited when G is
finite cyclic by Theorem (4.5). We show that finite polycyclic groups
such as &3 can provide examples where II}4 may not be multiplicity
free, thus showing again that Theorem (3.4) can not be strengthened
to the conclusion of Theorem (4.5).

Example 5.6. We shall use the notations of Theorem (5.1). There
exists a unital C*-algebra A, an action o of &3 on A and an irreducible
representation 11 : A X, S5 — B (H @ H) such that for all z € A we
have:
~ o |7 () 0

(5.2) II(x) = [ 0 W(CYT(.T)):|
for some irreducible representation m : A — B (H) such that © and
moa, are equivalent. Note that m is thus minimal for the action of o,.

Indeed, let us start with any unital C*-algebra A for which there exists
an action o of &3 and an irreducible representation 11 : A x, ©3 —
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B (H) such that 7 = Ilj4 is also irreducible, i.e. II is minimal. For
instance, Example (5.8) provides such a situation. Let V, = 11(U,)
and V; = (U, ). Then for all x € A

Vi (2) V) = (o (2)),

Vi (2) Vi) = (o (2)),

Vi=1,V) = 1and V,V,V, = V7.
Let w = exp ($2mi). For x € A define I (z) by (5.2); let W, = T1(U,)
and W, =11 (U,) given by:

WV, 0 101
W"—[O wQVJ WT_{I O}
We easily check that:
W, () W = T (v, (2)) , Wi (@) W = T, (1)),

and:

Moreover,

o

o 1wy, o0 1o 1
- [ )
w

- [0 ] o

because w* = w.

We need to prove that 1L : A x, Ss — B (H ® H) is irreducible. Let

a b

=l

be in the commutant ofﬁ (A x4 S3). For every x € A:
m(x) 0 | 7m(2) 0
107 ran@) ] = { 0 wla(x) |1

Since w is an irreducible representation of A and wo a, = V.V, by
construction, we conclude by Lemma (2.3) that a and b are multiple of

the identity, while ¢ and d are multiples of V.. Since TW, = W. T we
conclude that a = d and b = ¢. This means that

0 ov;
bv: 0

is in the commutant of the T (A X, S3). However, this element must
commute with W,. This can only happen if b = 0. This completes the

proof.

T—alz{
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Thus, using Example (5.6), there exists an irreducible representation

IT of C*(F3) x4 &3 such that IIjc«m,) is the sum of two equivalent
irreducible representations of C*(F3), a situation which is impossible
for crossed-product by finite cyclic groups by Theorem (4.5).

In general, repeated applications of Theorem (4.5) can lead to de-
tailed descriptions of irreducible representations of crossed-products of
unital C*-algebra by finite polycyclic groups, based upon the same
method as we used in Theorem (5.1). Of course, in these situations
Theorem (3.4) provides already a detailed necessary condition on such
representations, and much of the structure can be read from this result.

REFERENCES

1. O. Bratteli, G. Elliott, D. Evans, and A. Kishimoto, Noncommutative spheres
I, Internat. J. Math. 2 (1991), 139-166.
, Noncommutative spheres. II. Rational rotations, J. Operator Theory
1 (1992), 53-85.
3. M.-D. Choi and F. Latrémoliere, The C*-algebra of symmetric words in
two universal unitaries, Accepted, J. Operator Theory (2006), 13 pages,
math.OA/0610467.
, C*-crossed-products by an order-two automorphism, Accepted, Canad.
Bull. Math. (2006), 17 pages, math.OA/0610468.
5. K. R. Davidson, C*-algebras by example, Fields Institute Monographs, Ameri-
can Mathematical Society, 1996.
6. J. Dixmier, Les C*-algebres et leur représentations, Gauthier-Villars, 1969,
(reprint) Editions Jacques Gabay, 1996.

7. R. Hoegh-Krohn, M. B. Landstad, and E. Stormer, Compact ergodic groups of
automorphisms, Annals of Mathematics 114 (1981), 75-86.

8. G. K. Pedersen, C*-Algebras and their automorphism groups, Academic Press,
1979.

9. M. Rieffel, Actions of finite groups on C*-algebras, Math. Scand. 47 (1980),
157-176.

10. D. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathe-
matics, Springer-Verlag, New-York, 1982.

11. G. Zeller-Meier, Produits croisés d’une C*-algébre par un groupe d’ Automor-
phismes, J. Math. pures et appl. 47 (1968), no. 2, 101-239.

2.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DENVER, DENVER CO 80208
E-mail address: aarias@math.du.edu
URL: http://www.math.du.edu/"aarias

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DENVER, DENVER CO 80208
FE-mail address: frederic@math.du.edu
URL: http://www.math.du.edu/ " frederic



