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1 Introduction

Measure and integration theory is a well established field of mathematics that
is over a hundred years old. The theory possesses many deep and elegant
theorems and has important applications in functional analysis, probability
theory and theoretical physics. Measure theory can be applied whenever you
are measuring something whether it be length, volume, probabilities, mass,
energy, etc. Although finite measure theory, in which the measure space has
only a finite number of elements, is much simpler than the general theory,
it also has important applications to probability theory, combinatorics and
computer science. In this article we shall discuss a generalization called fi-
nite quantum measure spaces. Just as quantum mechanics possesses a certain
“quantum weirdness,” these spaces lack some of the simplicity and intuitive
nature of their classical counterparts. Although there is a general theory of
quantum measure spaces, we shall only consider finite spaces to keep tech-
nicalities to a minimum. Nevertheless, these finite spaces still convey the
flavor of the subject and exhibit some of the unusual properties of quan-
tum objects. Much of this unusual behavior is due to a phenomenon called
quantum interference which is a recurrent theme in the present article.

1



2 Classical and Quantum Worlds

We first discuss finite measure theory in the classical world. Let X =
{x1, . . . , xn} be a finite nonempty set and denote the power set of X, con-
sisting of all subsets of X, by P(X). For A,B ∈ P(X) we use the notation
A ∪� B for A ∪ B whenever A ∩ B = ∅. Denoting the set of nonnegative real
numbers by R+, a measure on P(X) is a map ν : P(X) → R+ satisfying
the additivity condition

ν(A ∪� B) = ν(A) + ν(B) (2.1)

for all disjoint A,B ∈ P(X). No matter what we are measuring, the reason
for (2.1) is intuitively clear. We call the pair (X, ν) a finite measure space.
It immediately follows from (2.1) that ν(∅) = 0 and

ν

(
m⋃
i=1

� Ai

)
=

m∑
i=1

ν(Ai) (2.2)

If ν : P(X)→ R satisfies (2.1) we call ν a signed measure and if ν : P(X)→
C satisfies (2.1) we call ν a complex measure. For all types of measures
we use the shorthand notation ν(xi) = ν ({xi}).

Denoting the complement of a set A by A′, since

A = (A ∩B) ∪� (A ∩B′)

we have that ν(A ∩ B′) = ν(A) − ν(A ∩ B) for all of the previous types of
measure. Also,

A ∪B = (A ∩B′) ∪� (A ∩B) ∪� (B ∩ A′)

so we obtain the inclusion-exclusion formula

ν(A ∪B) = ν(A) + ν(B)− ν(A ∩B) (2.3)

A probability measure is a measure ν that satisfies ν(X) = 1. In this
case, the elements xi ∈ S are interpreted as sample points or elementary
events and the sets A ∈ P(X) are interpreted as events. Then ν(A) is the
probability that the event A occurs. For example, suppose we flip a fair
coin twice. Denoting heads and tails by H and T , respectively, the sample
space becomes

X = {HH,HT, TH, TT}
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The probability measure ν satisfies

ν(HH) = ν(HT ) = ν(TH) = ν(TT ) = 1/4

The event that at least one head occurs is given by A = {HH,HT, TH} and
it follows from (2.2) that ν(A) = 3/4.

We conclude from (2.2) that a measure ν is determined by its values ν(xi),
i = 1, . . . , n . In fact, we have

ν ({xi1 , . . . , xim}) =
m∑
j=1

ν(xij )

Conversely, given any nonnegative numbers pi, i = 1, . . . , n, we obtain a
measure ν given by

ν(A) =
∑
{pi : xi ∈ A}

This same observation applies to signed and complex measures.
Until now, life in the classical world has been simple and intuitive. But

along comes quantum mechanics and our desire to explain it mathematically.
It turns out that quantum measures need not satisfy additivity (2.1) and are
therefore not really measures. But if (2.1) is so intuitively clear, how can it
not hold in a physical theory like quantum mechanics? The reason is because
of a phenomenon called quantum interference. If the points of X represent
quantum objects, they can interfere with each other both constructively and
destructively. For example, suppose x1, x2 represent subatomic particles and
µ is a measure of mass. Then we could have µ(x1) > 0 and µ(x2) > 0
but x1, x2 could be a particle-antiparticle pair that annihilate each other
producing pure energy (fission). Taken together we would have µ ({x1, x2}) =
0. Hence, µ ({x1, x2}) 6= µ(x1) + µ(x2) and additivity fails. On the other
hand, two particles colliding at high kinetic energy can convert some of this
energy to mass and combine (fusion) to form a single particle in which case
µ ({x1, x2}) > µ(x1) + µ(x2).

For another example, suppose a beam of subatomic particles such as elec-
trons or photons impinges on a screen containing two closely spaced narrow
slits. The particles that pass through the slits hit a black target screen and
produce small white dots at their points of absorption. It is well known ex-
perimentally that this results in a diffraction pattern consisting of many light
and dark strips. Why do the particles accumulate in the light regions and
not in the dark regions? It seems as though the particles communicate with
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each other to conspire to land along the white strips. Let X = {x1, . . . , xn}
represent this set of particles and let R be a region of the target screen. For
A ⊆ X, let µ(A) measure the propensity for the particles in A to hit a point
in R. Now it can happen that µ(x1) = µ(x2) = 0 and yet µ ({x1, x2}) > 0
or that µ(x1), µ(x2) > 0 and µ ({x1, x2}) = 0. More generally, we can have
µ ({x1, x2}) > µ(x1)+µ(x) or µ ({x1, x2}) < µ(x1)+µ(x2). We then say that
the particles interfere constructively or destructively, respectively.

In a deeper analysis, the points of X represent particle paths and it
is the paths that interfere. In this case, a single particle results in two
possible paths, one through each of the slits and these paths interfere. The
standard explanation for this phenomenon is called wave-particle duality.
The diffraction pattern is easily explained for waves. Two waves interfere
constructively if they combine with crests close together and destructively
if they combine with a crest close to a trough. In wave-particle duality, an
unobserved subatomic particle behaves like a wave . When the wave impinges
upon the first screen, it divides into two subwaves each going through one
of the two slits. These subwaves combine, interfere and then hit the target
screen. It is then observed (as a small white dot) at which point it acts
like a particle. Whether you like this explanation or not (and some don’t),
the mathematics of quantum mechanics accurately describes the diffraction
pattern.

3 Quantum Measures

We have seen in Section 2 that quantum measures need not be additive. To
find the properties that they do possess, we examine some of the mathematics
of quantum mechanics. Let X = {x1, . . . , xn} be a set of quantum objects. In
various quantum formalisms an important role is played by a decoherence
function D : P(X) × P(X) → C [3, 4]. This function (or at least its real
part) represents the amount of interference between pairs of subsets of X
and has the following properties:
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D (A ∪� B,C) = D(A,C) +D(B,C) (3.1)

D(A,B) = D(B,A) (3.2)

D(A,A) ≥ 0 (3.3)

|D(A,B)|2 ≤ D(A,A)D(B,B) (3.4)

In (3.2), the bar is complex conjugation and (3.1), (3.2) imply that D
is additive in one of the arguments when the other argument is fixed. A
quantum measure is defined by µ(A) = D(A,A) and µ is a measure of the
inference of A with itself. A simple example of a decoherence function is
D(A,B) = ν(A)ν(B) where ν is a complex measure on P(X). In this case ν is
called an amplitude (which comes from the analogy with waves) and we have
µ(A) = |ν(A)|2. In fact, quantum probabilities are frequently computed by
taking the modulus squared of a complex amplitude. This example illustrates
the nonadditivity of µ because

µ(A ∪� B) = |ν(A ∪� B)|2 = |ν(A) + ν(B)|2 = µ(A) + µ(B) + 2Re
[
ν(A)ν(B)

]
Hence, µ(A ∪� B) = µ(A) + µ(B) if and only if Re

[
ν(A)ν(B)

]
= 0. In this

case we say that A and B do not interfere or A and B are compatible.

Theorem 3.1. Let D : P(X) × P(X) → C be a decoherence function and
define µ(A) = D(A,A). Then µ : P(X)→ R+ has the following properties:

µ(A ∪� B ∪� C)

= µ(A ∪� B) + µ(A ∪� C) + µ(B ∪� C)− µ(A)− µ(B)− µ(C) (3.5)

If µ(A) = 0,

then µ(A ∪� B) = µ(B) for all B ∈ P(X) with B ∩ A = ∅ (3.6)

If µ(A ∪� B) = 0, then µ(A) = µ(B) (3.7)

Proof. To prove (3.5), let R be the right side of (3.5) and apply (3.1) and
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(3.2) to obtain

R = D(A ∪� B,A ∪� B) +D(A ∪� C,A ∪� C) +D(B ∪� C,B ∪� C)

− µ(A)− µ(B)− µ(C)

= 2[D(A,A)+D(B,B)+D(C,C)+ReD(A,B)+ReD(A,C)+Re(B,C)]

− µ(A)− µ(B)− µ(C)

= D(A,A) +D(B,B) +D(C,C)

+ 2 [ReD(A,B) + ReD(A,C) + ReD(B,C)]

= D(A ∪� B ∪� C,A ∪� B ∪� C) = µ(A ∪� B ∪� C)

To prove (3.6), apply (3.1) and (3.2) to obtain

µ(A ∪� B) = D(A ∪� B,A ∪� B) = µ(A) + µ(B) + 2ReD(A,B)

By (3.4) if µ(A) = 0, then D(A,B) = 0 so that µ(A ∪� B) =µ(B). To prove
(3.7), applying (3.1)–(3.4) we have

µ(A ∪� B) = µ(A) + µ(B) + 2ReD(A,B) ≥ µ(A) + µ(B)− 2 |D(A,B)|

≥ µ(A) + µ(B)− 2µ(A)1/2µ(B)1/2 =
[
µ(A)1/2 − µ(B)1/2

]2
Hence, µ(A ∪� B) = 0 implies that µ(A) = µ(B).

Condition (3.5) is a generalized additivity that we call grade-2 addi-
tivity. The usual additivity (2.1) is called grade-1 additivity. Of course,
grade-1 additivity implies grade-2 additivity but the converse does not hold.
Conditions (3.6) and (3.7) do not follow from (3.5) and a map satisfying
(3.6) and (3.7) is called regular. A grade-2 additive map µ : P(X) → R+

is a grade-2 measure and a regular grade-2 measure is a quantum mea-
sure (or q-measure, for short) [6, 7]. If µ is a q-measure we call (X,µ)
a q-measure space. We have seen that if µ(A) = D(A,A) for a decoher-
ence function D, then µ is a q-measure. We will later exhibit more general
q-measures that do not have this form. Simple examples of q-measures are
µ(A) = ν(A)2 where ν is a signed measure. It follows from (3.5) that any
q-measure µ satisfies µ(∅) = 0.

Example 1. Let (X, ν) be the probability space of our fair coin example.
But now we have a quantum coin with q-measure µ(A) = ν(A)2. Then the
sample points have “quantum probability” 1/16 and the certain event X has
“quantum probability” 1 as it should. The event A that at least one head
appears has “quantum probability” 9/16.
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Example 2. Let X = {x1, x2} and define µ(x1) = µ(x2) = 1, µ(∅) = 0 and
µ(X) = 6. Then (X,µ) is a q-measure space, but µ does not have the form
µ(A) = D(A,A) for a decoherence function D. Indeed, if such a D exists we
would have

2D(x1, x2) +D(x1, x1) +D(x2, x2) = D(X,X) = µ(X) = 6

Hence, D(x1, x2) = 2 but then (3.4) is not satisfied which is a contradiction.

Example 3. Let X = {x1, x2, x3} with µ(∅) = µ(x1) = 0 and µ(A) = 1 for
all other A ∈ P(X). Then (X,µ) is a q-measure space.

Example 4. Let X = {x1 . . . , xm, y1, . . . , ym, z1, . . . , zn} and call (xi, yi) i =
1, . . . ,m, destructive pairs (or particle-antiparticle pairs. Denoting
the cardinality of a set B by |B| we define

µ(A) = |A| − 2 |{(xi, yi) : xi, yi ∈ A}| (3.8)

for every A ∈ P(X). For instance µ ({x1, y1, z1})= 1and µ ({x1, y1, y2, z1})=
2. We now check that µ is a q-measure on X. If µ(A) = 0, then A = ∅ or A
has the form

A =
{
xi1 , yi1 , . . . , xij , yij

}
If B ∈ P(X) with A ∩B = ∅, then

µ(A ∪� B) = |A|+ |B| − 2 |{(xi, yi) : xi, yi ∈ A}| − 2 |{(xi, yi) : xi, yi ∈ B}|
= |B| − 2 |{(xi, yi) : xi, yi ∈ B}| = µ(B)

Hence, (3.6) holds. To show that (3.7) holds, suppose µ(A ∪� B) = 0. Then
zi 6∈ A ∪� B, i = 1, . . . , n. If xi ∈ A, then yi ∈ A ∪� B and if yi ∈ A then
xi ∈ A ∪� B. Hence,

µ(A) = |{xi ∈ A : yi ∈ B}|+ |{yi ∈ A : xi ∈ B}|
= |{yi ∈ B : xi ∈ A}|+ |{xi ∈ B : yi ∈ A}| = µ(B)

We conclude that µ is regular. To prove grade-2 additivity (3.5), let A1, A2, A3

∈ P(X) be mutually disjoint. If xi ∈ Ar and yi ∈ As, r, s = 1, 2, 3, we call
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(xi, yi) an rs-pair. We then have

µ(A1 ∪� A2) + µ(A1 ∪� A3) + µ(A2 ∪� A3)− µ(A1)− µ(A2)− µ(A3)

= |A1|+ |A2| − 2 |{rs-pairs, r, s = 1, 2}|+ |A1|+ |A3|
− 2 |{rs-pairs, r, s = 1, 3}|+ |A2|+ |A3| − 2 |{rs-pairs, r, s = 2, 3}|
− |A1|+ 2 |{11-pairs}| − |A2|+ 2 |{22-pairs}| − |A3|+ 2 |{33-pairs}|

= |A1 ∪� A2 ∪� A3| − 2 |{rs-pairs, r, s = 1, 2, 3}|
= µ(A1 ∪� A2 ∪� A3)

We conclude that (X,µ) is a q-measure space.

The next result shows that grade-2 additivity is equivalent to a gener-
alization of (2.3). The symmetric difference of A and B is A 4 B =
(A ∩B′) ∪ (A′ ∩B).

Theorem 3.2. A map µ : P(X) → R+ is grade-2 additive if and only if µ
satisfies

µ(A∪B) = u(A)+µ(B)−µ(A∩B)+µ(A4B)−µ(A∩B′)−µ(A′∩B) (3.9)

Proof. If µ is grade-2 additive, we have

µ(A ∪B) = µ [(A ∩B′) ∪� (A′ ∪B) ∪� (A ∩B)]

= µ(A4B) + µ(A) + µ(B)− µ(A ∩B′)− µ(A′ ∩B)− µ(A ∩B)

which is (3.9). Conversely, if (3.9) holds, then letting A1 = A∪� C, B1 = B∪� C
we have

µ(A ∪� B ∪� C) = µ(A1 ∪B1)

= µ(A1) + µ(B1)− µ(A1 ∩B1) + µ(A14B1)

− µ(A1 ∩B′1)− µ(A′1 ∩B1)

= µ(A ∪� C) + µ(B ∪� C)− µ(C) + µ(A ∪� B)− µ(A)− µ(B)

which is grade-2 additivity.

We now show that grade-2 additivity can be extended to more than three
mutually disjoint sets [5].
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Theorem 3.3. If µ : P(X) → R+ is grade-2 additive, then for any m ≥ 3
we have

µ

(
m⋃
i=1

� Ai

)
=

m∑
i<j=1

µ(Ai ∪� Aj)− (m− 2)
m∑
i=1

µ(Ai) (3.10)

Proof. We prove the result by induction on m The result holds for m = 3.
Assuming the result holds for m− 1 ≥ 2 we have

µ

(
m⋃
i=1

� Ai

)
= µ [A1 ∪� · · · ∪� (Am−1 ∪� Am)]

=
m−2∑
i<j=1

µ(Ai ∪� Aj) +
m−2∑
i=1

µ [Ai ∪� (Am−1 ∪� Am)]

− (m− 3)

[
m−2∑
i=1

µ(Ai) + µ(Am−1 ∪� Am)

]

=
m−2∑
i<j=1

µ(Ai ∪� Aj) +
m−2∑
i=1

µ(Ai ∪� Am−1)

+
m−2∑
i=1

µ(Ai ∪� Am) + (m− 2)µ(Am−1 ∪� Am)

−
m−2∑
i=1

µ(Ai)− (m− 2)µ(Am−1)− (m− 2)µ(Am)

− (m− 3)

[
m−2∑
i=1

µ(Ai) + µ(Am−1 ∪� Am)

]

=
m∑

i<j=1

µ(Ai ∪� Aj)− (m− 2)
m∑
i=1

µ(Ai)

The result follows by induction.

Notice that Theorem 3.3 also holds for signed and complex grade-2 addi-
tive measures.
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4 Quantum Interference

Unlike a measure on P(X), a q-measure µ is not determined by its values
on singleton sets. However, by Theorem 3.3, µ is determined by its values
on singleton and doubleton sets. Thus, if pi ≥ 0 and qij ≥ 0, i, j = 1, . . . , n,
satisfy qij = qji and

m∑
i<j=1

qij − (m− 2)
m∑
i=1

pi ≥ 0

for 3 ≤ m ≤ n, then there exists a unique q-measure µ on X = {x1, . . . , xn}
such that µ(xi) = pi and µ ({xi, xj}) = qij, i, j = 1, . . . , n. Conversely, given
a q-measure µ on X, then pi = µ(xi), qij = µ ({xi, xj}) have these properties.
We now introduce a physically relevant parameter call quantum interference
that can also be used to determine a q-measure.

For a q-measure µ on X = {x1, . . . , xn} we define the quantum inter-
ference function Iµ : X ×X → R by

Iµ(xi, xj) = µ ({xi, xj})− µ(xi)− µ(xj)

if i 6= j and Iµ(xi, xi) = 0, i, j = 1, . . . , n. The function Iµ gives the deviation
of µ from being a measure on the sets {xi, xj} and hence is an indicator of the
interference between xi and xj. Notice that Iµ can have positive or negative
values. For instance, in Example 3, Iµ(x2, x3) = −1 while in Example 2,
Iµ(x1, x2) = 4. By Theorem 3.3, µ is determined by the numbers µ(xi) and
Iµ(xi, xj), i, j = 1 . . . , n. We extend Iµ to a signed measure λµ on P(X ×X)
by defining

λµ(B) =
∑
{Iµ(xi, xj) : (xi, xj) ∈ B}

Since Iµ(xi, xj) = Iµ(xj, xi) it follows that λµ is symmetric in the sense that
λµ(A × B) = λµ(B × A) for all A,B ∈ P(X). The classical part of µ is
defined to be the unique measure νµ on P(X) that satisfies νµ(xi) = µ(xi),
i = 1 . . . , n. The next result shows that we can always decompose µ into the
classical part and its interference part.

Theorem 4.1. If µ is a q-measure on X = {x1, . . . , xn}, then for any A ∈
P(X) we have

µ(A) = νµ(A) +
1

2
λµ(A× A) (4.1)
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Proof. We first prove that δ(A) = λµ(A×A) is a grade-2 signed measure on
P(X). To show this we have

δ(A ∪� B) + δ(A ∪� C) + δ(B ∪� C)− δ(A)− δ(B)− δ(C)

= λµ(A ∪� B × A ∪� B) + λµ(A ∪� C × A ∪� C) + λµ(B ∪� C ×B ∪� C)

− λµ(A× A)− λµ(B ×B)− λµ(C × C)

= λµ(A× A) + 2λµ(A×B) + λµ(B ×B) + λµ(A× A) + 2λµ(A× C)

+ λµ(C × C) + λµ(B ×B) + 2λµ(B × C) + λµ(C × C)− λµ(A× A)

− λµ(B ×B)− λµ(C × C)

= λµ(A× A) + λµ(B ×B) + λµ(C × C)

+ 2 [λµ(A×B) + λµ(A× C) + λµ(B × C)]

= λµ(A ∪� B ∪� C × A ∪� B ∪� C) = δ(A ∪� B ∪� C)

Hence, νµ(A) + 1
2
λµ(A× A) is a grade-2 signed measure. Now

νµ(xi) +
1

2
λµ ({xi} × {xi}) = νµ(xi)−

1

2
Iµ(xi, xi)

= νµ(xi) = µ(xi)

and for i 6= j we have

νµ ({xi, xj}) +
1

2
λµ ({xi, xj} × {xi, xj})

= νµ(xi) + νµ(xj) + Iµ(xi, xj)

= µ(xi) + µ(xj) + µ ({xi, xj})− µ(xi)− µ(xj)

= µ ({xi, xj})

Since µ and A 7→ νµ(A) + 1
2
(A × A) are both grade-2 signed measures that

agree on singleton and doubleton sets, it follows from Theorem 3.3 that they
coincide.

Notice that (4.1) can be written

µ(A) = νµ(A) +
1

2

∑
{Iµ(xi, xj) : xi, xj ∈ A} (4.2)

We shall now illustrate (4.2) in some examples. In Example 1 we have that
νµ(xi) = 1/16 and Iµ(xi, xj) = 1/8 for i 6= j. By (4.2) we have for all
A ∈ P(X) that

µ(X) =
1

16
|A|+ 1

16
|A| (|A| − 1) =

1

16
|A|2
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In Example 4 we have νµ(xi) = 1, Iµ(xi, yi) = Iµ(yi, xi) = −2 and Iµ vanishes
for all other pairs. Hence, (4.2) agrees with (3.8). We can use (4.2) to
construct q-measures. For example, letting ν(xi) = 0 for all i and I(xi, xj) =
1 for i 6= j we conclude from (4.2) that

µ(A) =

(
|A|
2

)
=

1

2
|A| (|A| − 1)

For another example, let X = {x1, . . . , x2n+1}, ν(xi) = n for all i and
I(xi, xj) = −1 for all i 6= j. Applying (4.2) gives

µ(A) = n |A| −

(
|A|
2

)
=

1

2
|A| (|X| − |A|)

5 Compatibility and the Center

Let (X,µ) be a quantum measure space. We say that A,B ∈ P(X) are
µ-compatible and write AµB if

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

Recalling (2.3) we see that µ acts like a measure on A ∪ B so in some weak
sense A and B do not interfere with each other. For example, {x} and {y} are
µ-compatible if and only if Iµ(x, y) = 0. This analogy is not completely ac-
curate because AµA for all A ∈ P(X) and certainly points of A can interfere
with each other. It follows from (3.9) that AµB if and only if

µ(A4B) = µ(A ∩B′) + µ(A′ ∩B) (5.1)

The µ-center of P(X) is

Zµ = {A ∈ P(X) : AµB for all B ∈ P(X)}

The elements of Zµ are called macroscopic sets because they behave like
large objects at the human scale [7].

Lemma 5.1. (i) If A ⊆ B, then AµB. (ii) If AµB, then A′µB′. (iii) ∅, X ∈
Zµ. (iv) If A ∈ Zµ, then A′ ∈ Zµ.
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Proof. (i) If A ⊆ B, then

µ(A ∪B) = µ(B) = µ(A) + µ(B)− µ(A ∩B)

Hence, AµB. (ii) If AµB, then by (5.1)

µ(A′4B′) = µ(A4B) = µ(A ∩B′) + µ(A′ ∩B)

= µ [(A′)′ ∩B′] + µ [A′ ∩ (B′)′]

Hence, by (5.1), A′µB′. (iii)follows from (i) and (iv) follows from (ii).

A set A ∈ P(X) is µ-splitting if µ(B) = µ(B ∩ A) + µ(B ∩ A′) for all
B ∈ P(X).

Lemma 5.2. A is µ-splitting if and only if A ∈ Zµ.

Proof. Suppose A is µ-splitting. Then for every B ∈ P(X) we have

µ(A ∪B) = µ [(A ∪B) ∩ A] + µ [(A ∪B) ∩ A′]
= µ(A) + µ(B ∩ A′) = µ(A) + µ(B)− µ(A ∩B)

Hence, A ∈ Zµ. Conversely, suppose A ∈ Zµ. Then for every B ∈ P(X) we
have

µ(A ∪B) = µ [A ∪� (B ∩ A′)] = µ(A) + µ(B ∩ A′)

Thus,

µ(B) = µ(A ∪B)− µ(A) + µ(A ∩B) = µ(B ∩ A) + µ(B ∩ A′)

so A is µ-splitting.

A Boolean subalgebra of P(X) is a collection of sets A ⊆ P(X) such
that X ∈ A, A ∈ A implies A′ ∈ A and A,B ∈ A implies A ∪ B ∈ A. A
measure on A is defined just as was on P(X).

Theorem 5.3. Zµ is a Boolean subalgebra of P(X) and the restriction µ | Zµ
of µ to Zµ is a measure. Moreover, if Ai ∈ Zµ are mutually disjoint, then
for every B ∈ P(X) we have

µ [∪� (B ∩ Ai)] =
∑

µ(B ∩ Ai)

13



Proof. By Lemma 5.1, X ∈ Zµ and A′ ∈ Zµ whenever A ∈ Zµ. Now suppose
A,B ∈ Zµ and C ∈ P(X). Since A is µ-splitting we have

µ [C ∩ (A ∪B)] = µ [(C ∩ A) ∩ (A ∪B)] + µ [(C ∩ A′) ∩ (A ∪B)]

= µ(C ∩ A) + µ(C ∩ A′ ∩B)

Hence, since B is µ-splitting we conclude that

µ(C) = µ(C ∩ A) + µ(C ∩ A′)=µ(C ∩ A)+ µ(C ∩ A′ ∩B) + µ(C ∩ A′ ∩B′)
= µ [C ∩ (A ∪B)] + µ [C ∩ (A ∪B)′]

It follows that A ∪ B is µ-splitting so A ∪ B ∈ Zµ. Hence, Zµ is a Boolean
subalgebra of P(X). Moreover, µ | Zµ is a measure because if A,B ∈ Zµ
with A ∩ B = ∅, since AµB we have µ(A ∪� B) = µ(A) + µ(B). To prove
the last statement, let Ai ∈ Zµ be mutually disjoint, i = 1, . . . ,m, and let
Sr = ∪� ri=1Ai, r ≤ m. We prove by induction on r that for B ∈ P(X) we
have

µ(B ∩ Sr) =
r∑
i=1

µ(B ∩ Ai)

The case r = 1 is obvious. Suppose the result is true for r < m. Since
Sr ∈ Zµ we have

µ(B ∩ Sr+1) = µ(B ∩ Sr+1 ∩ Sr) + µ(B ∩ Sr+1 ∩ S ′r)
= µ(B ∩ Sr) + µ(B ∩ Ar+1)

=
r∑
i=1

µ(B ∩ Ai) + µ(B ∩ Ar+1) =
r+1∑
i=1

µ(B ∩ Ai)

By induction, the result holds for r = m so that

µ

[
m⋃
i=1

� (B ∩ Ai)

]
= µ(B ∩ Sm) =

m∑
i=1

µ(B ∩ Ai)

We now illustrate these ideas in Example 4. All the results in the rest of
this section apply to the quantum measure space (X,µ) of Example 4.

Theorem 5.4. AµB if and only if xi ∈ A∩B′ implies that yi 6∈ B ∩A′ and
yi ∈ A ∩B′ implies that xi 6∈ B ∩ A′.
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Proof. The condition is equivalent to the following. If {xi, yi} ⊆ A4B, then
{xi, yi} ⊆ A∩B′ or {xi, yi} ⊆ B ∩A′. Suppose the condition holds. We may
assume without loss of generality that

{x1, y1, . . . , xr, yr} ⊆ A ∩B′

{xr+1, yr+1, . . . , xs, ys} ⊆ B ∩ A′

and there are no other destructive pairs in A4B. Then

µ(A4B) = |A4B| − 2s = |A ∩B′| − 2r + |B ∩ A′| − 2(s− r)
= µ(A ∩B′) + µ(B ∩ A′)

By Theorem 3.2, AµB. Conversely, suppose AµB. Again, without loss of
generality we can assume that {x1, y1, . . . , xr, yr} are all the destructive pairs
in A ∩ B′ and {xr+1, yr+1, . . . , xs, ys} are all the destructive pairs in B ∩ A′.
Assume that

S = {xs+1, ys+1, . . . , xt, yt} ⊆ A4B

Then

|A4B| − 2t = µ(A4B) = µ(A ∩B′) + µ(B ∩ A′)
= |A ∩B′| − 2r + |B ∩ A′| − 2(s− r)

It follows that t = s so that S = ∅. Hence, all the destructive pairs in A4B
are in A ∩B′ or B ∩ A′.

Corollary 5.5. A ∈ Zµ if and only if for all i = 1, . . . ,m, either {xi, yi} ⊆ A
of {xi, yi} ⊆ A′.

Proof. If A ∈ Zµ, then AµA′. By Theorem 5.4, if xi ∈ A then yi 6∈ A′ so
yi ∈ A and similarly if yi ∈ A then xi ∈ A. Conversely, suppose the condition
holds and B ∈ P(X). Then

µ(B ∩ A′) + µ(B ∩ A) = |B ∩ A| − 2 |{(xi, yi) : {xi, yi} ⊆ B ∩ A}|
+ |B ∩ A′| − 2 |{(xi, yi) : {xi, yi} ⊆ B ∩ A′}|

= |B| − 2 |{(xi, yi) : {xi, yi} ⊆ B}| = µ(B)

By Lemma 5.2, A ∈ Zµ.

Corollary 5.6. The following statements are equivalent. (i) AµA′, (ii) A ∈
Zµ, (ii) µ(X) = µ(A) + µ(A′).
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Proof. (i)⇒(ii) follows from Theorem 5.4 and Corollary 5.5. (ii)⇒(iii)⇒(i)
are trivial.

It follows from Theorem 5.3 that µ | Zµ is a measure. In fact, by Corol-
lary 5.5 we have for every B ∈ Zµ that µ(B) = |{zi : zi ∈ B}| and this is
clearly a measure.

6 Quantum Covers

A q-measure µ on X = {x1, . . . , xn} is called a q-probability if µ(X) = 1.
Of course, a q-probability would give a very strange probability because it
need not be additive and we could have µ(A) > 1 for some A ∈ P(X). Nev-
ertheless, q-probabilities have been studied and have been useful for certain
applications. If µ is a q-measure on X for which µ(X) 6= 0, then µ can be
“normalized” by forming the q-probability µ1 = µ/µ(X). Another reason
for wanting to know whether µ(X) 6= 0 is that this would mean that “X
happens.” Why can’t we just check to see whether µ(X) = 0 or not? This
may be difficult when X is a large, complicated system. For example, in
some applications of this work, X represents the entire physical universe! In
this case, q-measures are used to study the evolution of the universe going
back to the big bang [1, 2, 6, 7]. More specifically, X is the set of possible
“histories” of the universe and for A ∈ P(X), µ(A) gives the “propensity”
that the true history is an element of A and this is studied in the field of
quantum gravity and cosmology. To check whether µ(X) = 0 we could test
simpler subsets of X to see if they have zero q-measure. If many of these sets
have zero q-measure it would be an indication (but not a guarantee) that
µ(X) = 0. The quantum covers that we shall consider give a guarantee.

A collection of sets Ai ∈ P(X) is a cover for X if ∪Ai = X. If ν is
an ordinary measure, then applying additivity we conclude that ν(X) 6= 0 if
and only if X does not have a cover consisting of sets with ν-measure zero.
But this doesn’t work for q-measures. For example, let X = {x1, x2, x3} and
define µ ({x2, x3}) = 4 and

µ(∅) = µ ({x1, x2}) = µ ({x1, x3}) = 0

µ ({x1}) = µ ({x2}) = µ ({x3}) = µ(X) = 1

It is easy to check that µ is a q-measure on X. Now the sets {x1, x2},
{x1, x3} cover X, have µ-measure zero but µ(X) 6= 0. We call a cover {Ai}
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for X a quantum cover if µ(Ai) = 0 for all i implies that µ(X) = 0 for
every q-measure µ on X [8]. Notice that a quantum cover applies to all q-
measures. This is because in quantum mechanics, the q-measures correspond
to physical states of the system and one frequently needs to consider many
states simultaneously.

A cover {Ai} for X is a partition if Ai ∩Aj = ∅ for i 6= j. An arbitrary
partition {A1, . . . , Am} for X is an example of a quantum cover. Indeed, let
µ be a q-measure on X and suppose that µ(Ai) = 0, i = 1, . . . ,m. Then by
regularity we have

µ(X) = µ(A1 ∪� · · · ∪� Am) = µ(A2 ∪� · · · ∪� Am) = · · · = µ(Am) = 0

We now show that there are other types of quantum covers. A subset A ⊆ X
is a k-set if |A| = k. The k-set cover for X is the collection of all k sets in
X. Thus, the 1-set cover is the collection of singleton sets in X and the 2-set
cover is the collection of all doubleton sets in X. The next result appears in
[8] and uses a nice combinatorial argument.

Theorem 6.1. The k-set cover is a quantum cover.

Proof. The result is true for k = 1 since the 1-set cover is a partition. Let
2 ≤ k ≤ n and assume that every k-set has µ-measure zero. By Theorem 3.3
we have

(2− k)
k∑
j=1

µ(xij ) +
k∑

r<s=1

µ ({xir , xis}) = µ ({xi1 , . . . , xik}) = 0

Adding up the

(
n
k

)
possible k-sets, since xij appears in

(
n− 1
k − 1

)
k-sets and

{xirxis} is a subset of

(
n− 2
k − 2

)
k-sets we have

(
n− 1
k − 1

)
(2− k)

n∑
j=1

µ(xj) +

(
n− 2
k − 2

) n∑
r<s=1

({xr, xs}) = 0

Since

(k − 2)

(
n− 1
k − 1

)/(
n− 2
k − 2

)
=

(n− 1)(k − 2)

k − 1
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we conclude that

n∑
r<s=1

µ ({xr, xs}) =
(n− 1)(k − 2)

k − 1

n∑
j=1

µ(xj)

Since k ≤ n we have by Theorem 3.3 that

µ(X) = µ ({x1, . . . , xn}) =
n∑

r<s=1

µ ({xr, xs})− (n− 2)
n∑
j=1

µ(xj)

=
k − n
k − 1

n∑
j=1

µ(xj) ≤ 0

Hence, µ(X) = 0 so the k-set cover is a quantum cover.

We now briefly consider a generalization of the k-set cover that has phys-
ical significance [8]. An antichain in P(X) is a nonempty collection of sets
{A1, . . . , Am} in P(X) that are incomparable. That is, Ai 6⊆ Aj for i 6= j,
i, j = 1, . . . ,m. An antichain {A1, . . . , Am} is maximal if it is not contained
in a strictly larger antichain. That is, for any B ∈ P(X) either B ⊆ Ai or
Ai ⊆ B for some i = 1, . . . ,m. Notice that a maximal antichain {A1, . . . , Am}
forms a cover for X. Indeed, for any x ∈ X there is an Ai such that {x} ⊆ Ai.
Thus ∪Ai = X. The k-set cover Ck is an example of a maximal antichain. To
see this, first notice that two different k-sets are incomparable so Ck forms an
antichain. To show maximality, let B ∈ P(X). If |B| < k, then there exists
an A ∈ Ck such that B ⊆ A while if |B| ≥ k, then there exists an A ∈ Ck
such that A ⊆ B. We conclude that maximal antichains generalize the k-set
cover, k = 1, . . . , n. It is conjectured in [8] that every maximal antichain is
a quantum cover. This is an interesting unsolved problem that the reader is
invited to investigate.
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7 Super-Quantum Measure Spaces

We say that a map µ : P(X)→ R+ is a grade-m measure if µ satisfies the
grade-m additivity condition

µ(A1 ∪� · · · ∪� Am+1)

=
m+1∑

i1<···<im=1

µ(Ai1 ∪� · · · ∪� Aim)−
m+1∑

i1<···<im−1=1

µ(Ai1 ∪� · · · ∪� Aim−1)

+ · · ·+ (−1)m+1

m+1∑
i=1

µ(Ai) (7.1)

Grade-m measures for m ≥ 3 correspond to super-quantum measures and
these may describe theories that are more general than quantum mechanics.
It can be shown by induction that a grade-m measure is a grade-(m + 1)
measure [5]. Thus, we have a hierarchy of measure grades with each grade
contained in all higher grades. Instead of giving the induction proof we will
just check that any grade-2 measure µ is also a grade-3 measure. Indeed by
Theorem 3.3 we have

4∑
i<j<k=1

µ(Ai ∪� Aj ∪� Ak)−
4∑

i<j=1

µ(Ai ∪� Aj) +
4∑
i=1

µ(Ai)

= 2
4∑

i<j=1

µ(Ai ∪� Aj)− 3
4∑
i=1

µ(Ai)−
4∑

i<j=1

µ(Ai ∪� Aj) +
4∑
i=1

µ(Ai)

=
4∑

i<j=1

µ(Ai ∪� Aj)− 2
4∑
i=1

µ(Ai) = µ(A1 ∪� A2 ∪� A3 ∪� A4)

The next result whose proof we omit gives a general method of generating
grade-m measures. We denote the Cartesian product of a set A with itself
m times by Am.

Theorem 7.1. If λ is a signed measure on P(Xm), then µ(A) = λ(Am) is
a grade-m measure.

Let µ be a grade-3 measure on P(X). We define the classical part λ1
µ = νµ

and the two-point interference function I2
µ = Iµ just as we did in Section 4.
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We now define the three-point interference function by

I3
µ(xi, xj, xk) = µ ({xi, xj, xk})− µ ({xi, xj})− µ ({xi, xk})− µ ({xj, xk})

+ µ(xi) + µ(xj) + µ(xk)

if i 6= j 6= k and I3
µ = 0, otherwise. Of course, I3

µ = 0 for quantum measures
so this term introduces a new type of phenomenon that does not seem to
occur in quantum mechanics. We next define the signed measures λ2

µ, λ
3
µ on

P(X2) and P(X3), respectively by

λ2
µ(B) =

∑{
I2
µ(xi, xj) : (xi, xj) ∈ B

}
λ3
µ(B) =

∑{
I3
µ(xi, xj, xk) : (xi, xj, xk) ∈ B

}
The next result extends Theorem 4.1.

Theorem 7.2. If µ is a grade-3 measure, then for every B ∈ P(X) we have

µ(B) = λ1
µ(B) +

1

2!
λ2
µ(B2) +

1

3!
λ3
µ(B3) (7.2)

Proof. It follows from Theorem 7.1 that the right side of (7.2) is a grade-3
measure. As in Theorem 4.1, we are finished if we show that this grade-
3 measure coincides with µ for k-sets, k = 1, 2, 3. They clearly agree for
1-sets and they agree on 2-sets as in the proof of Theorem 4.1. Finally, if
B = {x1, x2, x3}, we have

λ1
µ(B) +

1

2!
λ2
µ(B2) +

1

3!
λ3
µ(B3) = µ(x1) + µ(x2) + µ(x3) + I2

µ(x1, x2)

+ I2
µ(x1, x3) + I2

µ(x2, x3) + I3
µ(x1, x2, x3)

Expanding I2
µ and I3

µ in terms of their definitions, the right side becomes
µ ({x1, x2, x3}).

Of course, Theorem 7.2 can be generalized to grade-m measures to obtain

µ(B) =
m∑
i=1

1

i!
λiµ(Bi) (7.3)

In this last paragraph, let your imagination take flight and don’t worry
about technicalities. If we consider the vector space V of complex-valued
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functions on X = {x1, . . . , xn} with the natural inner product, then V is
isomorphic to Cn. In a similar way, the vector space of complex-valued
functions on X × X is isomorphic to Cn ⊗ Cn. We now form the inner
product space

H = Cn ⊕ Cn ⊗ Cn ⊕ · · · ⊕ C⊗m

where the last summand is the m-fold tensor product. The measure λiµ in
(7.3) provides a linear functional on C⊗i via its integral and hence is itself a
member of C⊗i. The q-measure µ in (7.3) is given by some kind of “collapse”
of these vectors. For those who know about these sorts of things, this is
beginning to look like a Fock space in quantum field theory. But this is a
new story that has not yet been told. In any case, the subject of quantum
and super-quantum measure spaces may usher in a whole new world for
mathematicians to explore.
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