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Abstract. It is shown that in the formalism of quantum mechanics on phase
space with a purely quantum mechanical theory of measurement, Bloch’s para-
dox does not appear.

1. Introduction

Bloch’s paradox [2], introduced in 1967, stated "But problems arise if one imposes
two requirements which seem to be quite orthodox: (1) that every particle has, at
a given space-time point, a unique wave function, whether pure state or mixture,
which transforms under an irreducible representation of the Lorentz group - or at
least each pure state entering the mixture must transform thus; (2) that one and
only one component of the mixture in a case like ours is the wave function of S
[the state of the system being measured] after interaction." It was named by G.
Fleming [5]. The paradox may be rephrased as follows1.
An event occurs in a box in configuration space and time centered at the point

(−→x , t) in relativistic space-time in one Lorentz frame. In another frame, it occurs in
a box centered at the point (−→x 0, t0). There are an infinite set of frames. So, when
exactly does the event occur?
This is exemplified by defining the "event" to be the "collapse" of the wave

function of a particle by its position being measured in a box. Assuming the
"Postulate of Instantaneous Reduction", one then says that for a collapse centered
at (−→x , t) , the collapse occurs at time t. We will always assume that collapse
occurs with instantaneous reduction, here. Consequently, one may restate Bloch’s
paradox one of two ways: "If, in some Lorentz frame, an observable is measured
at an instant, then what does the measurement look like in a different frame?" or
"If, in some Lorentz frame, an observable is measured and the state of the system
reduces by a projection, then what does the system look like in a different frame?".
Aharonov and Albert [1] have discussed this for a massive spinless particle.

There, a particle may be in one of three boxes, Xi, i ∈ {1, 2, 3}. At time t1 a
measurement is made in X1 and it is found that the particle is not there. The
points in (X1, t1) and (X2, t2) are separated by a spacelike interval. A Lorentz
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observer wizzes by for which the events in (X1, t1) precede those in (X2, t2). As-
suming that "measurements in spacelike separated regions" necessarily commute,
they derive that the wavefunction between t1 and t2 is roughly N(|X2 > + |X3 >),
N a normalization constant, and where |Xi > represents the wave function of the
particle in Xi at time ti, suitably shifted in time so that they may be added. An-
other observer whips by so that t2 preceeds t1, the particle is not observed to be in
(X2, t2), and the observer deduces that the particle in the time between t1 and t2
is in the wavefunction N 0(|X1 > + |X3 >). That is, the state determined by these
two state histories are drastically different! They are so different that they are not
relativistic transformations of each other.
See [13] for a review of various authors’ examples of different aspects of Bloch’s

paradox.
We will use the following definitions of "measurement", "measurement operator",

etc. in Hilbert space H in what follows:
A state on H is any operator ρ that is self-adjoint, positive, of trace class with

Tr(ρ) = 1. An observable is a self-adjoint operator onH (that may have some other
properties to make it "observable"). Let ρ be a state on H, and A an observable.
Then an experimental apparatus designed to "measure" A will, on a given input
state ρ, give a real number. In general the numbers so generated upon repeated
measurement of ρ will form a probability distribution. Tr(ρA) is the expected
value of A in state ρ of this distribution. If we vary ρ, we may deduce A from these
numbers Tr(ρA). A is the measurement operator for this experiment. Any self-
adjoint operator has a spectral measure associated with it and a spectrum in the
reals, or in Rn. If Pψ denotes the state that is the projection onto the normalized
vector ψ ∈ H, then the transition probability from state Pψ to state Pϕ is just
Tr(PψPϕ) =|< ψ,ϕ >|2 where < ·, · > is the inner product on the Hilbert space
H. If one chooses H to describe quantum particles, then the vectors in H all have
dispersions in their momentum, −→p , and position, −→q , variables since H is a vector
space of functions that are square integrable over some manifold in −→p and/or −→q ;
there are no eigenvectors of either −→p or −→q .
A measurement operator in a box ∆ in the spectrum of A may be taken as

the spectral projection onto the (Borel) set ∆. If A is the position operator and
one works in a representation in which the functions ψ ∈ H are functions of the
position, then one may rephrase "the semi-classical measurement in box ∆ at time
t of state given by ψ with positive outcome" to imply ψ(−→x , t+) = 0 if −→x /∈ ∆,
t+ = limε→0,ε>0(t + ε). This is a statement in the "individual" or "collapse"
formalism rather than the statistical formalism of the previous paragraph.
Alternatively, the measurement of state ρ may be the accumulated sum of the

transition probabilities to states φ for which the Tr(φA) is contained in ∆. This
alternative definition is closer to the experimental situation. For example, begin
with ρ and ask where it appears on a screen composed of certain sites for potential
capturing of ρ. Here one may make at most a conditional (statistical) probability
distribution for the state of the system after the experiment has been performed.
These two definitions will be termed here the "semi-classical" (for lack of a better

phrase) and the "quantum" measurement, respectively.
Now, there are some additional unstated assumptions in the first four paragraphs

above:
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i) the "event" or "collapse" actually is thought to occur (or fails to occur) in a
box centered at a point in space-time;
ii) a measurement in any of these respective boxes with an outcome other than

"it is not there" causes the wavefunction to collapse to the wavefunction in the
corresponding box(es);
iii) you have a localized theory of measurement;
iv) you can take localized measurements in space-like separated regions.
We make several remarks about these unstated assumptions:
i.1) One has taken "measurement" as a semi-classical measurement on the classi-

cal space-time (the (Xi, ti)) and not as a quantum mechanical interaction between
two quantum mechanical objects.
i.2) The fact that one takes (−→x , t) as a point in Lorentz/Minkowski space that

is associated with the (X, t) of an event, when viewed in a different frame, will
have the corresponding time component spread out. From this point of view, there
seems to be no way that one can have instantaneous reduction consistent with
Lorentz/Poincaré invariance.
i.3) Given that one "measures" a wave function by taking an inner product with

a known wave function, and as quantum mechanical objects have a spread, one may
be unable to claim that the collapse, if a collapse occurs at all, "occurs in a box"
unless it is known somehow that the wave function of the test particle is compactly
supported in the box. Similarly for non-occurrance.
i.4) Why in space-time? One may take the space-time and enlarge it to a phase

space-time (including spin if necessary). Then one may project it back to configura-
tion space-time by marginality, if desired. For this to make sense, the measurement
operator is taken as a function over phase space and, by marginality, it may be
restricted back to configuration space. (More on this later. But this will require
that one has a Poincaré invariant theory of measurement in phase space.) That
these measurement operators are positive operators and not projections will be
seen. Again, one may be lacking any notion of a support in a compact set for the
measurement operator.
ii) Measurement in a box gives a form of von Neumann’s collapse postulate. But

the collapse postulate is based on the operator-being-measured having a purely
discrete spectrum. For operators with purely continuous spectrum, such as the
position or momentum operators, von Neumann [12] is silent. Ozawa has shown [7]
that in that case the measurement operator cannot be described by a projection
operator. It will be shown that in a Poincaré invariant theory of measurement in
phase space, only a non-localized description is present and will be such that the von
Neumann collapse postulate no longer holds. Furthermore, since the von Neumann
collapse postulate is equivalent to the repeatability of a measurement "immediately
after" and giving the same result as the first measurement (a rare event in actuality),
we are tempted to replace that postulate with a weakened version of it in which
we take the projection operator which describes the measurement and replace it
with a positive operator. But even if we replace the projection with just a positive
operator, then we do not know that the measurement necessarily leads to a new
state with a wave function in the box. However, if we take either of these views of
collapse, and if ρ is a density matrix (state) and our measurement operator is M ,
a projection or a positive operator, then the state may convert to NM1/2ρM1/2,
where N is a normalization constant.
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iii) and iv) Taking the view that a measurement is in fact a quantum measure-
ment, and that one has an "informationally complete set of measurements", it will
be shown that it is impossible to have measurements in space-like separated regions.
Furthermore, it will be shown that the theory of quantum mechanics in phase space
[9] gives rise to a theory in which it is impossible to have measurements in space-like
separated regions, although the quantum expectation values of the testing wavefunc-
tions are in space-like separated regions. All this will be clarified and detailed in
what follows. One has a purely non-localized theory that, none-the-less, mimics all
the physically verifiable properties predicted by quantum mechanics. The theory
that evolves in the following sections is, in fact, another formulation of the theory
of quantum mechanics in phase space.

2. A Quantum Mechanical Theory of Measurement

One starts with a canonical Hilbert space, H, describing a particle. Suppose
that one wishes to test whether a particle in a vector state Pψ with vector ψ ∈ H
appears in fact "at −→x at time t". (Pψ is a one-dimensional projection of H onto
the vector ψ.) How can one do this? Well, one could have a potential vector state
with wavefunction η and placed so that it has a quantum expectation value at −→x at
time t. Since quantum states are objects that have dispersion, taking the quantum
expectation value to be at −→x is the best one can do! Then one may compute the
transition probability of ψ with η to "measure the ψ”. Recall that the transition
probability of ψ with η is just |< ψ, η >|2, where < ·, · > is the inner product in H.
Notice that one has no way of measuring "strictly locally" since η is not a point

mass. But, you say, it never was claimed that one could measure to get a particle
exactly at −→x at time t. It would suffice to have η having a support in a (Borel) set
∆, η square integrable, normalized, and expectation value −→x ∈ ∆. One has just
converted from "measurement at −→x at time t" to a "localized" measurement within
∆ at time t, with the quantum expectation value with respect to η at −→x ∈ ∆. Next,
suppose that the support of η is much smaller than ∆. One could translate η within
the (Borel) set ∆, with the translation operator U(−→y ) to obtain |< ψ,U(−→y )η >|2 .
Then U(−→y )η has expectation value −→x +−→y , which is taken to be still in ∆. Take the
integral over ∆ of these transition probabilities as a function of −→y and one will have
the transition probability corresponding to a measurement in ∆. But what about
when U(−→y )η is very near the boundary of ∆? If "very near" means closer than
the dispersion of η, then there is a bit of the wavefunction ψ that can overlap with
U(−→y )η even though ψ remains outside of ∆, and even supposing that ψ and η are of
compact support. Thus, one is left with a description of ∆ quantum mechanically
as a sort of fuzzy set function with the fuzziness caused by the dispersion of η. Now,
we shall see that to describe an experiment having informational completeness (to
be described below), η will necessarily have to have < U(−→y )η, η > non-zero for
all −→y ! In other words, there is no theory of localized measurement at all. In fact,
taking localized measurements in two spacelike-separated regions is precluded from
the start. We still have the quantum expectations may be spacelike separated,
however.
Before we leave this theory of measurement given in the first paragraph in this

section, we should say that we have here the beginning of the solution to Bloch’s
paradox. Because the vectors are in H where H is an irreducible representation
space for which the Poincaré group is unitarily presented, and presuming one has
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measured a state Pψ by means of having it transist to state Pη, then upon switching
to another frame by U ∈ P, one gets the transition probability to be
(2.1) Tr(PUψPUη) =|< Uψ,Uη >|2=|< ψ, η >|2= Tr(PψPη);

i.e., the same transition probability with which one started.
All the details of the phase space formulation of relativistic quantum mechanics

will now be worked out. One starts with the Poincaré (a.k.a. the inhomogeneous
Lorentz) group and asks what are the phase (a.k.a. symplectic) spaces on which
the Poincaré group acts. By a theorem of Guillemin and Sternberg[6], every one of
these phase spaces may be found as a (union over) certain homogeneous space(s)
of the Poincaré group; i.e. as P/H, where H is a closed subgroup of the Poincaré
group, P. Set Γ = P/H. The details of this H are not important for us here, and it
is suggested that the reader refers either to the reference [6] or to [9]. However, one
takes the space to be a representation space that describes either a massive spinning
particle or a massive, spin zero particle. It works out that, Γ = {(−→p ,−→q ,R)},
with −→p = the momentum, −→q = the position, and R = the rotation of spin, or
Γ = {(−→p ,−→q )} in the spin zero case. (Henceforth we will take the notation of a
representation with spin.) On Γ, we may represent P by g : x 7→ gx, g ∈ P, x ∈ Γ,
as Γ is a homogeneous space of P. One takes σ : Γ = P/H → P, x 7→ σ(x), as a
choice function (which may even be chosen to be continuous).
One [9] then takes the Hilbert space of complex valued, square-integrable func-

tions on Γ, L2(Γ, µ), with µ equal to the P-left-invariant measure over the phase
space Γ. On L2(Γ, µ), one may represent P by [V (g)Ψ](x) = Ψ(g−1x), g ∈ P (or
perhaps as a projective representation). V is unitary. On this space, one may con-
sider the set of operators, {A(f)} given by multiplication by (measurable) functions
f of the phase space variables. These multiplication operators are covariant under
the action of the group P: V (g)A(f)V (g)−1 = A(g.f), g.f(x) = f(g−1x).
One also has a canonical Hilbert space, H, describing a particle with momentum,

position, mass, and spin; i.e., an irreducible representation space for the Poincaré
group for a massive, spinning particle. These representation spaces are the well
known quantum mechanical representation spaces. One labels the unitary, irre-
ducible representation of P on H by U . Now, picking a normalized η ∈ H, then
(2.2) [W ηφ](x) ≡ < U(σ(x))η, φ >, φ ∈ H, x ∈ Γ,
defines W ηφ as a function on Γ. With certain conditions [9] on η, this W η is a
unitary map from H to a closed subspace of L2(Γ, µ). In particular, in order for
{U(σ(x))η, x ∈ Γ} to be extended to {U(g)η | g ∈ P}, η must satisfy
(2.3) (i): U(h)η = α(h)η, h ∈ H

such that α is a one dimensional representation (or character) of H. Moreover, if

(2.4) (ii):
Z
Γ

|< U(σ(x))η, η >|2 dµ(x) <∞,

then one has a situation in which one may reproduce the Hilbert space struc-
ture of any ψ ∈ H by means of the complex valued functions on phase space
< U(σ(x))η, ψ >; i.e., we have a coherent state representation with {U(σ(x))η :
x ∈ Γ} as an overcomplete basis of H.
Having complex valued functions rather than vector valued functions with vectors

in Cn, n having to do with the spin, is remarkable in the case of non-zero spin!
[9, page 325] Another ramification of this representation scheme is that one may
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enlarge the description of H as saying that the vectors inH have dispersions in their
positions, momenta, and spin variables. This plays no role in the present paper.
Condition (ii) is the "admissability" or "square-integrability" condition, and (i)

and (ii) is called "α-admissibility". It is found that (i) and (ii) are necessary and
sufficient conditions for obtaining a representation of P on Γ. All the physically
relevant irreducible unitary representations in quantum mechanics behave in this
way.2 - (See α-admissability in [9].) With these two conditions on η, one obtains
that W η maps H to a closed subspace in L2(Γ, µ) and intertwines the representa-
tions U and V : W ηU(g) = V (g)W η, g ∈ P.3
Let P η be the projection from L2(Γ, µ) to the subspace of L2(Γ, µ) so obtained.

Then one "pulls back" the operators A(f) on L2(Γ, µ) to operators Aη(f) on H:
(2.5) Aη(f) ≡ [W η]−1P ηA(f)W η.

These operators form a set satisfying the ordinary canonical commutation relations,
etc. (The Aη(f) when expanded in the operators for momentum, position, and spin
have η appearing only in terms of moments of η.)
If f is a function with compact support, then Aη(f) is a bounded operator.

Furthermore, taking η to have quantum expectation values of momentum =
−→
0 , of

position =
−→
0 , and of spin = −→s0 , and for x = (−→p ,−→q ,R), where −→p = boost ∈ R3,

−→q = translation ∈ R3, and R = rotation, we obtain the quantum expectation values
for U(σ(x))η of −→p for momentum, −→q for position, and R−→s0 for spin.4 Thus, we
may label ηp,q,R ≡ U(σ(−→p ,−→q ,R))η, since (−→p ,−→q ,R−→s0) comprise the expectation
values of (momentum, position, spin) for U(σ(−→p ,−→q ,R))η.
Now, a tiny bit of computation will show that

Aη(f) =

Z
Γ

f(x)T η(x)dµ(x)

=

Z
Γ

f(−→p ,−→q ,R)T η(−→p ,−→q ,R)dµ(−→p ,−→q ,R),(2.6)

where

(2.7) T η(x) = U(σ(−→p ,−→q ,R))PηU(σ(−→p ,−→q ,R))†

is the projection onto ηp,q,R ≡ U(σ(−→p ,−→q ,R))η. Thus, a measurement of Aη(f) in
a vector state Pψ gives

(2.8) Tr(PψA
η(f)) =

Z
Γ

f(−→p ,−→q ,R) |< U(σ(−→p ,−→q ,R)η, ψ >|2 dµ(−→p ,−→q ,R);

i.e., the transition probability from ψ to U(σ(−→p ,−→q ,R))η integrated over f(−→p ,−→q ,R).
Taking the f to be the characteristic function χ∆ of the set ∆ is as close as

one can get to a projection onto ∆. (As will be seen, Aη(χ∆) is not a projection!)
One may replace χ∆ with the fuzzy function f (0 ≤ f ≤ 1) to obtain a modest
generalization. One says that Aη(f) provides a measurement in fuzzy set f . Also,
notice that ∆ is a set in phase space. To obtain an operator "Aη(χ∆0)" with ∆0 a
set in configuration space, one has to take ∆ = X ×∆0 × Ω where X is the entire
momentum space and Ω is the entire spin space, and then "Aη(χ∆0)" = Aη(χ∆).

2We take the "continuous spin representations" as being non-physical.
3The conditions (i) and (ii) also yield the so-called "orthogonality conditions" which we shall

not use here. See [9, III.1.O].
4The cases of mass zero or spin zero are also treated similarly.
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This amounts to defining "Aη(χ∆0)" from Aη(χ∆) by marginality. More generally,
to obtain an operator that depends only on any one variable, integrate out the
remaining variables. For a physical justification of having the full phase space in
the variables of f , also see [9].
It is pointed out that measuring these Aη(f) is the best one can do for the

quantum mechanical measurement of any density operator, including any vector
state [4]. In this sense measuring the Aη(f)s is optimal among all the operators
that measure the probability of having values in the (fuzzy) set f .
It is stressed that in addition, such measurements provide an informationally

complete set, unlike the measurement of just position or just momentum. This will
be addressed in the next section.
Next, given a density operator, ρ, one obtains the quantum probability

(2.9) Tr(ρAη(f)) =

Z
Γ

f(−→p ,−→q ,R) < ηp,q,R, ρηp,q,R > dµ(−→p ,−→q ,R).

Taking ρ = |ψ >< ψ| = Pψ for some ψ ∈ H, k ψ k = 1, one obtains

(2.10) < ηp,q,R, Pψηp,q,R > = |< ηp,q,R, ψ >|2,

the transition probability from ψ to ηp,q,R. If ρ is a general density operatorP
i ρiPψi , {ψi} an orthonormal basis, ρi ∈ R+,

P
i ρi = 1, then < ηp,q,R, ρηp,q,R >

is a convex combination of transition probabilities. Consequently, the operator
Aη(χ∆) or A

η(f) is physically motivated, and is a measurement operator for the
transition to some state that has its expectation values in the box described by χ∆
or the fuzzy box described by f .

Aη(f) has the following additional properties [9]:
Property A: Aη(f) is a non-local operator since one is measuring in (2.9) and

(2.10) from the expected values of−→p , −→q , andR−→s0 for ηp,q,R and taking the transition
probability from ψ to ηp,q,R in H.
Property B: For 0 ≤ f ≤ 1, f measurable, Aη(f) is a positive operator that is

not a projection operator except in the extreme cases f ≡ 0 and f ≡ 1 [10], but is
an "effect": 0 ≤ Aη(f) ≤ 1. This includes the case f = χ∆, so that A

η(χ∆) is not
a projection operator for ∆ 6= ∅ or Γ a.e.µ.
Property C: The set of Aη(f)s is covariant with respect to the section of boosts,

translations, and spin rotations. This may be seen from the left invariance of the
measure µ , the α-invariance of η, and

U(σ(−→p ,−→q ,R))Aη(f)U(σ(−→p ,−→q ,R))†(2.11)

=

Z
Γ

f(
−→
p0 ,
−→
q0 , R0)U(σ(−→p ,−→q ,R))T η(

−→
p0 ,
−→
q0 , R0)U(σ(−→p ,−→q ,R))†dµ(

−→
p0 ,
−→
q0 , R0)

=

Z
Γ

f(
−→
p0 ,
−→
q0 , R0)T η(σ(−→p ,−→q ,R) ◦ (

−→
p0 ,
−→
q0 , R0))dµ(

−→
p0 ,
−→
q0 , R0)

=

Z
Γ

f(σ(−→p ,−→q ,R)−1 ◦ (
−→
p00,
−→
q00, R00))T η(

−→
p00,
−→
q00, R00)dµ(

−→
p00,
−→
q00, R00)

= Aη(σ(−→p ,−→q ,R).f),

where

(2.12) [σ(−→p ,−→q ,R).f ](
−→
p0 ,
−→
q0 , R0) = f(σ(−→p ,−→q ,R)−1 ◦ (

−→
p0 ,
−→
q0 , R0))
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is a (left-regular) representation of the section of boosts, translations, and spin
changes on functions of the group parameters. Similar results hold for a general
Poincaré transformation.
Property D: The T η(−→p ,−→q ,R) are not projections onto the point (−→p ,−→q ,R−→s0) as

T η(−→p ,−→q ,R)T η(
−→
p0 ,
−→
q0 , R0) 6= 0 for all (−→p ,−→q ,R) different from but near (

−→
p0 ,
−→
q0 , R0).

In fact

T η(−→p ,−→q ,R)T η(
−→
p0 ,
−→
q0 , R0)(2.13)

= < U(σ(−→p ,−→q ,R))η,U(σ(
−→
p0 ,
−→
q0 , R0))η >

× | U(σ(−→p ,−→q ,R))η >< U(σ(
−→
p0 ,
−→
q0 , R0))η |,

and

(2.14) < U(σ(−→p ,−→q ,R))η,U(σ(
−→
p0 ,
−→
q0 , R0))η >6= 0

for at least (−→p ,−→q ,R) in a small neighborhood of (
−→
p0 ,
−→
q0 , R0) by continuity of the

representation. Alternatively, if the T η(−→p ,−→q ,R) were projections that formed an
orthogonal set, then we would have a nonseparable Hilbert space for H. But H is
separable.
Now let dµ(−→p ,−→q ,R) = dλ(−→q )dν(−→p ,R). Suppose f and h have marginal sup-

ports in space-like separated regions; i.e., the marginal support

(2.15) suppq(f) ≡ supp
(Z Z

(p,R)

f(−→p ,−→q ,R)dν(−→p ,R)
)

is spacelike separated from a similar expression in h. Then, analogously to Property
D above, one obtains

(2.16) [Aη(f), Aη(h)] 6= 0
for at least suppq(f) near suppq(h). In the next section, one finds that [Aη(f), Aη(h)]
6= 0 for all f 6= ch (almost everywhere), c a constant. Thus one derives that these
measurements "in two space-like separated regions" never commute! Consequently,
this theory of quantum measurements is non-local.
Finally, look at Bloch’s paradox when one makes the assumption that by a

measurement in a region ∆ in one frame at time t, one means that one has a
measurement operator Aη(χ∆), and when measuring a normalized vector state
Pψ = | ψ >< ψ | in ∆, one will obtain the probability < ψ | Aη(χ∆) | ψ > at
time t. Let us look at this when one measures U(g)ψ, g ∈ P: One obtains the
probability

< U(g)ψ | Aη(χ∆) | U(g)ψ > = < ψ | U(g)†Aη(χ∆)U(g) | ψ >(2.17)

= < ψ | Aη(g−1.χ∆) | ψ >,

the probability of measurement at the corresponding Lorentz transformed set! Sim-
ilarly for measuring Aη(f) on general state ρ.
There is no paradox of the character of Bloch’s in this quantum mechanical

measurement scheme because we are asking for the transition probabilities to be
conserved between the wavefunction of the particle being observed and the particles
{ηp,q,R}. Bloch’s paradox arises if one forgets the fact that one must transform
both the particle wave function and the wave function(s) with which the "event"
is taking place. Equivalently, Bloch’s paradox may also be conceived as arising
because you might have "ψ(x) = < x,ψ >" with x being a point in configuration
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space and< x| denoting, improperly, a delta function at x. Then under the Poincaré
transformation g, ψ 7→ U(g)ψ, and so ψ(x) would become [U(g)ψ](x). But being
a square integrable function in x, ψ(x) has no meaning for any particular x! The
view that ψ(x) has meaning is a mixture of quantum mechanical theory (the ψ)
and classical theory (the x); so, is a semi-classical view (which is wrong).
Moreover, it is commonly thought that one may choose to work in just the

configuration space. Then one still would have Properties A, B, and D holding,
with Property C holding for just the U(σ(

−→
0 ,−→q , e)). But then one would not have

U(g), for any g ∈ P appearing in (2.11) but rather only the U(σ(−→0 ,−→q , e)), which
do not generate the entire Poincaré group (and particularly the boosts) through
U(σ(

−→
0 ,−→q , e))U(h), h ∈ H. Hence one obtains the resulting loss of Poincaré co-

variance violating the usual set up of Bloch’s paradox.

3. Informational Completeness of the set of Aη(f)s

One would have a poor measurement scheme if a "complete" set of measurements
of a state would not uniquely determine the state. In general recall

Definition 1. [8] Let ρ, ρ0 be any density operators in Hilbert space H. A set {Ax |
x ∈ I} of self-adjoint operators is informationally complete if Tr(ρAx) = Tr(ρ0Ax)
for all x ∈ I implies that ρ = ρ0.

One can show [3] that there is no "complete set of commuting operators" in this
sense. However, this assumption is hidden in Bloch’s paper [2] (as it is in most
papers that deal with such a set-up). Furthermore, any incomplete measurement
would fail to satisfy condition (2) with which we first introduced Bloch’s paradox.
In the present case, one wishes to investigate the informational completeness of

a certain set associated with

(3.1) A+ ≡ {Aη(f) | 0 ≤ f ≤ 1, f µ-measurable},
which one takes as the set of measurement operators for the simplest measurements.
Using the linearity of the map f 7→ Aη(f), one takes

(3.2) A = A+ − A+.
It has been shown [11] that, for any phase space representation, the (C*) algebra
generated by A by taking products (or rather the closure of this set) is informa-
tionally complete for η α-admissable and

(3.3) < U(g)η, η > 6= 0 for almost every g ∈ P.
Comparing with (2.14), one obtains complete nonlocality of the measurement oper-
ators Aη(f); i.e., two non-zero measurement operators Aη(f), Aη(h) never commute
unless f = ch almost everywhere, c a constant, whether f and h have spacelike sep-
arated marginal supports or not. One has a completely non-localized measurement
theory. Furthermore [10], the set of measurement operators, A+, does not contain
any projection operators other than 1 = Aη(1) and 0 = Aη(0). Thus, one may not
take (exactly) the projections onto the boxes Xi that appeared in the formulation
of Bloch’s paradox. Note that one may consider Aη(χ∆) where ∆ = Xi marginally,
but that is not a projection operator. Having a normalized vector ψ ∈ H such that
< ψ,Aη(χ∆)ψ > ' 1 says just that the expected (average) value (−→p ,−→q ,R) with
respect to ψ is approximately in Xi. Similarly if χ∆ is replaced by the fuzzy set
function f and |ψ >< ψ| is replaced by a general state ρ.
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In addition, there is no restriction on the size of the boxes employed, in spite of
the popularity of making sure that the boxes are larger than the Compton wave-
length, etc.; these are boxes in the phase space of the average values (−→p ,−→q ,R−→so),
and if the volume of the boxes shrink below the quantum limit and go to zero, the
transition probability goes smoothly to zero. [9]
We remark that the set of conditions (2.2), (2.3), and (3.3) on the wavefunction

η is always realizable. For example, consider the wavefunction for an electron in
any of the basic states in an isolated hydrogen atom! We also note that everything
we have said holds when the Poincaré group is replaced with the Heisenberg group,
the Galilei group, the De Sitter groups, or any other locally compact Lie group. [9]

4. Summary

In the theory of quantum mechanics on phase space, quantum measurement is
described by a covariant localization operator that is generated by a vector (in
the Hilbert space of the particle) satisfying a certain type of admissibility condi-
tion. With an additional condition, the set of operators generated from the set of
localization operators is informationally complete. Furthermore, this localization
operator is optimal among all the potential modes of physical measurement. Using
this form of localization operator and the unitarity of the Lorentz transformations,
Bloch’s paradox does not appear.
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