
Convex Onion Peeling Genetic Algorithm:
An Efficient Solution to Map Labeling of Point-Feature

Wan D. Bae
University of Wisconsin-Stout

baew@uwstout.edu

Shayma Alkobaisi
United Arab Emirates University
shayma.alkobaisi@uaeu.ac.ae

Petr Vojtěchovský
University of Denver
petr@math.du.edu

Sada Narayanappa
University of Denver
snarayan@cs.du.edu

Kye Bae
kyebae01@noa.nintendo.com

Nintendo of America, Inc.

ABSTRACT
Map labeling of point-feature is the problem of placing text
labels to corresponding point features on a map in a way
that minimizes overlaps while satisfying basic rules for the
quality. This problem is a critical problem in the applica-
tions of cartography and Geographical Information Systems
(GIS). In this paper we study the fundamental issues related
to map labeling of point-feature and develop a new genetic
algorithm to solve this problem. We adopt a data struc-
ture called convex onion peeling and utilize it in our pro-
posed Convex Onion Peeling Genetic Algorithm (COPGA)
to efficiently manage point features. We evaluated the per-
formance of the proposed algorithm through extensive ex-
periments on both synthetic and real datasets. The experi-
mental results show that our genetic algorithm based on the
convex onion peeling structure is an efficient, robust and
extensible algorithm for automated map labeling of point-
feature.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Cartography and GIS

General Terms
Design, Performance

Keywords
Cartography, GIS, automated map labeling, onion peeling,
genetic algorithm

1. INTRODUCTION
Placing text labels to corresponding features is a critical

task and makes up a large proportion of map production.
Labels are essential components in a map for delivering in-
formation to users and hence map labeling needs to avoid

label-label and label-point overlaps for clarity. Although
many solutions have been proposed for automated map la-
beling, placing labels is still performed manually in many
applications, which is time consuming and expensive. Hence
developing efficient methods for automated map labeling is
a central problem in many applications of cartography and
GIS. Solutions to this problem can be also beneficial for
other application domains in the areas of graph diagrams,
architectural drawings, and medical image analysis.

Although map features to be labeled could be points (e.g.,
cities), lines (e.g., rivers, streets), or polygons (e.g., lakes,
countries), this combinatorial aspect of map labeling is in-
dependent of the nature of the features being labeled. This
paper therefore concentrates on point features which are also
referred to as sites. Due to the high degree of freedom to
place each label, map labeling of point-feature is a complex
combinatorial problem where a search space and a cost func-
tion need to be defined. It has been proven that finding the
optimal solution to automated map labeling is NP-hard [9,
13]. It is therefore reasonable to resort to approximate so-
lutions based on heuristics. Several studies based on the
genetic algorithm [10, 15] have discussed map labeling of
point-feature and have shown promising results. However,
little research has been done on developing good data struc-
tures to optimize the solution. In this paper, we focus on
developing an efficient data structure and methods that can
be utilized in the genetic algorithm.

Our approach is based on a simple observation in which
labels tend to be placed away from each other in order to
avoid conflicts. Suppose that we have two labels, label1 and
label2, which need to be placed to the corresponding points
(sites). In Figure 1 (a), we place label1 at a left-upper po-
sition of its corresponding point, then a right-lower position
of the other point might be one of the possible positions for
label2. Similarly, Figure 1 (b) might be a solution to map
labeling placement for four points. The idea is to group the
points into layers and start placing labels to corresponding
points towards the outer direction of each layer while keep-
ing the labels away from the other labels and points. If we
have few number of points, achieving this goal seems simple.
However, this is not the case in more complicated real world
cases. Figure 1 (c) shows an example of eight points where
additional techniques need to be considered for placing la-
bels. In this paper we define the search space and a cost
function for map labeling of point-feature. To minimize this
cost function, we consider the following important aspects of

label1

label2

label1

label2

label4

label3

label1

label2

label4

label3
label8

label6label5

label7label3label3

label2label2

label1label1

label1label1

label3label3

label1label1

label4label4

label2label2

label4label4

label2label2

label5label5

label7label7

label6label6

label8label8

(a) Two points (b) Four points (c) Eight points

Figure 1: A heuristic approach to map labeling

the genetic algorithm: 1) Initialization: generating a good
initial population (labels’ positions) can result in a better
solution, 2) Selection: constraints vs. non-constraints in
search space of the positions of a label during the evolution-
ary process, 3) Global optimization: any genetic algorithm
possibly suffers from the local optimal trap (no improvement
after a certain number of evolutions).

2. RELATED WORK
A set of general cartographic principles for map label

placement have been defined in [11]; 1) Legibility: labels
must have legible font sizes and be positioned in a way that
is easily read, 2) Unambiguity: each label must clearly iden-
tify a single feature and not interfere with any other label or
feature. Label positions to the right of a point feature are
preferred to those on the left. Label above a point feature
are preferred to those below, 3) Overlap avoidance: a label
should not overlap any other label or feature, 4) Aesthetics:
labels should not be overly clustered or distract from map
features.

Popular solutions to map labeling problem using a rule-
based approach were proposed in [2, 1, 7]. This approach
was to encode the knowledge needed for the objective func-
tion. The authors in [17] represented the map labeling prob-
lem in a computational geometric approach. Their defini-
tion simply disallows any overlaps between labels. This ver-
sion of the problem was shown to be NP-hard in [9] and an
O(nlogn) running time approximation algorithm was pro-
posed. Their proposed algorithm finds a valid labeling of at
least half of the optimal size. Another type of map labeling
called boundary labeling was presented in [3]. This prob-
lem is a combination of label-placement and graph drawing
problems. The authors provided different versions of their
algorithms and compared the running time of each.

In [5] a heuristic method to the optimization of the map
labeling was proposed based on Simulated Annealing [12].
The quality of the proposed labeling method was quantified
using a metric that calculates a labeling scoring function
based on the number of conflicts of labels with sites and la-
bels with labels. The main advantage shown of simulated
annealing approach over others are shown to be the simplic-
ity to implement and the generality of the method that can
be applied to any feature (point, line and area).

Evolutionary algorithms are strategies for function opti-
mization that are useful when solving problems that cannot
be feasibly solved on large problem sets [8]. A genetic al-
gorithm is an iterative global search procedure to achieve
the optimization of the cost function. The algorithm works

in parallel on a population of candidate solutions from the
search space [8]. This approach can be adopted in the map
labeling problem. There are many algorithms for cost re-
duction. However most of them suffer from the same dif-
ficulty called local minimum trap [6]. A genetic algorithm
for labeling point features was proposed in [15]. The au-
thors compared their solution to Simulated Annealing ap-
proach and have shown that their genetic algorithm provided
slightly better solutions than Simulated Annealing, however,
it required more CPU time. Another genetic algorithm for
automated map labeling of point feature was proposed in
[10]. The authors compared their approach to previously
proposed algorithms based on hill climbing, simulated an-
nealing and random algorithms and showed by experimen-
tal results that their proposed algorithm outperformed the
other approaches in terms of number of conflicts.

A comprehensive survey of map labeling algorithms can be
found in [6]. The paper discussed the NP-hard nature of the
map labeling problem and the exponential time complexity
of heuristic solutions. It also proposed two algorithms; one
based on discrete gradient descent and the other is based on
Simulated Annealing that were empirically evaluated along
with other previously proposed solutions. Extensive exper-
imental results showed that none of the map labeling algo-
rithms outperforms the others in all cases.

3. PROBLEM DEFINITION
Map labeling of point-feature consists of a set S of n sites

in the plane S = {s1, s2, ..., sn} and a set L of label can-
didates (possible position) for each site, L = {l1, l2, ..., ln}.
Our objective is to place each li to the corresponding si

within a search space while minimizing a cost function.
We first discuss basic notations and structures in placing

a label to a site that are used in our paper. The Minimum
Bounding Box [6] of label li is the smallest box that encloses
text label li, which is denoted by MBBi. MBBi consists
of four corner points, Pll (lower-left corner), Pul (upper-
left corner), Pur (upper-right corner), and Plr (lower-right
corner). Let δ be the distance between the center of site si

and the closest point on MBBi of the label li. A label is
placed to its associated site with a distance of δ for overall
map readability. In this paper, we use a fixed value of δ for
all labels. Figure 3 illustrates an example of placing a label
to its corresponding site. The upright vector vh from the
site and the vector to the closest point on the MBB of the

label v
′
c creates an angle Θ.

The label candidates for a site need to be predefined. A

Ө
δ

Sacremento

180 ≤ Ө < 270

0 ≤ Ө < 90

90 ≤ Ө < 180

270 ≤ Ө < 360

(a) Continuous search space

δ
Sacremento

1

3

2

4

6

5

8

7 (Ө = 45)

(Ө = 90)

(Ө = 135)

(Ө = 180)

(Ө = 225)

(Ө = 270)

(Ө = 315)

(Ө = 360)

Ө

(b) Discrete search space

Figure 2: Search space for label positions

δ

Ɵ

site

Pll

Pur

Plr

Pul

vh

v’c

Figure 3: Notations for labels

label candidate is one of many possibilities to place a label
for a certain site. We define two different models of the
search space: 1) continuous space: use an infinite number of
candidates, 2) discrete space: use a discrete number of label
candidates. For the discrete number of label positions we
use eight positions in this paper to compare to previously
proposed algorithms. Figure 2 (a) and (b) show examples
of a continuous and a discrete search space, respectively.

Both models are refined and used in our proposed algo-
rithm: the first is used for the initialization and the second
is used for the selection in the mutation process.

The task of the evaluation step for labeling is to detect all
such conflicts and rate the label candidates accordingly. The
evaluation process has to detect the following categories: 1)
conflicts of a label candidate with other labels (label-label),
2) conflicts of a label candidate with sites other than the
associated site (label-site), and 3) aesthetic preference and
tradition. The outcome from this classification can be used
in a cost function to assign a particular value to each label
candidate describing its overall suitability.

Let C be a set of n label costs, C = {C1, C2, ..., Cn},
where Ci is the cost of li. The parameters for a label cost
are defined as follows:

• cl
i: number of conflicts of li with ∀lj ∈ L \ li,

• cs
i : number of conflicts of li with ∀sj ∈ S \ si,

• pi: a penalty for preferred location. In this paper, po-
sitions in the 1st quadrant (0 ≤ Θ ≤ 90) are considered
as preferred positions and the penalty values of these
positions are set to 0 and all the rest of the positions
have penalty equal to 1.

Ci is then calculated as follows: Ci = a1 · cl
i + a2 · cs

i +
a3 ·pi, where a1, a2, and a3 are constant factors. Label-label
and label-site conflicts result in the same cost in this paper
(1.0, 1.0 and 0.1 are used for the values of a1, a2 and a3 in
our experiments). The cost function for the map labeling is∑n

i=1 Ci. Hence, we define a cost function F (S) for a given
set of sites S as follows:

F (S) =

n∑
i=1

(a1 · cl
i + a2 · cs

i + a3 · pi)

The optimal solution should find a set of label locations
that minimizes the number of overlaps among labels as well
as the number of overlaps between labels and sites while we
minimize the number of evolutions in the genetic algorithm
(Section 4.2).

4. COPGA
Convex Onion Peeling Genetic Algorithm (COPGA) adopts

the genetic algorithm with the search space and cost func-
tion defined in Section 3. COPGA consists of three main
steps:

1. Convex Onion Peeling (COP): construct the convex
onion peeling data structure of the sites in a given map.

2. Initialization: generate a population of individual so-
lution, where each individual is a vector of labeling
position. Let P (t) be the population of individuals
at generation t, where t = 0, 1, 2, Then the initial
population is P (0). The initial population is evaluated
using the cost function and the cost CPt is calculated.

3. Evolutionary process: this step starts if the evaluation
result of P (0) does not satisfy the terminal condition
In the evolutionary process, an offspring population is
generated by means of selection and search operators.
The main search operators are recombination and mu-
tation. The following is an outline of the evolutionary
process and the details will be discussed in Section 4.2:
3.1 Generate an offspring population from the parent
population using recombination and mutation opera-
tors. There are intermediate populations generated
during evolutionary process: P 1, P m, P 2 and P 3. If
no improvement is made for some number of evolu-
tions, we inverse the search space for mutation to get
out of the local optimal trap.
3.2 Evaluate the offspring population using the cost
function. A comparison of each solution’s cost is made

δ

Ɵ

Ø

Ø

1

2

1

2vc v2

v1

v’c

si

sk

sj

li

MBRi

vh

(a) Calculate a label position

layer 1

layer 3

layer 2

(b) Generate initial population

Figure 4: Label positions using convex onion peeling

using the algorithm’s cost function.
3.3 A number of offsprings or parents survive this natu-
ral selection, and the rest are discarded. The surviving
solutions become the new parents for the next genera-
tion. This selection process is based on the evaluation
of the cost function and the cost CPt is calculated.
3.4 Repeat these steps until the convergence criteria
(termination condition) has been satisfied.

COPGA provides solution to the basic elements of the ge-
netic algorithm by taking advantages of utilizing the convex
onion peeling structure. We summarize COPGA in Algo-
rithm 1. The details of each function in the algorithm are
omitted due to space limitation.

Algorithm 1 COPGA(S, L); a set of sites, a set of labels

1: N ← 100; t ← 0 {population size; # of evolutions}
2: COP ← constructCOP(S)
3: P (0) ← initializeSites(COP , L, N)
4: P (t) ← P (0)
5: CPt ← evaluate P (t)
6: while termination condition not satisfied do
7: P 1 ← selectForRecombination(Pt)
8: P m ← selectForMating(P 1)
9: P 2 ← crossover(P m)

10: if local optimal trap condition then
11: P 3 ← mutate(P 2) with inversion
12: else
13: P 3 ← mutate(P 2) without inversion
14: end if
15: P (t + 1) ← selectReplacement(P 3, P (t))
16: P (t) ← P (t + 1)
17: CPt ← evaluate P (t)
18: t ← t + 1
19: end while

4.1 Convex Onion Peeling and Initialization
The convex onion peeling technique [4] has been widely

used in many application domains, i.e., image processing,
pattern recognition, photo image analysis, and study of Earth
atmosphere. COPGA constructs a sequence of nested con-
vex hulls for the sites in a map. We refer to this structure as
convex onion peeling (COP) of the sites. Sites in a map are

divided into several groups (nested layers) using the convex
onion peeling technique (Figure 4 (b)). Two well-known ini-
tialization techniques are commonly used in many of the pro-
posed algorithms for the map labeling problem with point
feature: preferred position (upper-right position) and ran-
dom position. In this paper we propose a new initialization
technique that utilizes the convex onion peeling structure.
COPGA calculates the initial position of each site’s label
based on the convex onion peeling. Each site is associated
with three vectors, two (v1, v2) are related to the neighbor
sites in the layer and one (vc) is the half of the inner angle φ

(see Figure 4 (a)). Then the reverse vector v
′
c and the ver-

tical vector of the site vh determines the angle Θ. A label’s
initial position is determined based on the value of Θ; an
example of the initialization result is shown in Figure 4 (b).

COP provides an efficient geometric data structure for
placing labels to reduce the possibility of conflicts by plac-
ing labels outside of each layer. It also allows to solve the
problem in a divide and conquer manner; it places the labels
to the sites of each layer and combines all label positions for
an initial solution to the whole map labeling problem.

4.2 Evolutionary Process

4.2.1 Recombination
The recombination operator (cross over) [8, 14] is used to

create new individuals by combining the genetic informa-
tion of two parents. The individuals of population P (t) are
selected for recombination according to our cost function.
Let P 1 be an intermediate population of these selected in-
dividuals. Individuals from P 1 enter the mating set P m

with a given probability pc = 0.5. The individuals from P m

are mated using the cross over operator. Cross over on the
pair for mating is conducted based on each layer of the con-
vex onion peeling. Our algorithm does not allow cross over
across the layers. Then a new intermediate population P 2

is obtained. Figure 5 shows an example of the cross over in
our algorithm.

4.2.2 Mutation
The mutation operator [8, 14] generates new individuals

by variations (labels’ position changes) of a single individ-
ual with a probability equal to the probability of mutation

Pi

P’j

P’i

Pj

Layer 1 Layer 2 Layer 3

Cross over

(a) Cross over

δ

site 2

3

1

4

2

3

7

6

5

8

(b) Search space for mutation

Figure 5: Cross over and mutation

pm = 0.1. Let P 3 be the population obtained by applying
mutation on P 2. The selected label’s position is replaced
with a new position. Considering all eight possible locations
shown in Figure 2 (b), this change could cause more conflicts
because most labels tend to be outside of the convex. Hence
we modify the search space by removing the angle φ resulting
in only positions outside of the convex. No significant effect
on the freedom of the search space is found since the convex
hull always creates outer angles greater than 180◦. Hence
there are always at least four possible label positions avail-
able. Figure ?? shows an example for the search space by
mutation. We also investigate another approach, a greedy
approach, for the selection of mutation. All conflicted labels
are retrieved and random selection for mutation is conducted
on these conflicted labels.

4.2.3 Inversion
Convex onion peeling does not work very well when the

sites in the adjacent layers are too close which results in
the labels’ tending to be shifted in similar directions. The
methods for initialization, recombination, and mutation are
all based on convex onion peeling structure. Hence it may
not be easy to resolve this problem. We relax this restric-
tion when the algorithm reaches the possible local minimum
trap, no better solution after a certain number of evolutions
(0.3∗ number of initial conflicts used in our experiments). In
that case, we configure the label positions so that the search
space for the conflicting labels is changed to the inner space.
Figure 6 shows an example of the unsolved problem and our
solution by using the inverse of the search space.

Denver
Parker

DDDDDe

(a) Unsolved conflicts

Denver

Parker

(b) Reverse search space

Figure 6: Unsolved local conflict and reverse space

5. PERFORMANCE EVALUATION

We first show the results of our initialization using convex
onion peeling on three well-known existing algorithms and
then present the results of COPGA compared to a previ-
ously proposed genetic algorithm (GA) [10].

In our experiments, we considered both synthetically gen-
erated maps and real maps. The number of sites in the syn-
thetic datasets was varied between 40 and 160, and the sites’
locations were distributed uniformly and independently. For
each size of synthetic datasets, we randomly generated 100
maps and we conducted 100 trials for each real dataset.
Then the average values were reported. Our real datasets
were obtained and extracted from USGS [16]. The number
of sites in the real datasets are 73 (Englewood, CO), 116
(New Jersey, NY) and 161. Each dataset was converted into
a given boundary of the map with a size of 650 x 650 pix-
els. Although our algorithm supports different font styles
and sizes of map labels, we only present the results with the
following setup for sites and labels due to space considera-
tions: 1) sites were represented by circles with radius = 3
pixels, 2) the font style was set to “courier”, the font size
was set to 10, and a random length between 6 and 15 char-
acters were used for labels, 3) δ = 3 pixels was used for the
distance between the center of a site and the closest point
on the corresponding label’s MBB. Similar qualitative and
quantitative trends were observed in all other experiments.

The common performance metrics for the map labeling
problem are the values of the cost function F (S), the CPU
time and the number of evolutions. However, different al-
gorithms use various implementation characteristics and pa-
rameters. Both CPU time and reduction rate were used for
the termination condition of HC. For SA, we set initial tem-
perature to 2.5 and temperature drop rate was 0.2. Normal
temperature drop and sudden temperature drop were set
to 5∗ number of sites and 1∗ number of sites, respectively.
Table 1 summarizes the parameters for GA and COPGA.

5.1 Results of Initialization
First, we present the results of our proposed map initial-

ization method using convex onion peeling compared with
two other initialization methods, preferred position (default)
and random position. Figure 7 shows the average costs af-
ter initialization on synthetic datasets computed using F (S)
in equation (1). On average onion peeling initialization re-
sulted in 26.04% and 15.22% of reduction over default and
random initialization, respectively. In addition, the initial-
ization using onion peeling produced less conflicts than the
default and random initialization methods in all cases.

GA population 100
cross over uniform cross over w/ Pc = 0.5
mutation random replacement w/ Pm = 0.1 on conflicted labels

termination cost = 0 or 1000 evolutions
COPGA population 100

cross over onion peeling cross over w/ Pc = 0.5
mutation onion peeling random replacement w/ Pm = 0.1 on conflicted labels
inversion # evolutions (0.3· # initial conflicts) without finding a new best solution

termination cost = 0 or 1000 evolutions

Table 1: Implementation characteristics and parameter

0

20

40

60

80

100

120

140

160

180

40 60 80 100 120 140 160

number of sites

in
it

ia
l

c
o

s
t

default

random

onion peeling

Figure 7: Map initialization

To compare the effect of initialization, we implemented
three existing map labeling algorithms, hill climbing (HC),
simulated annealing (SA) and a genetic algorithm (GA) in
[10] by applying the three initialization methods. Figure 8
illustrates the performance of default, random, and onion
peeling initializations using the synthetic datasets. Figure
8 (a) and (b) show the comparisons of HC using the three
initialization methods. In Figure 8 (a), we plotted the av-
erage conflict costs of HC after 10 seconds of CPU time
along with the initial costs. For example, when the num-
ber of sites is 110, the final costs with default, random, and
onion peeling are 6.5, 5 and 2, respectively. The overall cost
reduction rates using default, random and onion peeling ini-
tializations were 75%, 81% and 84%, respectively. Figure 8
(b) shows the CPU time to reach 90% conflict reduction rate
of HC with different initializations. On average, HC using
onion peeling required 25.72% and 15.96% less CPU time to
obtain 90% cost reduction compared to HC using default
and random positions, respectively. The results show that
the larger the datasets is, the more advantage of using onion
peeling over the other methods is.

Figure 8 (c) and (d) show the average final conflict costs
and the CPU time of SA using the three initializations.
SA using onion peeling resulted in 39.31% less conflict cost
than SA using default position and 27.71% less final cost
than SA using random position on average. The CPU times
required for termination were also compared. When the
number of sites is 120, the required CPU time was 25, 23 and
198 seconds for default, random and onion peeling, respec-
tively. The results show that SA with onion peeling required
13.51% and 11.03% less CPU time than SA with default and
random initializations. Similar qualitative and quantitative
trends were observed in the results of GA using these three

initializations. In Figure 8 (e) and (f), the average final con-
flict costs and CPU times of GA with different initializations
were plotted. Figure 8 (f) shows that GA with onion peeling
required 28.20% and 19.70% less CPU time than GA with
default and random initializations, respectively.

Table 2 show the comparisons of the three initialization
methods using the real datasets. For HC, we showed the
cost after 30 seconds and the CPU time to achieve a 80%
conflict reduction rate using the three initialization. For
SA and GA, the final costs and CPU times are reported.
Overall, the results of the real datasets are similar to those of
the synthetic datasets despite the skewed distribution of the
real datasets. All the results show that better map initial-
ization can improve the performance of map labeling algo-
rithms. The results illustrate that the performance improve-
ment with GA using onion peeling was the best among the
three algorithms. This motivated us to implement COPGA
that utilizes convex onion peeing not only in the initializa-
tion step, but also in the evolutionary process.

5.2 Results of Evolutionary Process
This section presents the results of our proposed algorithm

COPGA compared with GA. In Figure 9 (a), we plotted
the average final conflict costs of the algorithms along with
their initial costs, COPGA uses onion peeling position and
GA uses random position for initializing the maps. The av-
erage initial costs of COPGA was 15.56% less than that of
GA. For the maps with the size of sites between 40 and
80, both COPGA and GA resulted in no conflicts in the
final solution. However, COPGA outperformed GA for the
maps with the sizes of sites between 90 and 160, resulting in
61.29% less values of the conflict costs on average. Figure 9
(b) shows the CPU time required for termination. The per-
formance improvement of COPGA over GA was between
52.67% and 93.85%. On average, COPGA required 64.77%
less CPU time than GA. In addition, the number of evolu-
tions of COPGA to terminate was 50.38% less than that of
GA on average.

Table 3 illustrates the performance of COPGA and GA us-
ing the real datasets. The initial conflict costs, final costs,
and the reduction rates are presented. We also show the
number of evolutions of COPGA and GA for termination.
COPGA resulted in 20.00% less cost for the map with 116
sites and 21.55% less cost for the map with 161 sites. The
numbers of evolutions for the termination of COPGA were
47.76%, 55.00% and 68.16% less than those of GA for dataset
1, dataset 2 and dataset 3, respectively. The results show
that the larger the dataset is, the better the performance of
COPGA over GA is.

0

20

40

60

80

100

120

140

160

180

40 50 60 70 80 90 100 110 120 130 140 150 160

number of sites

c
o

s
ts

 F
(S

)

initial default

initial random

initial onion peeling

default

random

onion peeling

(a) HC: costs after 10000 msec

0

6000

12000

18000

24000

30000

36000

42000

48000

54000

60000

66000

40 60 80 100 120 140 160

number of sites

C
P

U
 t

im
e
 f

o
r
 9

0
%

 c
o

n
fl

ic
t

r
e
d

u
c
ti

o
n

 default

random

onion peeling

(b) HC: CPU time for 90% reduction

0

20

40

60

80

100

120

140

160

180

40 50 60 70 80 90 100 110 120 130 140 150 160

number of sites (n)

c
o

s
ts

 F
(S

)

initial default

initial random

initial onion peeling

default

random

onion peeling

(c) SA: final costs for termination

0

48000

96000

144000

192000

240000

288000

336000

384000

432000

480000

40 50 60 70 80 90 100 110 120 130 140 150 160

number of sites (n)

C
P

U
 t

im
e
 (

m
s
e
c
)

default

random

onion peeling

(d) SA: CPU time for termination

0

20

40

60

80

100

120

140

160

180

40 50 60 70 80 90 100 110 120 130 140 150 160

number of sites (n)

c
o

s
ts

 F
(S

)

initial default

initial random

initial onion peeling

default

random

onion peeling

(e) GA: final costs for termination

0

270000

540000

810000

1080000

1350000

1620000

1890000

2160000

2430000

2700000

40 50 60 70 80 90 100 110 120 130 140 150 160

number of sites (n)

C
P

U
 t

im
e
 (

m
s
e
c
)

default

random

onion peeling

(f) GA: CPU time for termination

Figure 8: Synthetic data results of HC, SA and GA

real datasets initialization initial cost HC SA GA
method cost after 30000 msec CPU for 80% reduction final cost final cost

dataset 1 default 47 0 (100%) 4212 2.5(95%) 0 (100%)
random 43 0 (100%) 2371 2 (95%) 1 (98%)

onion peeling 30 0 (100%) 2121 1 (97%) 0.5 (98%)
dataset 2 default 171 39 (77%) 15226 25 (85%) 21 (88%)

random 157 33 (79%) 13195 21.5 (86%) 20 (87%)
onion peeling 135 26 (81%) 12574 20 (85%) 17 (87%)

dataset 3 default 486 231 (52%) 95005 131 (73%) 125 (74%)
random 402 201 (50%) 72431 128 (68%) 116 71%)

onion peeling 346 153 (56%) 60710 121 (65%) 109 (68%)

Table 2: Real data result of HC, SA and GA: numbers in () are reduction rate

0

20

40

60

80

100

120

140

160

40 50 60 70 80 90 100 110 120 130 140 150 160

number of sites (n)

c
o

s
ts

 F
(S

)

GA initial

COPGA initial

GA result

COPGA result

(a) Costs

0

240000

480000

720000

960000

1200000

1440000

1680000

1920000

2160000

2400000

40 50 60 70 80 90 100 110 120 130 140 150 160

number of sites (n)

C
P

U
 t

im
e
 (

m
s
e
c
)

GA

COPGA

(b) CPU time

0

100

200

300

400

500

600

700

800

900

1000

40 50 60 70 80 90 100 110 120 130 140 150 160

number of sites (n)

n
u

m
b

e
r

o
f

e
v
o

lu
ti

o
n

s

GA

COPGA

(c) Number of evolutions

Figure 9: Comparison of COPGA and GA w/synthetic datasets

real datasets (sites) COPGA GA
initial cost result (reduction) # evolutions initial cost result (reduction) # evolutions

dataset 1 30 0 (100%) 22 43 1 (98%) 42
dataset 2 135 16 (88%) 243 157 20 (87%) 540
dataset 3 346 91 (74%) 312 402 116 (71%) 980

Table 3: Comparisons of COPGA and GA: cost, CPU time and number of evolutions w/real datasets

6. CONCLUSIONS
Map labeling of point-feature is proven to be of interest

in many applications. Due to the difficulty of the problem,
different heuristic solutions have been proposed in the lit-
erature. We proposed the Convex Onion Peeling Genetic
Algorithm (COPGA) that utilizes the convex onion peeling
data structure in initialization and evolution processes. Ex-
perimental results using synthetic and real datasets showed
that the convex onion peeling initialization results in less
conflicts compared to the random and the preferred-position
initializations regardless of the algorithm used. Compared
to a previously proposed genetic algorithm, COPGA clearly
outperformed the other algorithm with respect to the run-
ning CPU time and the number of evolutions to reach a
terminal condition with reduced conflicts in all cases.

7. REFERENCES
[1] J. Ahn and H. Freeman. A comparison of simple

mathematical approaches to the placement of spot
symbols. Cartographica, 24(3).

[2] J. Ahn and H. Freeman. A program for automatic
name placement. Cartographica, 21(2/3).

[3] M. A. Bekos, M. Kaufmann, A. Symvonis, and
A. Wolff. Boundary labeling: Models and efficient
algorithms for rectangular maps. Computational
Geometry, Vol. 36(3):215–236, 2007.

[4] S. Chazelle. On the convex layers of a planar set.
IEEE Transactions on Information Theory, Vol.
31(4):609–517, 1995.

[5] J. Christensen, J. Marks, and S. Shieber. Placing Text
Labels on Maps and Diagrams. Graphics Gems IV.
Academic Press, Cambridge, Mass, 1994.

[6] J. Christensen, J. Marks, and S. Shieber. An empirical
study of algorithms for point-feature label placement.
ACM Transactions on Graphics, Vol. 14(3):203–232,
1995.

[7] J. Doerschler and H. Freeman. A rule-based system
for dense-map name placement. Communications of
ACM, 35(1).

[8] D. Dumitrescu, B. Lazzerini, L. Jain, and
A. Dumitrescu. Evolutionary Computation. CRC
Press, 1996.

[9] M. Formann and F. Wagner. A packing problem with
applications to lettering of maps. In Proceedings of the
7th Annual Symposium on Computational Geometry,
pages 281–288, 1991.

[10] F. Hong, L. Kaijun, and Z. Zuxun. An efficient and
robust genetic algorithm approach for automatic map
labeling. In Proceedings of International Cartographic
Conference (ICC’05, 2005.

[11] E. Imhof. Positioning names on maps. The American
Cartographer, Vol. 2(2):128–144, 1975.

[12] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi.
Optimization by simulated annealing. Science, Vol.
220(4598):671–680, 1983.

[13] J. Marks and S. Shieber. The computational
complexity of cartographic label placement. In
Technical Report TR-05-91, Harvard University, 1991.

[14] Z. Michalewicz. Gentic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, 1992.

[15] G. R. Raidl. A genetic algorithm for labeling point
features. In Proceedings of the Intl. Conference on
Imaging Science, pages 189–196, 1998.

[16] USGS. Citiesx020 - u.s. national atlas cities and
towns, 2004. http://coastalmap.marine.usgs.gov/
GISdata/basemaps/usa/cities/citiesx020.htm.

[17] F. Wagner and A. Wolff. A practical map labeling
algorithm. Computational Geometry: Theory and
Applications, 7:387–404, 1997.

