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Abstract. We present an example of Kakutani equivalent and strong orbit
equivalent substitution systems that are not conjugate.

Introduction. The motivation for this example came from [2], in which Dartnell,
Durand, and Maass show that a minimal Cantor system and a Sturmian subshift
are conjugate if and only if they are Kakutani equivalent and orbit equivalent (or
equivalently strong orbit equivalent for Sturmian subshifts). In their paper, they
posed the question if this is true for general minimal Cantor systems or even for
substitution systems. Kosek, Ormes, and Rudolph [7] answered this question nega-
tively by giving an example of orbit equivalent and Kakutani equivalent substitution
systems that are not conjugate. Furthermore, in [7] it is shown that if two minimal
Cantor systems are Kakutani equivalent by map that extends to a strong orbit
equivalence, then the systems are conjugate. The question that we then considered
is if two minimal Cantor systems are Kakutani equivalent and strong orbit equiva-
lent, does this mean that the systems are conjugate? The answer to this question
is again answered negatively as the substitution systems in this paper provide a
counterexample.

Background & Definitions. We begin with a minimal Cantor system, i.e. an
ordered pair (X, T ) where X is a Cantor space and T : X → X is a minimal
homeomorphism. The minimality of T means that every T -orbit is dense in X , i.e.
∀ x ∈ X , the set {T n(x) | n ∈ Z} is dense in X . There are several notions of
equivalence in dynamical systems. The strongest of these is conjugacy. Two dy-
namical systems (X, T ) and (Y, S) are conjugate if there exists a homeomorphism
h : X → Y such that h ◦ T = S ◦ h.

A weaker notion of equivalence is orbit equivalance. With orbit equivalence, the
spaces still must be homeomorphic, but the homeomorphism need only preserve
the orbits within each system, i.e. (X, T ) and (Y, S) are orbit equivalent if there
exists a homeomorphism h : X → Y and functions n, m : X → Z such that for all
x ∈ X , h ◦ T (x) = Sn(x) ◦ h(x) and h ◦ T m(x)(x) = S ◦ h(x). We refer to m and
n as the orbit cocycles associated to h. We say that the systems are strong orbit
equivalent if the cocycles have at most one point of discontinuity each.
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The last notion of equivalence we will consider is Kakutani equivalence. If we let
(X, T ) be a minimal Cantor system and A a clopen set in X , because T is minimal
and X compact, each a ∈ A returns to A in a finite number of T iterations. This al-
lows us to define a continuous map rA : A → A by rA(a) = min{n ≥ 1 | T n(a) ∈ A}.
If we define the map TA : A → A by TA(a) = T rA(a), the system (A, TA) is again
a minimal Cantor system and we say that (A, TA) is an induced system of (X, T ).
We say that two minimal Cantor systems are Kakutani equivalent if they have con-
jugate induced systems.

In this paper, we will be looking at substitution systems in two ways, as Bratteli
diagrams and as typical substitutions with the shift map. We will introduce these
here.

Bratteli Diagrams

This will be a brief introduction to Bratteli diagrams. We refer you to [6] for
more details. A Bratteli diagram (V, E) consists of a vertex set V and an edge set
E, where V and E can be written as the countable union of finite disjoint sets:

V = V0 ∪ V1 ∪ V2 ∪ . . . and E = E1 ∪ E2 ∪ . . . ,

where we think of the Vk as representing the vertices at level k and Ek as represent-
ing the edges between the vertices at levels k−1 and k. Furthermore, the following
properties hold:

1. V0 = {v0} is a one point set;
2. There is a range map r and a source map s each going from E into V such

that r(Ek) ⊂ Vk and s(Ek) ⊂ Vk−1. We also require that s−1(v) 6= ∅ ∀ v ∈ V

and r−1(v) 6= ∅ ∀ v ∈ V \ V0.

An ordered Bratteli diagram is a Bratteli diagram B = (V, E,≤) along with a
partial order ≤ on E such that two edges are comparable if and only if they have
the same range. We can extend this to a reverse lexicographical ordering on paths.
So for k, l ∈ Z

+ with k < l, we denote all of the edge paths between Vk−1 and Vl by
E[k, l], and the ordering ≤′ induced on E[k, l] is given by (ek, . . . , el) ≤

′ (fk, . . . , fl)
if and only if there is a j with k ≤ j ≤ l such that ei = fi for j < i ≤ k and
ej ≤ fj . There are also natural extensions of the range and source maps to E[k, l]
by defining s(ek, . . . , el) = s(ek) and r(ek, . . . , el) = r(el).

Given a Bratteli Diagram, it is possible to create a new Bratteli Diagram by a
process called telescoping. Let B = (V, E,≤) be a Bratteli Diagram and remove
E[k, l] and Vk+1, Vk+2, . . . , Vl−1. If we then reconnect levels Vk and Vl by single
edges, one for each of the paths in E[k, l] beginning and ending at its correspond-
ing source and range, respectively, and order the edges by ≤′, we call this process
telescoping between levels k and l. If we let {nk}∞k=1 be a sequence in Z

+ such
that n1 = 0 and nk < nk+1 ∀ k, and we telescope B between levels nk and nk+1

for each k ordering the edges as described above, we have a new ordered Bratteli
diagram B′ = (V ′, E′,≤′). We say that B′ is a telescoping of B. If the telescoping
is done by telescoping a finite number of levels, i.e. there exists K ∈ Z

+ such that
∀ j ∈ Z

+, nK+j = nK + j, we say that B′ is a finite telescoping of B.
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Definition. An ordered Bratelli diagram B = (V, E,≤) is properly ordered if

1. there is a telescoping (not necessarily finite) B′ of B such that any two ver-
ticies at consecutive levels in B′ are connected;

2. there are unique infinite edge paths xmax and xmin in B such that each edge
of xmax is maximal in ≤ and each edge of xmin is minimal in ≤.

Now, given a properly ordered Brattelli diagram B = (V, E,≤), we define XB

to be the set of all infinite paths in B. We topologize XB by making the fam-
ily of cylinder sets a basis for the topology. By a cylinder set, we mean the
sets of paths that begin with a particular path, i.e. a cylinder set denoted by
[e1, . . . , ek] = {(x1, x2, . . .) ∈ XB : xi = ei ∀ i ≤ k}. XB along with this topology is
a Cantor space. We define the Vershik map VB : XB → XB in the following way.
Let (e1, e2, . . .) ∈ XB \ {xmax}. There is smallest k such that ek is not maximal. If
we let fk be the successor of ek and let (f1, . . . , fk−1) be the minimal path from the
v0 to fk, we then define VB(e1, e2, . . .) = (f1, f2, . . . , fk, ek+1, ek+2, . . .). We define
VB(xmax) = xmin. VB acting on XB is a minimal homeomorphism, and therefore
(XB, VB) is a minimal Cantor system and we refer to it as a Bratteli-Vershik sys-
tem. As shown in [6], any minimal Cantor system is conjugate to a Bratelli-Vershik
system.

For a given Bratteli diagram B = (V, E) denote the vertices in V at level k by
{V (k, j) | 1 ≤ j ≤ |Vk|}. For each k ≥ 0, there is an associated incidence matrix
specifying the number of edges between vertices, i.e. for each k ≥ 0, we define
the incidence matrix Mk = (mij), i = 1, . . . , |Vk|, j = 1, . . . , |Vk+1| where mij is
the number of edges between V (k, j) and V (k + 1, i). Then, we can associate a
dimension group K0(V, E) to the Bratteli diagram by taking the inductive limit
of groups lim

−→
(Z|Vk|, Mk). We can make this an ordered group by declaring that

any [v] ∈ K0(V, E)+ if there is a v ∈ [v] such that each coordinate of v is nonneg-
ative. We distinguish an order unit to be the element in K0(V, E) associated to
1 ∈ Z

|V0| = Z.

Substitution Systems

Again as this will be a brief introduction, we refer you to [3] for more details.
We start with a finite nonempty alphabet A = {1, 2, . . . , d}. If we let A∗ be the
set of finite nonempty words in A, a substitution is a map σ : A → A∗. There is a
natural extension of σ to A∗ by concatenation. We say that σ is primitive if there
is a k > 0 such that for each i, j ∈ A, j appears in σk(i), and there is some i ∈ A
such that limn→∞ |σn(i)| = ∞, where |σn(i)| represents the length of the word. We
say σ is proper if there exists p > 0 and two letters r, l ∈ A such that

1. ∀ i ∈ A, r is the last letter of σp(i);
2. ∀ i ∈ A, l is the first letter of σp(i).

We say that a word (not necessarily finite) w is σ-allowed if and only if each
finite subword of w is a subword of some σn(i) for some i ∈ A, and we define Xσ

to be the set of all σ-allowed bi-infinite words in A. There are substitutions σ for
which Xσ will be finite. We are only interested in substitutions where Xσ is infinite,
so we will say that σ is aperiodic if Xσ is infinite.
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If we take Xσ with the shift map, say Sσ, i.e. if x = (. . . x−2x−1.x0x1x2 . . .),
Sσ(x) = (. . . x−2x−1x0.x1x2 . . .), we say the (Xσ, Sσ) is the substitution system
associated to σ. For x ∈ Xσ, we define [x] to be the set of all backward and for-
ward shifts of x or equivalently the orbit of x under Sσ. We say that an orbit
[x] is left asymptotic if there is another orbit [x′] with [x] ∩ [x′] = ∅ and y ∈ [x],
y′ ∈ [x′], k ∈ Z such that for all i ≤ k, yi = y′

i. Right asymptotic orbits are defined
analagously, and we say an orbit is asymptotic if it is either left or right asymptotic.

If we let (Xσ, Sσ) be a substitution system associated to a primitive, aperiodic
substitution σ, this is a minimal Cantor system and has a natural representation
as a Bratteli-Vershik system. In the case that σ is proper, which is what we are
concerned with, the Bratteli diagram as done in [3] is constructed by first making
|Vk| = |A| ∀ k ≥ 1 and we associate each vertex at these levels to a letter in A,
i.e. we denote vertices at level k by {V (k, j) | j ∈ A}. For each j ∈ A, V (1, j) is
connected by a single edge to the top vertex. Then, for a fixed q ∈ A, we connect
V (2, q) with an edge from each V (1, j) for each time j appears in σ(q) and the
edges are ordered by the order they appear in σ(q). We do this process for each
q ∈ A. We repeat these edge connections for all consecutive edge sets farther down
in the diagram. Therefore, the diagram repeats after level 1, so we refer to this as
a stationary Bratteli diagram.

Then, there is a correspondence between each bi-infinite word in Xσ and infinite
paths in the Bratteli diagram. Let x ∈ Xσ and let z be the corresponding infinite
path in the Brattelli diagram. The correspondence is given by the following. For
each k ≥ 0, there is a word in x around the origin, say w = x−n . . . x−1.x0 . . . xm

such that for some a ∈ A, σk(a) = w. Then the path that z follows from the top
of the diagram to level k is the (n + 1)st ordered path in the set of paths that
terminate at the vertex that corresponds to a at level k.

The Counterexample. The substitutions for these two systems are defined ac-
cordingly. First, we define two substitutions σ1 and σ2 on an alphabet A = {a, b}
as follows:

σ1 :

{

a → aabb

b → abb

σ2 :

{

a → abab

b → abb.

We define σ = σ1 ◦ σ2 and τ = σ2 ◦ σ1. So, we have

σ :

{

a → aabbabbaabbabb

b → aabbabbabb

τ :

{

a → abababababbabb

b → abababbabb.

We let (X, T ) be the substitution system associated to σ and (Y, S) be the substi-
titution system associated to τ . The Bratteli diagrams associated to these systems
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Figure 1. (X, T ) & (Y, S) as Bratteli diagrams

are shown in Figure 1. If you telescope these diagrams between odd levels, you
get exactly the stationary Bratteli diagrams associated to the substitution sys-
tems described previously. However, since the substitutions here are given by the
composition of two substitutions, it is more convenient to look at them in their
untelescoped form.

Theorem 1. The systems (X, T ) and (Y, S) defined above are Kakutani equivalent
and strong orbit equivalent, but not conjugate.

In order to prove this theorem we need the following:

Theorem 2 (Durand, Host, and Skau [3]). Two Bratteli-Vershik systems associated
to properly ordered Bratteli diagrams are Kakutani equivalent if and only if one
diagram can be obtained from the other by a finite change, i.e. doing a finite
number of finite telescopings and adding and/or removing a finite number of edges.

Theorem 3 (Giordano, Putnam, and Skau [5]). Two minimal Cantor systems
are strong orbit equivalent if and only if their associated order groups are order
isomorphic by a map preserving the distinguished order unit.

Theorem 4 (Barge, Diamond, and Holton [1]). A primitive, aperiodic, substitution
σ on d letters has at most d2 asymptotic orbits. If σ is proper, then σ has at most
4(d − 1) asymptotic orbits.

Theorem 5 (Gottschalk and Hedlund [4]). Any infinite minimal substitutions sys-
tem must have at least one pair each of left and right asymptotic orbits.

We will prove Theorem 1 by a series of propositions.
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Propostion 1. The systems (X, T ) and (Y, S) defined above are Kakutani equiva-
lent.

Proof. By Theorem 2, two Bratteli-Vershik systems are Kakutani equivalent to one
another if one can be obtained from the other by doing a finite change. Looking
at the diagrams in Figure 1, if we telescope between the top vertex and level 2 of
(X, T ) and then remove edges between the top vertex and the new level 1 so there
is exactly one edge between the top vertex and each of the two vertices at the new
level 1, we get precisely the ordered Bratteli diagram representing (Y, S). Hence,
by Theorem 2 the systems are Kakutani equivalent.

Propostion 2. The systems (X, T ) and (Y, S) defined above are strong orbit equiv-
alent.

Proof. To see that the substitution systems are strong orbit equivalent, we again
refer to the diagrams in Figure 1. If we consider the diagrams as being unordered,
they are identical. Consequently, their associated dimension groups are order iso-
morphic by a map preserving the distinguished order unit. By Theorem 3, the
systems are strong orbit equivalent.

Showing that these two systems are not conjugate is a more subtle problem as
almost any invariants of the two systems are the same. By Theorem 4, since our
substitution systems are primitive, aperiodic, and proper on two symbols, they can
have at most four asymptotic orbits. Furthermore, from Theorem 5, we know that
each of our systems has at least one pair each of left and right aymptotic orbits, so
each of our systems must have exactly two left asymptotic orbits and exactly two
right asymptotic orbits.

As shown in Lemma 2 of [1], left asymptotic orbits can arise in only one of two
ways. As it turns out in our systems, the left asymptotic orbits in (X, T ) are the
orbits of

α = . . . σ2(u)σ(u)u.axσ(x)σ2(x) . . . and A = . . . σ2(u)σ(u)u.bbσ(b)σ2(b) . . .

where u = aabbabba and x = bbabb, and the left asymptotic orbits in (Y, S) are the
orbits of

β = . . . τ2(v)τ(v)v.aτ(z)τ2(z) . . . and B = . . . τ2(v)τ(v)v.bτ(w)τ2(w) . . .

where v = ababab, z = babbabb, and w = abb.

To see that these are allowable sequences in the system, note that for all n ∈ N,

σn(u) . . . σ2(u)σ(u)uaxσ(x)σ2(x) . . . σn(x) = σn+1(a),

σn(u) . . . σ2(u)σ(u)ubbσ(b)σ2(b) . . . σn(x) = σn+1(b),

τn(v) . . . τ2(v)τ(v)vazτ(z)τ2(z) . . . τn(z) = τn+1(a), and

τn(v) . . . τ2(v)τ(v)vbwτ(w)τ2 (w) . . . τn(w) = τn+1(b).
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Figure 2. Left asymptotic points shown in bold

So, α and A are allowable in (X, T ), and β and B are allowable sequences in (Y, S).
The representations of these points in the Bratteli diagrams are shown in Figure 2.

To see that α and A correspond to the paths as shown in Figure 2, we first
introduce some notation. If x = (x1, x2, . . .) is an infinite path in a Bratteli dia-
gram and l < k, let x[l, k] denote the path (xl+1, . . . , xk), i.e. the edge path that
x follows from level l to level k. Also, we will denote the vertices in the Bratteli
diagram for (X, T ) in the following way: Lk and Rk will represent the vertices on
the left and right side, respectively, at level k of the diagram. Furthermore, P (v)
will represent the set of paths whose range is v and whose source is v0, i.e. the
set of paths that start from the top vertex and terminate at v. Given a path in
P (v), if it is the nth path in the ordering, we will refer to n as its order index in P (v).

By the characterization of α above, ∀ k ≥ 1, α passes through L2k+1 and the

order index of α[0, 2k+1] in P (L2k+1) is
∑k−1

j=0 |σj(u)|+1. The path of order index

|u| + 1 in P (L3) is the α[0, 3] path shown in Figure 2, and in general ∀ k ≥ 1, the

path of order index
∑k−1

j=0 |σj(u)|+1 in P (L2k+1), is the α[0, 2k +1] path shown in
Figure 2. Therefore, the representation of α in the Bratelli diagram is as shown in
Figure 1. Moreover, by equation (2) above ∀ k ≥ 1, A passes through R2k+1 and

the order index of A[0, 2k + 1] in P (R2k+1) is
∑k−1

j=0 |σj(u)| + 1 which corresponds

to the A[0, 2k +1] path as shown in Figure 2. So, A corresponds to the path shown
in Figure 2. Similarly, we can conclude that β and B also coincide with the paths
shown in Figure 2.
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Now, suppose there is a conjugacy h between (X, T ) and (Y, S). The conju-
gacy must map left (right) asymptotic orbits to left (right) asymptotic orbits. To
see this, note that if [x] and [x′] are left asymptotic orbits in X , for each point
y ∈ [x], there is unique point y′ ∈ [x′] such that limk→∞ dX(T−ky, T−ky′) = 0,
where dX represents a metric on X that gives rise to the cylinder set topology. If
we let dY be the corresponding metric on Y , by the uniform continuity of h, we
must have that limk→∞ dY (h(T−ky), h(T−ky′)) = 0. But then since h is a conju-
gacy, h(T−ky) = S−k(h(y)) and h(T−ky′) = S−k(h(y′)) meaning that the orbits
of h(y) and h(y′) are left asymptotic and h(y′) is the unique point in Y such that
limk→∞ dY (S−k(h(y)), S−k(h(y′))) = 0. Therefore, if h is a conjugacy, it must map
α into the orbit of β and A into the orbit of B or vice versa. Since a conjugacy can
always be modified to map a point to anything in the orbit of its image, without
loss of generality, we can assume that h maps α to either β or B. Then, since A

is the unique point in X such that limk→∞ dX(T−k(α), T−k(A)) = 0 and B is the
unique point in Y such that limk→∞ dY (S−k(β), S−k(B)) = 0 , it must be true that
if h(α) = β, then h(A) = B. Similarly if h(α) = B, then h(A) = β. If we can show
that neither of these cases are possible, we will have proven that these systems are
not conjugate.

Consider the sequence {Ak}∞k=1 in X where Ak is the path in the diagram in
Figure 1 that agrees with A until level k, crosses over to Lk+1 on the order 4 path
and agrees with α past level k + 1 as is shown in Figure 3 for an even value of k.
Note that limk→∞ Ak = A, and since each Ak is cofinal with α, for each k there
is an nk such that T nk(α) = Ak. So, if there is a conjugacy h between (X, T ) and
(Y, S), the following must hold:

h(A) = h( lim
k→∞

T nk(α)) = lim
k→∞

h(T nk(α)) = lim
k→∞

Snk(h(α)).

Since h(A) must be either β or B and h(α) is the other, then either

lim
k→∞

Snk(β) = B or (1)

lim
k→∞

Snk(B) = β (2)

and if neither (1) nor (2) hold, h cannot be a conjugacy.

Propostion 3. The number nk such that T nk(α) = Ak is given by

nk =

{

|P (Lk)| + |P (Rk)| if k is odd

|P (Lk)| if k is is even

Proof. We let ∆k denote the order index of α[0, k] in P (Lk) and Γk denote the
order index of Ak[0, k + 1] in P (Lk+1). Note that ∆k is also the order index of
A[0, k] in P (Rk). We have the following:
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Figure 3. Ak shown in bold for an even value of k

∆1 = 1 and ∀ k ≥ 1, ∆k+1 =

{

|P (Lk)| + ∆k if k is odd

|P (Lk)| + |P (Rk)| + ∆k if k is even;

∀ k > 1, Γk = 2|P (Lk)| + |P (Rk)| + ∆k.

Since both α and Ak pass through Lk+1, nk is given by the difference in the order
indicies of Ak[0, k+1] and α[0, k +1]. So, nk = Γk −∆k+1 proving the proposition.

Propostion 4. For odd values of k, limk→∞ Snk(β) → β and limk→∞ Snk(B) = B.

Before we begin the proof, we introduce some notation. Denote the left and right
vertices at level k of (Y, S), respectively, as L′

k and R′
k. Let ∆′

k denote the order
index of β[0, k] in P (L′

k) and Γ′
k the order index of B[0, k] in P (R′

k). For all k, note
that the recursion |P (L′

k+1)| = 2|P (L′
k)| + 2|P (R′

k)| is satisfied.
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Now, we need a way to identify paths and edges in the diagram. We will denote
the maximal path from the top of the diagram to vertex v by M(v) and the minimal
path by m(v). Also, we will denote the edge of order index j that terminates at
vertex v by jv. We also need to identify compositions of paths in the diagram, so
for example, in our notation M(R′

k)3L′

k+1
β[k + 1, k + 3] represents the path that

is maximal down to R′
k, takes the order 3 path to L′

k+1, and follows β from level
k + 1 to k + 3.

Proof of Proposition 4. Consider Snk(β) = S|P (L′

k
)|+|P (R′

k
)|(β) for a fixed odd value

of k. We determine what this is by comparing order indicies of paths in P (L′
k+2).

We would like to know the path whose order index in P (L′
k+2) is greater than the

order index of β[0, k + 2] by |P (L′
k)|+ |P (R′

k)| . We do the computation in a series
of steps which are easily checked.

1. The path M(L′
k)β[k, k+2] > β[0, k+2] and the difference in the order indicies

is |P (L′
k)| − ∆′

k.
2. The path m(R′

k)4L′

k+1
β[k + 1, k + 2] > M(L′

k)β[k, k + 2] and the difference in

order indicies is 1.
3. The path M(R′

k)4L′

k+1
β[k + 1, k + 2] > m(R′

k)4L′

k+1
β[k + 1, k + 2] and the

difference in order indicies is |P (R′
k)| − 1.

4. The path m(R′
k+1)3L′

k+2
= m(L′

k)1R′

k+1
3L′

k+2
> M(R′

k)4L′

k+1
β[k + 1, k + 2]

and the difference in order indicies is 1.
5. The path β[0, k]1R′

k+1
3L′

k+2
> M(R′

k)4L′

k+1
β[k + 1, k + 2] and the difference

in order indicies is ∆′
k − 1.

The difference in order indicies applied above add to |P (L′
k)| + |P (R′

k)|, and the
last path in our computation begins with β[0, k], so Snk(β) agrees with β down to
level k showing Snk(β) → β for odd values of k.

We now consider Snk(B) = S|P (L′

k
|+|P (R′

k
)|(B) for an odd value of k. We calcu-

late this by comparing order indicies of paths in P (R′
k+3). We would like to know

the path whose order index in P (R′
k+3) is greater than the order index of B[0, k+3]

by |P (L′
k)|+ |P (R′

k)|. Again, we compute this is in a series of steps which can easily
be checked.

1. The path B[0, k]3R′

k+1
B[k + 1, k + 3] > B[0, k + 3] and the difference in order

indicies is |P (R′
k)|.

2. The path M(R′
k+2)B[k + 2, k + 3] > B[0, k]3R′

k+1
B[k + 1, k + 3] and the

difference in order indicies is |P (R′
k−1)| − Γ′

k−1.
3. The path m(R′

k+2)3R′

k+3
= m(L′

k)1L′

k+1
1R′

k+2
3R′

k+3
> M(R′

k+2)B[k+2, k+3]

and the difference in order indicies is 1.
4. The path m(R′

k−1)4L′

k
1L′

k+1
1R′

k+2
3R′

k+3
> m(L′

k)1L′

k+1
1R′

k+2
3R′

k+3
and the dif-

ference in order indicies is 2|P (L′
k−1)| + |P (R′

k−1)|.
5. The path B[0, k−1]4L′

k
1L′

k+1
1R′

k+2
3R′

k+3
> m(R′

k−1)4L′

k
1L′

k+1
1R′

k+2
3R′

k+3
and

the difference in order indicies is Γ′
k−1 − 1.

Using the recursion stated above, we get that the sum of the differences in order
indicies above is |P (L′

k)| + |P (R′
k)|. The last path in our computation begins with

B[0, k − 1], so Snk(B) agrees with B down to level k − 1 finishing the proof.
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Proof of Theorem 1. By Proposition 4, neither (1) nor (2) can hold. This statement
along with Propositions 1 and 2 prove the theorem.

Remark. Using similar techniques to those used in Proposition 4, it can also be
shown that these two systems are not flip conjugate, i.e (X, T ) is not conjugate to
(Y, S−1).
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