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Abstract. This paper is a survey of several results concerning �-
nite dualities, a special case of the famous Constraint Satisfaction
Problem (CSP). In CSP, the point is to characterize a class C of
objects X determined by constraints represented by the require-
ment of the existence of structure preserving mappings from X into
special objects. In a �nite duality, such a class C is characterized
by the non-existence of special maps into X from a �nite system
of objects.

In the �rst third of the article we recall some well-known facts
concerning constraints represented by classical homomorphisms of
relational systems. In the second part we present several results,
not yet published but mostly already submitted, concerning the
variant of full homomorphisms. The third part contains a few
results on hypergraphs and complexes in this context. These form
part of an investigation recently undertaken, and appear here �rst.

In the Constraint Satisfaction Problem, one is concerned with objects
X endowed with a given type of structure subjected to constraints,
usually represented by a system of special objects B, in our case always
�nite, and the requirement that there exist a mapping X → B ∈ B
suitably linked with the structures. (For a more precise formulation
see Section 1 below.)
One endeavours to �nd a characterization, as transparent as possible,

of the resulting class. This can sometimes be done by requiring the
non-existence of special maps Ai → X from a �nite list of objects
A1, . . . , An, or by requiring the non-existence of subobjects isomorphic
to any of the Ais. Then we speak of a �nite duality.
Most of this paper is a survey of already known (but in the second

and third part not yet published) results. After a very concise report
on some general facts (Sections 1{3) we discuss the relation between
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prohibiting morphisms and prohibiting subobjects. This is a very easy
matter, but since it is usually treated as folklore, if at all, we feel it
should be formulated explicitly; hence we devote to it a special section
(Section 4).
Our main intent is to inform the reader on �nite dualitioes concerning

full homomorphisms (and therir variants; for instance, in graphs these
are the maps f : (X, R) → (Y, S) such that xRy i� f(x)Sf(y)). For
various reasons, one of them beeing a closer immediate tie with the
subobject prohibiting condition, they gained in recent years a growing
interest (see e.g. the extensive treatment of graphs in this respect in
[6], or the characteristics of Gallai monochromes in [5]; see also [9],
[10]). Recently the authors proved a general theorem on the existence
of �nite dualities for any (�nite) constraint system in any category of
relational structures of �nite type (in [4], submitted for publication).
This fact is quoted here as Proposition 5.2 and Theorem 5.3. From [4]
we also present a few resulting concrete facts concerning Ramsey lists
(Sections 6{7).
The fact in Proposition 5.2 naturally lead to the question whether

a similar statement holds for \unbounded" �nitary structures. More
speci�cally, does one have �nite dualities in (variants of) full homomor-
phisms in the case of hypergraphs? In Sections 8 and 9 we present a
few (not yet published) results of an investigation that has only begun.
It turns out that, typically, there are no non-trivial dualities; certain
special hypergraphs (complexes), however, do behave somewhat di�er-
ently.
The paper is concluded by several remarks and problems.

1. The Constraint Satisfaction Problem

To illustrate the type of problems and facts to be presented, let us
start with the simple example of a �nite binary relation. Given such
relations, R on a set X and R′ on a set X ′, a mapping f : X → X ′ is
a homomorphism G = (X, R)→ G′ = (X ′, R′) if

(hom) (x, y) ∈ R ⇒ (f(x), f(y)) ∈ R′.

Homomorphisms capture many combinatorial properties of relations;
for a detailed treatment of graph homomorphisms see [10]. Of a par-
ticular interest will be the case where there is a �xed target B and
we ask whether there is a homomorphism G → B. That is, we are
interested in the class

{G | there is a homomorphism f : G → B}.
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The target B, or a system of targets B, is what we speak of as a con-
straint. When we ask whether a given graph G satis�es the constraint,
we are interested only in whether a homomorphism from G into B
exists, and not in the homomorphism itself.
Speaking of binary relations as a simple example is not quite correct.

Note that, already in the case of symmetric graphs and B = Kn (the
complete graph with n vertices), checking whether a given graph sat-
is�es the constraint is equivalent to checking whether it is n-colorable,
an extremely di�cult task.

1.1. More generally, consider a category C, that is,
• a speci�cation of objects of interest (relations, relational sys-
tems, hypergraphs etc.; in our case they will always be �nite),
and

• a speci�cation of morphisms, that is maps which in one way
or another repect the structure. For instance, for relational
systems (Ri)i∈J resp. (R′

i)i∈J on X resp. X ′, they will be the
homomorphisms f : (X, (Ri))→ (X ′, (R′

i)) satisfying

∀i ∈ J, (x1, . . . , xni
) ∈ Ri =⇒ (f(x1), . . . , f(xni

)) ∈ Ri,

or the full homomorphisms f : (X, (Ri))→ (X ′, (R′
i)) satisfying

∀i ∈ J, (x1, . . . , xni
) ∈ Ri ⇐⇒ (f(x1), . . . , f(xni

)) ∈ Ri.

The Constraint Satisfaction Problem (brie
y, CSP) is that of determin-
ing, for a (typically �nite) system B of objects, the class

CSP(B) = {X object of C | ∃B ∈ B, ∃ morphism X → B in C}.

2. Forbidding (homo)morphisms

2.1. In a complementary way, the class CSP(B) can be represented
by forbidding (instead of requiring) homomorphisms, namely as

Forb(A) = {X | there is no f : A → X with A ∈ A}
Indeed we can take

(2.1) A = {A | there is no f : A → B with B ∈ B}.
(If X ∈ CSP(B) then X → B for some B ∈ B and if we had A → X
we would have A → B; if X /∈ CSP(B) then X /∈ Forb(A) because of
the identity X → X.)
This is, of course, trivial. The less trivial question is whether we can

�nd, for a �nite B, a �nite A such that

Forb(A) = CSP(B).
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Then we speak of a �nite duality. First de�ned in [17], �nite dualities
have been intensively studied from the conbinatorial and logical point
of view, and also in the optimization context.

Note that if one has a �nite duality as above then the class CSP(B)
is obviously decidable in polynomial time. A more general (and very
interesting) problem, into which we will not go here, is that of an
equality Forb(A) = CSP(B) with at least \transparently described"
A, in which case we obtain a so called good characterization ofCSP(B),
that is, at least a deterministic decision procedure for both the positive
and negative membership questions.

3. Finite dualities for relations with standard
homomorphisms

The following theorem has recently been proven, as a combination
of results of [3] and [19]:

3.1. Theorem. In the case of �nite binary relations, there is a �nite
duality Forb(A) = CSP({B}) if and only if the class CSP({B}) is
�rst order de�nable.

Moreover, if the �nite duality exists then the A can be chosen in a
surprisingly special way. Namely, one has ([12])

3.2. Theorem. If B = {B} admits a �nite duality then it admits a
dualiy Forb(A) = CSP({B}) with A a �nite set of �nite trees.

For classical graphs (symmetric antire
exive relations), there are no
non-trivial �nite dualities. But for oriented graphs they abound ([11]),
although such did not appear to be the case at the outset of the investi-
gations. Furthermore, theorems similar to 3.1 above can be proven for
relational structures of �nite types; the dualities are well characterized
and abundant ([?]).

3.3. Encouraged by these results, one might expect something sim-
ilar for �nite algebras. But the facts there are entirely di�erent. It has
been recently shown ([13]) that there are no such dualities at all. One
has

Theorem. Let � be a �nite type. Then for every �nite set A of
�nite algebras of a type � and every �nite algebra B of this type there
exists a �nite algebra A such that A ∈ Forb(A) and A /∈ CSP({B}).
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This not only excludes a duality, but even the existence of a �nite A
such that

Forb(A) ⊆ CSP(B).

Among bounded structures this is a special feature of algebras. Simi-
lar inclusions in more general relational structures may yield non-trivial
classes even when there is no non-trivial duality. For instance, it can
be shown that the existence of an inclusion Forb(A) ⊆ CSP(B) in
graphs amounts to the boundedness of the chromatic numbers of the
graphs in Forb(A); such A were characterized in [17].
For hypergraphs there is, however, a fact reminiscent of the Theorem

above; see 8.3 below, and the non-existence of non-trivial inclusions
Forb(A) ⊆ CSP(B) for complexes in 9.3.

Homomorphisms of algebras have special properties distinguishing
them from general homomorphisms of relational structures. Thus for
instance, for a one-one homomorphism of algebras one has

x = αi(x1, . . . , xni
)⇐⇒ f(x) = α′

i(f(x1), . . . , f(xni
))).

equivalent with the formally weaker condition with =⇒. This makes
them, in a sense, structurally close to full homomorphisms (recall 1.1.).
But the lack of dualities is in the speci�c nature of objects (algebras).
As we will see below, for general relational objects the fullness condition
is no obstacle to �nite dualities. In fact it even helps and the dualities
are much more frequent than in the standard homomorphism cases.

For more see e.g. [9]

4. Intermezzo: Forbidden homomorphisms and forbidden
subobjects

4.1. It is often the case that important classes of objects are charac-
terized by prohibiting a system of subobjects (that is, subsets endowed
with induced structures, like for instance induced subgraphs { in gen-
eral one can consider extremal or strong monomorphisms, [1]) rather
than homomorphisms from a system of objects. (In fact, the idea of pro-
hibiting subobjects emerged prior to that of prohibiting morphisms.)
For example, planar graphs are characterized by the absence of two spe-
ci�c con�gurations ([?]), and similarly one can characterize distributive
lattices ([?]). In the cases we have in mind it can always be done in
this, perhaps more transparent, way.
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Let us introduce the following notation (X →| Y stands for \there is
no morphism from X to Y ").

X → A for ∃A ∈ A, X → A,

A → X for ∃A ∈ A, A → X,

X →| A for ∀A ∈ A, X →| A,

A →| X for ∀A ∈ A, A →| X.

Thus, Forb(A) = A →| = {X | A →| X}, CSP(B) = → B =
{X | X → B}. If we further set

(4.1) N (B) = →| B = {X | X →| B}

we see that the trivial fact from the �rst paragraph of 2.1 can be ex-
pressed as

(4.2) N (B) →| X i� X → B

and the dualities Forb(A) = CSP(B) we are discussing can be rewrit-
ten as

(4.3) P \ (A →) = → B.

4.2. The categories we discuss in this paper have the following prop-
erties:

(a) for an object A there are, up to isomorphism, only �nitely many
objects C such that there exists an onto morphism A → C,

(b) each morphism f : A → B can be written as a composition
of an onto one and an injection (that is an embedding of a
subobject), symbolically

f = (A � C ↪→ B)

where we use � to indicate morphisms onto and ↪→ to indicate
injections

Consequently, the duality (4.2) gives rise to the equality

P \ ((A�)↪→) = →B.

and �nally, setting A1 = A�, to

P \ (A1↪→) = →B,

Hence if we write

Forbsub(A1) = A1↪→| =

= {X | X has no subobject isomorphic with an A ∈ A1}
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we have our original �nite duality Forb(A) = CSP(B) replaced by a
�nite \subobject duality"

Forbsub(A1) = CSP(B).
These types of situations were part of the pre-CSP motivation for

studying �nite dualities in [17].

5. CSP in relational systems with full homomorphisms

The categories of relational systems, and similarly the categories of
hypergraphs and complexes we will be discussing later, have properties
(a) and (b) from 4.2. They also obviously have the property that

(a∗) every object has only �nitely many subobjects.

A property that these categories do not have, but that holds true in
the variant with full homomorphisms, is that

(c) each onto morphism f : A → B is a retract, that is, there is a
g : B → A such that fg is the identity.

An object A is said to be reduced if it has no non-trivial (≡ non-
isomorphic) retract r : A → B. Obviously, each object has a reduced
retract (that is, a retract r : A → B with reduced B) and consequently
each �nite duality can be replaced with one in which all the objects in
A and B are reduced.
An object A is critical with respect to a system of objects B if

• it is reduced,
• A →| B, and
• if A′ → A →| A′ then A′ → B.

Set
N0(B) = {X ∈ N (B) | X critical w.r.t. B}.

The following simple lemma plays a crucial role in the theorem below.
What it does is reduce the N (B) from (4.1) to its essential part. The
proof of the theorem will not be presented { it is in [4] { but the lemma
will be useful in a variant that does not immediately follow and that
we will prove later.

5.1. Lemma. In a category satisfying (a), (a∗), (b) and (c) one has

N0(B) →| X i� X → B.

Proof. Take the N (B) from (4.1) and then consider just its reduced
elements, forming a set A. We still have A →| X i� X → B. It is
easy to see that for a reduced A every morphism A → X is one-to-one.
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Thus, if A ∈ A is not critical we have a proper subobject A′ ↪→ A such
that still A′ →| X. Hence we can restrict ourselves to the smallest A of
A (smallest in the order of \being a subobject": recall that our objects
are �nite) and these constitute precisely the N0(B). �

Let � be any �nite type. Denote by Relfull(�) the category of rela-
tional systems of this type with full homomorphisms.

5.2. Proposition. ([4]) Let � = (nt)t∈T and let B be a �nite set of
objects of Relfull(�). Let m > maxt∈T nt. Then, with possibly �nitely
many exceptions, every A critical with respect to B can be embedded
into an object of Relfull(�) carried by the power Xm where

X = XB ∪ {ω}

for some B ∈ B and ω /∈ XB.

As an immediate consequence one obtains
5.3. Theorem. In Relfull(�) there exists for every �nite set of

objects B a �nite system of objects A and a �nite duality

A →| X i� X → B.

For graphs and one element B = {B} this was proved (among other
results) independently in [6]. Moreover, there is proved an interesting
fact that one can �nd a duality with |A| ≤ |B|+1 for all the A ∈ A. In
this result it is essential that the graphs are not necessarily connected.
For connected graphs the situation is unclear { see 7.2 below.

6. Ramsey lists

In contrast with the general fact about B from 5.3, it is seldom
possible to complete a �nite A to a �nite duality with A on the left
hand side. For instance, in the category of graphs (with full homomor-
phisms), there are only the following four systems A with fewer than
three elements:

{K1}, {K2}, {K3, P3} and {K3, P4}

(The Kns are complete graphs, the Pns are paths, see below). There
are in�nitely many such systems with three elements, however (see 7.1
below).

It is no wonder such systems are relatively rare, for they have a very
strong combinatorial property.
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A collection of reduced objects A = {A1, . . . , An} is said to be a
Ramsey list, or, brie
y, to be Ramsey, if there is a �nite system of
objects F in the given category such that each reduced object that is
not isomorphic to an object of F has a subobject isomorphic to one
of the Ais. (The reader may wish to consult [15] and [8] for a general
background on Ramsey theory.)

6.1. Proposition. Let C be a category satisfying (a), (a∗), (b) and
(c), and let A be a �nite collection of reduced objects of C. Then A is
Ramsey i� there is a �nite duality

A →| X i� X → B.

Proof. If there is such a duality then it su�ces to take for F the set
of all subobjects of the elements of B.
On the other hand, if A is Ramsey set B = {F | A →| F and F ∈

F}. �

7. Examples of concrete dualities in ConnGraphfull

7.1. Some particular graphs. We will use the following symbols
for particular graphs. Here ij indicates that both (i, j) and (j, i) are
in the relation.

• Kn = ({0, 1, . . . , n−1}, {ij | i 6= j}) is the complete graph with
n vertices,

• Pn is the n-path ({0, 1, . . . , n}, {01, 12, . . . , (n− 1)n}),
• Cn is the n-cycle ({0, 1, . . . , n− 1}, {01, 12, . . . , (n− 1)0}),
• Y = ({0, 1, 2, 3}, {01, 12, 23, 13}),
• T = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 25}),
• A = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 45, 14}),
• and B = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 45, 14, 05}).

c
c

c c
A

A
A

�
�
�

Y

c

cc c c c

T

c
c
c

c
c
c

A

c
c
c

c
c
c

B

All the examples in this section are in the category of connected
symmetric graphs.
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7.2. Several dualities following from 5.2.
1. For complete graphs we have

{Kn+1, P3, Y } →| X i� X → Kn.

2. For paths:

{P4, C3, A, C5} →| X i� X → P3,

and for n ≥ 4,

{Pn+1, T, C3, A,B,C5, . . . , Cn+2} →| X i� X → Pn.

3. For cycles:

{P4, C3, A} →| X i� X → C5,

and for n ≥ 6,

{Pn−1, T, C3, A,B,C5, . . . , Cn−1} →| X i� X → Cn.

Remarks. 1. Note the similarities of the left duals of the paths and
the cycles. Compare for instance the dualities

{P5, T, C3, A,B,C5, C6} →| X i� X → P4

and
{P6, T, C3, A,B,C5, C6} →| X i� X → C7.

2. The duality {P4, C3, A} →| X i� X → C5 from 3 above is a
characteristics of Gallai monochromes proved in [5].

7.3. A special example, and problem. By tedious checking we
obtain the duality, for the A from 7.1,

{P4, C3, C5, E} →| X i� X → A

with

E = ({0, 1, 2, 3, 4, 5, 6, 7}, {01, 12, 23, 34, 45, 14, 17, 26, 46, 67}),
a relatively complex graph (in this context).

c c
c
c

c
c
c c
















E
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This contrasts with the result of [6], as |E| = |A|+ 2, and it can be
shown by tedious checking that the duality cannot be achieved with
smaller graphs. It should not be forgotten, however, that our exam-
ples concern the category ConnGraphfull, while the mentioned result
speaks of general, not just connected, obstruction graphs. As far as
we know, the problem of the bound on the sizes of the A ∈ A in the
connected case is open.

7.4. E�ectiveness of determining the left hand side.
All the examples have been established using variants of the con-

struction from 5.2. In the case of a symmetric binary relation, the
starting object does not need to be as big as Xm; it su�ces to take,
roughly speaking, B redoubled with a point added, then �lling in a
suitable structure between the two B-layers. The search for the struc-
ture went, more or less, by brute force. Can the search be done more
e�ectively, if not for any graph then at least for some interesting class
of graphs?

8. Hypergraphs

The question naturally arises whether the general theorem 5.3 has
to do with the boundedness of the type. What happens if the arity
of the structure increases with the size? It turns out that, already in
the simplest unbounded structure, namely in the case of hypergraphs,
there are no non-trivial dualities, whether we consider the standard
homomorphisms or the full ones.

8.1. A hypergraph is a couple H = (VH , EH) with EH ⊆ exp(XH).
The complete hypergraph, that is any of the S = (VS, P(VS)), will

be referred to as a simplex, for reasons that will become apparent in
the next section.

A natural extension of the notion of a graph homomorphism is that
of a hypergraph homomorphism (further, brie
y, just homomorphism)
f : G → H, a mapping f : VG → VH such that

∀X ⊆ VG, X ∈ EG =⇒ f [X] ∈ EH .

The resulting category will be denoted by

Hypgraph.
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Extending the concept of full homomorphisms from graphs to rela-
tional structures, we obtain the full homomorphisms between hyper-
graphs satisfying

∀X ⊆ VG, X ∈ EG ⇐⇒ f [X] ∈ EH ;

the resulting category will be designated

Hypgraphfull.

To avoid a messy discussion (caused by the fact that if f : H → G
then G has a void hyperedge only when H does), we will prove the
facts concerning the subcategory

Hypergraph◦

generated by the hypergraphs H such that ∅ ∈ EH . The corresponding
subcategory restricted to full homomorphisms is Hypgraph◦full.

8.2. Proposition. There is no non-trivial duality inHypergraph◦.
Proof. If each B ∈ B has the feature that EB contains no nonvoid

edges, then each X ∈ CSP(B) has this feature as well. And, if B were
to participate in a duality with a �nite set A, then no A ∈ A could
have this feature. But a hypergraph X such that EX contained nonvoid
edges, but such that its nonvoid edges were bigger than any of those
of the EAs, A ∈ A, would violate the duality.
Now if there is a one-element edge in some B ∈ B then X → B for

any X. In this case, B participates in a trivial duality with A taken to
be φ.
Finally, let there be non-void edges and let all of them have at least

two points. Choose a set X such that |X| > maxB∈B |VB|·maxA∈A |VA|,
and set C = (X, E), where

E = {M ⊆ X | |M | > max
A∈A

|VA|}.

Then C →| B and A →| C. �

8.3. Recall 3.3. In Hypgraphfull we have a similar situation. (A
complex is a hypergraph such that all subsets of hyperedges are hyper-
edges; see the de�nition at the beginning of Section 9 below.)

Lemma. For every system A1, . . . , Ak, B1 . . . , Bl of hypergraphs
there exists a complex C such that there is no full homomorphism C →
Bi and no full homomorphism Aj ↪→ C for any of the Aj unless it is a
simplex.

Proof. Set
b = max

i
|Bi|, a = max

i
|Ai|.
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Choose a set VC with cardinality (a + 2)b and set

EC = {E ⊆ VC | |E| ≤ a + 1}.
If f is a homomorphism into some B ∈ B, choose an x ∈ VB such that
|f−1[{x}]| ≥ a + 2. Pick E, E ′ ⊆ f−1[{x}] such that |E| = a + 1 and
|E ′| = a+2. Then f [E] = f [E ′] = {x}. As E ∈ EC , {x} is in EBi

. But
then f is not full, since E ′ /∈ EC .
Now let there be a full homomorphism f : Aj → C for some j. Let

E ⊆ VAj
be arbitrary. Since f [E] is in EC , E is in EAj

. �

Corollary. There is no non-trivial duality in Hypgraph◦full.
Proof. Confront the Ai and Bj with the C from the lemma, and in

addition the hypergraph D with VD = VC and

ED = {E ⊆ VD | |E| = a + 1 or 0}.
For the same reasons as above, D →| B. There must be an Aj ↪→ D,
which makes Aj discrete, and, since Aj →| B ∈ B, all the one-element
subsets of the B's are hyperedges. But then again the simplex among
the Ais can be mapped to any such B. �

9. Complexes

9.1. A complex is a hypergraph H such that

(1) ∀x ∈ VH , {x} ∈ EH ,
(2) ∀E ∈ VH ,∀E ′ ⊆ E, E ′ ∈ EH .

(This is a well-known concept from combinatorial topology { often also
referred to as abstract complex, see e.g. [?]; in accordance with this we
have called complete hypergraphs simplices { recall 8.1.)
The category of complexes with standard resp. full homomorphisms

will be denoted by

Compl resp. Complfull.

We will also be interested in the subcategory of Complfull constituted
by the complexes of dimension at most k, in other words, with the size
of the hyperedges bounded by k. It will be denoted by

Complkfull.

A full homomorphism in this context is a mapping f : G → H such
that

∀X ⊆ VG, |X| ≤ k, X ∈ EG ⇐⇒ f [X] ∈ EH .

9.2. Proposition. There is no non-trivial duality in Compl.
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Proof. Take a B ∈ B and choose an x0 ∈ VB. Now construct C as
follows. First, let A be the disjoint sum of all the A ∈ A. Set

VC = (VB \ {x0}) ∪ VA,

supposing the union disjoint, and de�ne EC by

U ∈ EC if


either U ∈ EB and x0 /∈ U,

or U = (W \ {x0}) ∪ V, x0 ∈ W ∈ EB, ∅ 6= V ∈ EA

or U ∈ EA.

Then C is a complex, C → B, and A ↪→ C for all A ∈ A. �

9.3. Proposition. In Complfull there is no non-trivial �nite dual-
ity. Moreover, there are no non-trivial �nite sets A and B such that

Forb(A) ⊆ CSP(B).
Proof. Let us specify what we understand by trivial. There is, of

course, the trivial duality

A →| X i� X → B

with B empty and A a one-point simplex; this will be excluded.
Now let B contain a non-empty complex B0. Suppose

Forb(A) ⊆ CSP(B).
We can apply Lemma 8.3 since the C there is a complex. One of the
Aj is a simplex, but then Aj → B0, which is a contradiction. �

9.4. The proof of the following proposition needs only a very small
modi�cation of that of 5.2. But since 5.2 cannot be applied directly,
we will present it in some detail. Also it is an opportunity to illustrate
the principle of the proof that was omitted.

Proposition. Let B1, . . . , Br be objects of Complkfull. Let m > k.
Then, with possibly �nitely many exceptions, every A critical with re-
spect to B1, . . . , Br can be embedded into an object of Complkfull carried
by Xm where

X = VB ∪ {ω}
for some B ∈ B and ω /∈ VB.

Consequently, for every �nite set of objects B1, . . . , Br there is a
�nite set of objects A1, . . . , An and a duality

{A1, . . . , An} →| X i� X → {B1, . . . , Br}.
Proof. Since A is reduced, it su�ces to �nd a full homomorphism

from A into an object as stated.
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Consider a critical A. For every a ∈ A there is a full homomorphism
i(a) : A \ {a} → Bi(a). Assume that A is su�ciently large so as to
contain distinct a1, . . . , am such that the Bi(aj)s coincide. Designate
the common value B, and choose full homomorphisms

fi : A \ {ai} → B.

Set X = VB ∪ {ω} and de�ne mappings

f+
i : VA → X

by setting

f+
i (x) =

{
fi(x) if x 6= ai,

ω if x = ai.

Now de�ne

B+ = (X, E+) with E+ = {U ⊆ X | |U | ≤ k, U \ {ω} ∈ EB}.

If U ∈ EA then f+
i [U ] \ {ω} = fi[U \ ai] ∈ EB and hence all the f+

i are
homomorphisms A → B+, though not necessarily full. Consider the
map

f : A → Xm de�ned by pif = f+
i ,

where pi : Xm → X is the ith projection. Let

E = {f(U) | U ∈ EA} ∪ {U | |U | = 1}

Thus de�ned, (Xm, E) is an object of Complkfull, and f and the pis are
homomorphisms. We claim that f is full. For if f [U ] ∈ E for some
U ⊆ VA with |U | ≤ k then, since m > k, there is an i such that ai /∈ U ,
hence f+

i [U ] = fi[U ]. Therefore

ω /∈ fi[U ] = f+
i [U ] = pif [U ] ∈ E+,

hence U ∈ EB, and since fi is full, U ∈ EA. �

9.5. It is a trivial observation that for a complex X one has

X ∈ Complkfull i� Sk+1↪→| X

where Sk+1 is the simplex with k + 1 vertices. This, together with 9.4,
yields the following

Corollary. In contrast with the negative fact of 9.3, in Complfull
there exists for each �nite system of objects B a �nite system A such
that

Forbsub(A) ⊆ CSP(B).
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10. A few concluding remarks and open problems

10.1. Finite dualities constitute only a small part of the CSP prob-
lem. A very important question is that of Forb(A) with A not nec-
essarily �nite, but given by a criterion which is transparent. A good
example is the characterization of bipartite graphs as being those into
which no odd cycle embeds. Another such criterion is algorithmically
generated A. For such results concerning bounded tree width dualities,
see [10].

10.2. In Proposition 5.2 (and similar results), the search for the
elements of A is restricted to subobjects of a well de�ned object. In
some cases this su�ces to present a satisfactory list, but in general the
brute force search is too hard. Is there an e�ective search algorithm?

10.3. The existence of a non-trivial duality Forb(A) = CSP(B)
implies the existence of a non-trivial subobject duality Forbsub(A) =
CSP(B). It would be useful to study the situations in which the latter
exists and the former is absent. Note that for the \inclusion character-
ization" we have such a phenomenon in complexes: compare 9.3 with
9.5.

10.4. In the hypergraph case there are other natural choices of mor-
phisms to be analyzed. A set of subsets can be viewed as a generalized
topology, and the open continuous maps constitute one of the fullness
type choices. In this particular case one has negative results similar to
those in Section 8, but there are some special features of interest.

10.5. Let us recall, once again, the problem of the size of the A ∈ A
bounded by the |B| in the case of connected symmetric graphs with
full homomorphisms (see 7.2). Does |B|+2 su�ce? A very easy bound
is 2|B|, obviously too big.
An analogous question for standard homomorphisms is highly non-

trivial and was studied in [20].
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