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Abstract. We provide a bijection from the permutations in Sn that avoid 3412 and contain exactly one 321

pattern to the permutations in Sn+1 that avoid 321 and contain exactly one 3412 pattern. The enumeration
of these classes is obtained from their classification via reduced decompositions. The results are extended to

involutions in the above pattern classes using reduced decompositions reproducing a result of Egge.

1. Permutation Patterns and Reduced Decompositions

Throughout this paper, permutations will be written in one-line notation, π = π1 . . . πn, where the image of
i under π is πi.

Definition 1.1. A permutation π = π1π2 . . . πn ∈ Sn is said to contain a permutation σ = σ1 . . . σm ∈ Sm if
there exists a subsequence 1 ≤ i1 < i2 < . . . im ≤ n such that σj < σk if and only if πij < πik

. If π does not
contain σ, then π avoids σ.

Let π ∈ Sm. We denote the set of permutations in Sn that avoid π by Avn(π).

Definition 1.2. A reduced decomposition of π ∈ Sn is a word s1 . . . sk where each sj is a transposition of the
form (i, i+ 1) for some i such that π = s1 . . . sk and k is as small as possible. k is the length of the permutation
denoted l(π).

Reduced decompositions are not unique. For example, (12)(23)(12) = 321 = (23)(12)(23). In order to
simplify the notation, we will write i to represent the transposition (i, i + 1) and to distinguish expressions
on the transpositions (i, i + 1) (particularly reduced decompositions) from permutations, we will put brackets
around such expressions. For instance, [121] = (12)(23)(12) = 321.

Definition 1.3. A factor in a reduced decomposition [i1 . . . ik] is a consecutive substring.

[321323] is a reduced decomposition for 4321. [213] is a factor, but [313] is not.

Any reduced decomposition for a fixed permutation π can be transformed into any other by the use of braid
moves. The two braid moves are:

• (Short Braid Move) [ij] = [ji] if |i− j| > 1.
• (Long Braid Move) [i(i+ 1)i] = [(i+ 1)i(i+ 1)] for all i.

Reduced decompositions have some very special properties. The following holds more generally for any re-
duced decomposition in any Coxeter group, but we will only need it for reduced decompositions of permutations.
The proof of this property can be found in [5] or [2].

Theorem 1.4. (Exchange Property) Let [s1 . . . sk] be a reduced decomposition for π ∈ Sn and let s be any
transposition of the form (i, i + 1). If l([s1 . . . sks]) < l([s1 . . . sks]), then [s1 . . . sk] = [s1 . . . ŝj . . . sk] for some
1 ≤ j ≤ k.
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Connections between permutation patterns and reduced decompositions have been studied in [1], [8], [7] and
[3]. In [8], Tenner shows the following:

Theorem 1.5. (Tenner) π ∈ Sn avoids 321 and 3412 if and only if π has a reduced decomposition that contains
no repeated elements.

It should be noted that if π has one reduced decomposition with no repeated elements, then all reduced
decompositions of π have no repeated elements. Motivated by the results in [8], the author proves in [3] that

Theorem 1.6. π ∈ Sn has a reduced decomposition with exactly one element repeated if and only if either
π ∈ Avn(3412) and contains exactly one 321 pattern, or π ∈ Avn(321) and contains exactly one 3412 pattern.
More specifically,

• π ∈ Avn(3412) and contains exactly one 321 pattern if and only if π has a reduced decomposition with
[i(i+ 1)i] as a factor for some i ∈ {1, . . . , n− 2} and no other repetitions.

• π ∈ Avn(321) and contains exactly one 3412 pattern if and only if π has a reduced decomposition with
[i(i− 1)(i+ 1)i] as a factor for some i ∈ {2, . . . , n− 2} and no other repetitions.

2. Bijection

As our goal is to count the number of permutations in Avn(3412) that contain exactly one 321 pattern
and the number of permutations in Avn(321) that contain exactly one 3412 pattern, we first provide a bi-
jection between the two classes. Let An = {π ∈ Avn(3412) | π contains exactly one 321 pattern} and let
Bn = {π ∈ Avn(321) | π contains exactly one 3412 pattern}. We will show |An| = |Bn+1|.

Before we create the bijection, some propositions concerning the properties of reduced decompositions with
one repetition are required.

Proposition 2.1. Let π ∈ Sn have a reduced decomposition s = [s1 . . . sk] with [i(i + 1)i] as a factor and no
other repetitions and let σ ∈ Sn have a reduced decomposition t = [t1 . . . tl] with [j(j + 1)j] as a factor and no
other repetitions. If i 6= j, then π 6= σ.

Proof. Suppose [i− 1] does not occur in [s1 . . . sk] or [i− 1] occurs to the left of the factor [i(i+ 1)i]. Then the
image of i under [i(i+ 1)i . . . sk] is i+ 2. Since [i(i+ 1)i] contains only the repetition in [s1 . . . sk], we must have
πi ≥ i+ 2. Thus, πi+2, . . . , πn must contain some element of {1, 2, . . . i}, so πi+1 = i+ 1 is the middle element
of the 321 pattern. Now suppose [i− 1] occurs to the right of [i(i+ 1)i] in [s1 . . . sk]. If l is the greatest integer
such that i− 1, i− 2, . . . i− l appear in that order to the right of [i(i+ 1)i], then πi−l ≥ i− 2. As in the previous
case, this implies πi+1 = i + 1 is the middle element of the 321 pattern. By a similar argument j + 1 is the
middle element of the 321 pattern in σ. Since i 6= j, we also have π 6= σ. �

Proposition 2.2. Let π ∈ Sn have a reduced decomposition s = [s1 . . . sk] with [i(i + 1)(i − 1)i] as a factor
with no other repetitions, and let σ ∈ Sn have a reduced decomposition t = [t1 . . . tl] with [j(j + 1)(j − 1)j] as
a factor and no other repetitions. If i 6= j, then π 6= σ.

Proof. The occurrence of [i(i + 1)(i − 1)i] in a reduced decomposition with no other repetitions means the
following must occur by methods similar to the proof of Proposition 2.1:

• there exists an element a ≤ i − 1 such that πa = i + 1. Note a = i − 1 if [i − 2] does not exist to the
right of the factor.
• πi ≥ i+ 2.
• πi+1 ≤ i− 1.
• there exists an element b ≥ i+ 2 such that πb = i. Note b = i+ 2 if [i+ 2] does not exist to the right of

the factor.
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Hence, πi and πi+1 are the middle elements of the 3412 pattern of π. We can similarly conclude that σj and
σj+1 are the middle elements of the 3412 pattern of σ. Since i 6= j, π 6= σ. �

Proposition 2.3. Let π ∈ An and let s = [s1 . . . sk] and t = [t1 . . . tk] be reduced decompositions for π. Let i
be the element such that [i(i+ 1)i] appears in a reduced decomposition of π. s can be transformed into t using
only short braid moves and the long braid move [i(i+ 1)i] = [(i+ 1)i(i+ 1)] for the specific element i.

Proof. Since any reduced decomposition can be obtained from any other through the use of braid moves, it
is sufficient to assume that s is a reduced decomposition that contains [i(i + 1)i] as a factor with no other
repetitions. Recall such a reduced decomposition is guaranteed to exist by Theorem 1.6. Let τ1 . . . τm be the
sequence of braid moves that transform s into t. Assume there exists j such that τj is a long braid move, but
not [i(i + 1)i] = [(i + 1)i(i + 1)]. Let j be the smallest index value such that τj is a long braid move, but not
[i(i+ 1)i] = [(i+ 1)i(i+ 1)]. This implies τ1 . . . τj−1 is a sequence of short braid moves and long braid moves of
the form [i(i+ 1)i] = [(i+ 1)i(i+ 1)]. Let (τ1 . . . τj−1)s be the reduced decomposition obtained after applying
τ1 . . . τj−1. Either [i] occurs twice in (τ1 . . . τj−1)s or [i+ 1] occurs twice, but not both. If [i] occurs twice, then
since τj is not [i(i + 1)i] = [(i + 1)i(i + 1)], τj must be the long braid move [i(i − 1)i] = [(i − 1)i(i − 1)]. If
(i − 1) does not occur in s, we have a contradiction. If [i − 1] does occur in s, then let τm, m < j, be the last
occurrence of the long braid move [i(i + 1)i] = [(i + 1)i(i + 1)] before τj . This implies [i − 1] occurs either to
the left or to the right of both occurrences of [i] in (τ1 . . . τm)s. In order to apply τj , i and i− 1 must commute
by one of τm+1 . . . τj−1. [i] and [i − 1] cannot commute by a short braid move as |i − (i − 1)| 6> 1. The only
other possibility is for i and [i − 1] to commute by a long braid move, but τj is the first long braid move that
does not involve [i] and [i+ 1] which is a contradiction. If [i+ 1] occurs twice, similar reasoning also leads to a
contradiction. �

Proposition 2.4. Let π ∈ Bn and let s = [s1 . . . sk] and t = [t1 . . . tk] be reduced decompositions for π. s can
be transformed into t using only short braid moves.

Proof. Since π avoids 321, this is a specific instance of Proposition 2.2.15 in [6]. �

Proposition 2.4 implies that each element sj occurs the same number of times in every reduced decomposition
of π as short braid moves do not change the number of times an element occurs in s.

The bijection from An to Bn can now be constructed. By Theorem 1.6, π ∈ A implies that π has a reduced
decomposition with [i(i+ 1)i] as a factor for some i and no other repetitions. Hence, by an application of a long
braid move, π has a reduced decomposition with [(i+ 1)i(i+ 1)] as a factor and no other repetitions.

Let Ri
k be the set of all reduced decompositions of length k with [(i + 1)i(i + 1)] as a factor and no other

repetitions. Note these are all such reduced decompositions, not just those for a particular permutation π. Let
Si

k be the set of all reduced decompositions of length k with [i(i−1)(i+1)i] as a factor and no other repetitions.
Define a map gk

i : Ri
k → S

i+1
k+1 by the following method. Let s = [s1 . . . sk] ∈ Ri

k. Replace each sj in s with

s′j where s′j =

{
sj if sj ≤ i+ 1
sj + 1 if sj > i+ 1

. Lastly, insert the element [i + 2] into the factor [(i + 1)i(i + 1)] giving

[(i+ 1)i(i+ 2)(i+ 1)]. Call this new expression s′. Define gk
i (s) := s′.

Now consider the lexicographic ordering on Ri
k. It is clear that if s < t in lexicographic ordering, then

gk
i (s) < gk

i (t) in the lexicographic ordering on Si+1
k+1. This gives the following lemma.

Lemma 2.5. Assume s is the lexicographically smallest reduced decomposition for π ∈ Sn with [(i+ 1)i(i+ 1)]
as a factor and that l(π) = k. The reduced decomposition gk

i (s) is the lexicographically smallest reduced
decomposition among all reduced decompositions of π′ with [(i+ 1)i(i+ 2)(i+ 1)] as a factor.
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Table 1. Ei
j(4) (i - rows; j - cols)

2 3
1 {[121]} {[121], [3121], [1213]}

2 ∅ {[232], [1232], [2321]}

In addition, it is clear that gk
i is a bijection. The bijection f : An → Bn+1 may now be induced from gk

i . Let
π ∈ An such that l(π) = k. Let s be the lexicographically smallest reduced decomposition for π with [i(i+ 1)i]
as a factor. Define f(π) := gi

k(s).

Example 2.6. Consider the permutation π = 243165 ∈ S6. The set of reduced decompositions with a factor
of the form [(i+ 1)i(i+ 1)] of π is {[15323], [51323], [13235]}. The least element under lexicographic ordering is
s = [13235]. Transforming s into s′ gives s′ = [132436]. 2451376 is the permutation represented by [132436].
Therefore f(243165) = 2451376.

Restricting to the lexicographically smallest reduced decomposition for π ∈ Sn and using the fact that gi
k is

a bijection gives the desired bijection.

Lemma 2.7. f : An → Bn+1 as defined above is a bijection.

Theorem 2.8. The number of permutations in Avn(3412) that contain exactly one 321 pattern is equal to the
number of permutations in Avn+1(321) that contain exactly one 3412 pattern.

3. Counting π ∈ Avn(3412) that contain exactly one 321

By Theorem 2.8, in order to count the number of permutations in Avn(3412) that contain exactly one 321
and the number of permutations in Avn(321) that contain exactly one 3412, it suffices to count the former. The
strategy to count such permutations is to count equivalence classes of reduced decompositions. Two reduced
decompositions s and t are considered equivalent if and only if s and t represent the same permutation. For a
fixed n and i ∈ {1 . . . n− 2}, we will count the number of equivalence classes having [i(i+ 1)i] as a factor and
then sum over all i.

To accomplish the count, we will construct sets Ei
j(n) of reduced decompositions such that the elements of

Ei
j(n) are representatives of distinct equivalence classes of reduced decompositions with the property that every

permutation in An which has a reduced decomposition [s1 . . . sk] in which [i(i+ 1)i] is a factor and sm ≤ j for
all 1 ≤ m ≤ k has a representative in Ei

j(n).

Note Ei
j(n) is empty when j < i+ 1. Tables 1 and 2 give the sets Ei

j(4) and Ei
j(5) in terms of their reduced

decompositions. Note, only one reduced decomposition from each equivalence class is listed.

It is clear |An| =
∑n−2

i=1 |Ei
n−1(n)|. To compute the cardinalities of the sets Ei

n−1(n), we will show how to
construct each set. This procedure is broken into two parts: i.) how to construct the set Ei

i+1(n) and ii.) how
to construct Ei

j+1(n) given Ei
j(n). Assuming we know how to construct Ei

i+1(n), we will first show how to
construct Ei

j+1(n) and then we will go back and show how to construct Ei
i+1(n).
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Table 2. Ei
j(5) (i - rows; j - cols)

2 3 4
1 {[121]} {[121], [3121], [1213]} {[121], [3121], [1213], [4121], [43121], [31214], [41213], [12134]}

2 ∅ {[232], [1232], [2321]} {[232], [1232], [2321], [4232], [2324], [41232], [12324], [42321], [23214]}

3 ∅ ∅ {[343], [2343], [3432], [1343], [12343], [23431], [13432], [34321]}

3.1. Constructing the set Ei
j(n) from Ei

j−1(n). The smallest j for which Ei
j(n) is nonempty is i+ 1, so let

us assume we have Ei
i+1(n) and show how to construct Ei

i+2(n). For all reduced decompositions s ∈ Ei
i+1(n),

construct a set X of reduced decompositions as follows:

(1) Add s to X.
(2) Concatenate (i+2) to s on both sides, giving [(i+ 2)s] and [s(i+ 2)], and add them to X.

s only contains elements in {1, . . . i+ 1} so both [(i+ 2)s] and [s(i+ 2)] are reduced.

Lemma 3.1. The set X is Ei
i+2(n).

Proof. First, it must be shown why all reduced decompositions in X represent distinct permutations. No
reduced decomposition from step 1 can be equivalent to any reduced decomposition from step 2, as the set
of elements in a reduced decomposition is invariant among all equivalent reduced decompositions. The set of
elements created in step 1 are all distinct as they are assumed to be distinct from being in the set Ei

i+1(n).
Assume s and t are distinct elements of Ei

i+1(n) and that [(i+2)s] = [(i+2)t]. Multiplying both sides by (i+2)
gives s = t which is a contradiction. Now assume [(i+ 2)s] = [t(i+ 2)]. This implies (i+ 2) must commute with
every element of s. This can happen only by short braid moves or by the use of long braid moves of the form
[(i+ 2)(i+ 1)(i+ 2)] = [(i+ 1)(i+ 2)(i+ 1)] or [(i+ 2)(i+ 3)(i+ 2)] = [(i+ 3)(i+ 2)(i+ 3)]. Such long braid
moves are impossible by Proposition 2.3. This implies (i + 2) commutes with every element. (i + 1) is one of
the elements in s and t, so (i+ 2) does not commute with every element which is a contradiction.

Second, it must be shown why every permutation is represented by an element in X. Let π be a permutation
with a reduced decomposition s with [i(i + 1)i] as a factor and no other repetitions such that the elements of
s are a subset of {1, . . . , i + 2}. If the element (i + 2) does not appear in s, then s ∈ Ei

i+1(n) by assumption
and so must be in Ei

i+2(n). If the element (i+ 2) does appear in s, then s = [s1 . . . (i+ 2) . . . sk]. The element
(i + 1) either occurs to the left or to the right of (i + 2). If (i + 1) occurs to the left of (i + 2), then applying
short braid moves produces [s1 . . . sk(i + 2)] which is equivalent to s. [s1 . . . sk] is a reduced decomposition on
the elements {1, . . . , i+ 1} and so is a member of Ei

i+1(n) and so by step 2 of the construction [s1 . . . sk(i+ 2)]
is an element of Ei

i+2. The argument is similar if (i+ 1) occurs to the right of (i+ 2).
�

Once the set Ei
i+2(n) is built, we can generalize the procedure for building inductively Ei

j+1(n) from Ei
j(n)

and Ei
j−1(n) as follows for all s ∈ Ei

j(n).

(1) Add s to Ei
j+1(n).

(2) If s ∈ Ei
j(n) ∩ Ei

j−1(n), then add [(j + 1)s] to Ei
j+1(n).

(3) If s ∈ Ei
j(n) \ Ei

j−1(n), then add [(j + 1)s] and [s(j + 1)] to Ei
j+1(n).
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Example 3.2. Here is an example of this procedure to produce E1
5(6) from

E1
4(6) = {[121], [3121], [1213], [4121], [43121], [31214], [41213], [12134]} and E1

3(6) = {[121], [3121], [1213]}.

Step 1 adds {[121], [3121], [1213], [4121], [43121], [31214], [41213], [12134]}.
Step 2 adds {[5121], [53121], [51213]}.
Step 3 adds {[54121], [41215], [543121], [431215], [531214], [312145], [541213], [412135], [512134], [121345]}.

Lemma 3.3. The procedure outlined above correctly produces the set Ei
j+1(n) for all i+ 1 ≤ j < n− 1.

Proof. The proof is similar to that of Lemma 3.2 and is omitted.
�

As stated previously, the set Ei
n−1(n) will give one reduced decomposition with factor [i(i + 1)i] and no

other repetitions for each permutation in An. Define ai(k) := |Ei
i+k(n)| for k ≥ 0 and note ai(0) = 0. By our

construction of these sets ai(k) satisfies the following recurrence: ai(k) = ai(k−1)+ai(k−2)+2(ai(k−1)−ai(k−
2)) = 3ai(k−1)−ai(k−2). It is a well-known result that when a recurrence of the form b(k) = 3b(k−1)−b(k−2)
with b(0) = 0 and b(1) = 1, then b(k) = F2k where Fj is the jth Fibonacci number. Note that ai(1) = |Ei

i+1(n)|.
Note, in particular, that for each i, the value of k that makes i + k = n − 1 is k = n − i − 1. Therefore
|Ei

n−1(n)| = ai(n− i− 1) = |Ei
i+1(n)| · F2(n−i−1).

3.2. Constructing the sets Ei
i+1(n). Note that E1

2(n) = [121] for all n. The sets Ei
i+1(n) are constructed

inductively from Ei−1
i (n) by the following procedure for all s in Ei−1

i (n):
(1) If s = [s1 . . . sk], then add [(s1 + 1)(s2 + 1) . . . (sk + 1)] to Ei

i+1(n).
(2) If t was added in step 1 and only contains elements in {3, . . . , i+1}, then add the reduced decomposition

[1t] to Ei
i+1(n).

(3) If t was added in step 1 and contains the element 2, then add the reduced decompositions [1t] and [t1]
to Ei

i+1(n).

Example 3.4. Here is an example of the procedure creating E4
5(6) from

E3
4(6) = {[343], [2343], [3432], [1343], [12343], [23431], [13432], [34321]}.

Step 1 adds {[454], [3454], [4543], [2454], [23454], [34542], [24543], [45432]}.
Step 2 adds {[1454], [13454], [14543]}.
Step 3 adds {[12454], [24541], [123454], [234541], [134542], [345421], [124543], [245431], [145432], [454321]}.

By an induction similar to Lemma 3.3, we have the following lemma.

Lemma 3.5. The procedure above correctly produces the sets Ei
i+1(n).

Define b(i) := |Ei
i+1(n)|. The construction of the sets implies b(i) satisfies the recurrence: b(i) = b(i − 1) +

b(i − 2) + 2(b(i − 1) − b(i − 2)) = 3b(i − 1) − b(i − 2) where b(0) = 0 and b(1) = 1. Similar to the previous
construction, we have b(i) = F2i where Fi is the ith Fibonacci number.

3.3. Completing the Count. Combining all the lemmas above gives

|An| =
n−2∑
i=1

|Ei
n−1(n)| =

n−2∑
i=1

|Ei
i+1(n)|F2(n−i−1) =

n−2∑
i=1

F2iF2(n−i−1)

Theorem 3.6. The number of permutations in Avn(3412) that contain exactly one 321 is
∑n−2

i=1 F2iF2(n−i−1).
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Table 3. |An| for small n

n 3 4 5 6 7 8 9 10 11 12
|An| 1 6 25 90 300 954 2939 8850 26195 76500

Table 3 shows these numbers for the first few n.

Using the Online Encyclopedia of Integer Sequences (http://www.research.att.com/˜njas/sequences/), one
sees for small values of n that this sequence matches sequence A001871 which count the number of ordered
trees of height at most 4 where only the right-most branch at the root achieves this height. Using Maple, one
can verify that the sum

∑n−2
i=1 F2iF2(n−i−1) satisfies the recurrence for this sequence

a(n) =
2a(n− 1) + (n+ 1)F2n+4

3
giving the following theorem.

Theorem 3.7. |An| is counted by sequence A001871 and so

a(n) =
n−2∑
i=1

F2iF2(n−i−1) =
2(2n− 5)F2n−6 + (7n− 16)F2n−5

5

satisfies the recurrence

a(n) =
2a(n− 1) + (n+ 1)F2n+4

3
and has generating function

x3

(1− 3x+ x2)2

4. Involutions

In [4], Egge enumerated the number of 3412-avoiding involutions that contained exactly one decreasing
sequence of length k using lattice paths and Chebyshev polynomials. Here we reproduce that result for k = 3
using reduced decompositions. To enumerate the involutions requires characterizing the reduced decompositions
of the involutions in An.

Lemma 4.1. Let [i(i + 1)is1 . . . sk] be a reduced decomposition such that sa 6= sb when a 6= b and for all
a, sa 6= i and sa 6= i + 1. Assume [i(i + 1)is1 . . . ski] is not reduced. Then [i(i + 1)s1 . . . sk] is a reduced
decomposition for [i(i+ 1)is1 . . . ski] and [isj ] = [sji] for all 1 ≤ j ≤ k.

Proof. To show [isj ] = [sji] for all 1 ≤ j ≤ k, it suffices to show that sj 6= [i − 1] for all j. Assume for
purposes of a contradiction that there exists j (and this j must be unique by assumption sa 6= sb for all
a 6= b) such that sj = [i − 1]. Therefore [i(i + 1)is1 . . . sk] = [i(i + 1)isi . . . sj−1(i − 1)sj+1 . . . sk]. Let π be
the permutation whose reduced decomposition is [i(i + 1)is1 . . . ski] where sj = [i − 1]. Consider πi. By the
right-most transposition i is mapped to i + 1. By the assumptions, none of the sa for 1 ≤ a ≤ k move i + 1.
The factor [i(i + 1)i] leaves i + 1 fixed, so πi = i + 1. It is a well-known result (see [2] for more details) that
if s is a reduced decomposition and s is a transposition not necessarily appearing in s then l([ss]) = l([s])± 1.
l([i(i+ 1)is1 . . . ski]) = l([i(i+ 1)is1 . . . sk])− 1 because by assumption [i(i+ 1)is1 . . . ski] is not reduced. By the
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Exchange property, theorem 1.4, [i(i+1)is1 . . . ski] is equivalent to one of the following reduced decompositions:
[i(i+ 1)s1 . . . sk], [(i+ 1)is1 . . . sk], or [i(i+ 1)is1 . . . ŝa . . . sk] for some 1 ≤ a ≤ k.

Consider the cases:
(1) [i(i+ 1)s1 . . . sk]. i is mapped to i−1 by the occurrence of [i−1] in position j and so i must be mapped

to i− a where a ≥ 1. Therefore [i(i+ 1)s1 . . . sk] 6= [i(i+ 1)is1 . . . ski] since πi = i+ 1.
(2) [(i+ 1)is1 . . . sk]. i is mapped to i− 1 by the transposition [i− 1] and so again must be mapped to i− a

for some a ≥ 1. Therefore, [(i+ 1)is1 . . . sk] 6= [i(i+ 1)is1 . . . ski].
(3) [i(i+ 1)is1 . . . ŝb . . . sk] for some 1 ≤ b ≤ k. If b 6= j, then i is mapped to i− a for some a ≥ 1. If b = j,

then the factor [i(i+ 1)i] sends i to i+ 2. So, [i(i+ 1)is1 . . . ŝb . . . sk] 6= [i(i+ 1)is1 . . . ski].
Since all three possibilities lead to a contradiction we must have sj 6= [i− 1] for all j and so [isj ] = [sji] for

all j. Therefore [i(i + 1)is1 . . . ski] = [i(i + 1)iis1 . . . sk] = [i(i + 1)s1 . . . sk]. [i(i + 1)s1 . . . sk] must be reduced
because of the length.

�

Theorem 4.2. Suppose π ∈ An. π is an involution if and only if π has a reduced decomposition [s1 . . . sk] for
which the following hold.

(1) [s1 . . . sk] has a factor of the form [i(i+ 1)i] for some i and no other repetitions.
(2) If |sj − sm| = 1 then {sj , sm} = {i, i+ 1}.

Proof. (⇐) By Theorem 1.6, such a reduced decomposition for π implies π ∈ An. By the structure of the
reduced decomposition and since [i(i+ 1)i]2 = [∅], π is easily seen to be an involution.

(⇒) Assume π is an involution. π ∈ An implies that π has a reduced decomposition s = [s1 . . . sk] with
[i(i + 1)i] as a factor with no other repetitions. Assume there exist sj , sm such that |sj − sm| = 1 and
{sj , sm} 6= {i, i+ 1}. Without loss of generality, we may assume sm = sj + 1.

If [sm] occurs to the left of [sj ], then consider the image of sj under π.

If [sj − 1] occurs as an element of s to the right of [sj ], then sj must be mapped to sj − k for some k ≥ 1.
This implies [sj − (k− 1)], [sj − (k− 2)], . . . , [sj − 2] occur in that order to the left of [sj − 1]. Now, if [sj − k]
occurs to the right of [sj − (k− 1)], then sj −k must be mapped to sj − (k+ l) for some l ≥ 1 and therefore π is
not an involution. If [sj − k] does not occur to the right of [sj − (k− 1)], then sj − k is mapped to sj − (k− 1)
and again π is not an involution.

If [sj − 1] does not occur as an element of s to the right of [sj ], then sj must be mapped to sj + k for some
k ≥ 2. This implies [sj + k − 1], [sj + k − 2], . . . , [sj + 2] occur to the left of [sj + 1]. If [sj + k] occurs to the
right of [sj + k− 1], then sj + k must be mapped to sj + k+ l for some l ≥ 1 and hence π is not an involution.
If not, sj + k must be mapped to sj + k − 1 and again π is not an involution.

The argument for the case [sm] occurring to the right of [sj ] is similar to the above argument.
�

In order to count the number of involutions, we define sets similar to those constructed in section 3.
Let Ii

j(n) be the sets of reduced decompositions as in the construction of Ei
j(n) in the previous section with

the additional property that the reduced decompositions represent involutions.

Table 4 gives the sets Ii
j(7).

4.1. Constructing the sets Ii
j(n). The sets Ii

j+1(n) are constructed inductively from s ∈ Ii
j(n) and s ∈ Ii

j−1(n)
as follows:
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Table 4. Ii
j(7) (i - rows; j - cols)

2 3 4 5 6
1 {[121]} {[121]} {[121], [4121]} {[121], [4121], [5121]} {[121], [4121], [5121], [6121], [64121]}

2 ∅ {[232]} {[232]} {[232], [5232]} {[232], [5232], [6232]}

3 ∅ ∅ {[343], [1343]} {[343], [1343]} {[343], [1343], [6343], [61343]}

4 ∅ ∅ ∅ {[454], [1454], [2454]} {[454], [1454], [2454]}

5 ∅ ∅ ∅ ∅ {[565], [1565], [2565], [3565], [13565]}

(1) If s ∈ Ii
j(n), then add s to Ii

j+1(n)
(2) If s ∈ Ii

j(n) ∩ Ii
j−1(n), then add [js] to Ii

j+1(n)

Similarly to the case of general permutations, I1
2 (n) = {[121]} for all n. The set Ii

i+1(n) is constructed from
Ii−1
i (n) as follows:

(1) If s = [s1 . . . sk] then add [(s1 + 1)(s2 + 1) . . . (sk + 1)] to Ii
i+1(n).

(2) If t was added in step 1 and the element 2 does not occur in t then add [1t] to Ii
i+1(n).

Lemma 4.3. The above procedures correctly produce the sets Ii
j(n) for all i and j.

Proof. Similar to the proofs of Lemmas 3.1 and 3.3. �

4.2. Counting the involutions in An. The number of inversions in An is given by
∑n−2

i=1 |Ii
n−1(n)|. Counting

similarly to the case for permutations, define ci(k) := |Ii
i+k(n)| for k ≥ 0. Note, ci(0) = 0. The ci(k) satisfy the

recurrence ci(k) = ci(k − 1) + ci(k − 2). Such a recurrence generates the Fibonacci numbers when the initial
conditions are 0 and 1. Therefore, |Ii

n−1(n)| = |Ii
i+1|Fn−i−1.

Now define d(i) := |Ii
i+1(n)|. By the second procedure d(i) = d(i− 1) + d(i− 2) and so d(i) = Fi. Therefore,

the number of involutions in An is:
n−2∑
i=1

|Ii
n−1(n)| =

n−2∑
i=1

|Ii
i+1(n)| · Fn−i−1 =

n−2∑
i=1

FiFn−i−1

.
The closed form of the above sum corresponds to Egge’s result from [4] cited below.

Theorem 4.4. (Egge) The number of involutions in Avn(3412) that contain exactly one 321 pattern is
2(n− 1)Fn − nFn−1

5
.

In the Online Encyclopedia of Integer Sequences this is sequence A001629 and is a very well studied sequence.
Table 5 gives these numbers for the first few n.
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Table 5. Number of Involutions in An for small n.

n 3 4 5 6 7 8 9 10 11 12
Involutions in An 1 2 5 10 20 38 71 130 235 420
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