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1. Introduction

Adic maps on simple ordered Bratteli diagrams, called Bratteli-Vershik systems,
have been proven to be extremely useful as models for minimal Cantor systems.
In particular, the dimension group given by the diagram is order isomorphic to
the ordered cohomology group for the system, and this along with a distinguished
order unit is shown to be the complete invariant for strong orbit equivalence in
[8], see also [9, 14]. A wider class of Bratteli-Vershik systems involves adic maps
on potentially non-simple ordered Bratteli diagrams. These examples include the
well-studied Pascal adic system [13, 16, 17, 20], the Stirling adic system [7, 10], and
the Euler adic system [2, 6, 10, 18]. Although these are examples of adic maps on
non-simple, non-stationary Bratteli diagrams, the diagrams are highly structured,
and thus these seem natural extensions of the minimal Cantor systems to study. In
addition, there are connections between these systems and reinforced random walks
[7, 10]. In this paper we unify the study of some of these examples by examining
a class which we call polynomial odometers. These are adic maps defined by a
sequence of polynomials with positive integer coefficients. This class includes the
Pascal and Stirling (but not the Euler) adic systems as examples as well as the
classical odometers. As we have defined them here, the adic maps of this type are
defined everywhere, but there are countably many points of discontinuity unless the
system is a classical odometer. Except for the classical odometer, these systems are
not minimal. In the non-minimal case but there is a rich supply of fully supported
invariant measures.

In the next two sections of the paper we establish basic definitions and facts
about polynomial odometers. In particular, we show in Theorem 5 that for a poly-
nomial odometer (X,T ), the dimension group of the diagram is order isomorphic
to C(X,Z)/(∂TC(X,Z) ∩ C(X,Z)) where

∂TC(X,Z) = {g ◦ T − g | g ∈ C(X,Z)}.

We show in Theorem 6 that this dimension group can be seen as being comprised
of a subgroup of rational functions (quotients of polynomials over Z[t]) with a
natural order structure, whereas the dimension groups for classical odometers are
subgroups of (Q,Q+). For example, the dimension group for the Pascal adic system
is presented as

{

a(x)

(1 + x)n
: a ∈ Z[t], deg a(x) ≤ n

}
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with usual addition of rational functions, and the positive cone is given by those
rational functions which can be expressed with a numerator polynomial a(x) with
all coefficients positive. The distguished order unit is the constant function 1.

In Section 4 we use this characterization to explore the space of invariant mea-
sures for these systems, a main subject of interest in this category. We see (Propo-
sition 7) that the these measures can be seen as states on the dimension group. For
some of these polynomial odometers, we show that the space of invariant measures is
affinely homeomorphic to the space of probability measures on [0, 1] (Theorem 10).
We call these reasonable polynomial odometers. Reasonable polynomial odometers
include those like the Pascal adic system in which the transition from level n to n+1
is given by the same polynomial for any n and the Stirling adic system (Remark
12).

In Section 5 we give a method for constructing some examples of unreasonable
polynomial odometers. The paper [10] also produces unreasonable examples via a
different approach.

Finally, in Section 6 we characterize the isomorphisms that can exist between
unital ordered groups for polynomial odometers (Theorem 18). We also introduce
the notion of extremal orbit equivalence which is similar to the concept of strong
orbit equivalence for Cantor minimal systems but more appropriate for the setting
of polynomial odometers. We show that if the dimension groups of two reason-
able polynomial odometers (X,T ) and (Y, S) are order isomorphic then either the
systems T and S are extremely orbit equivalent or the systems T and S−1 are
(Theorem 20).

2. Polynomial Odometers

A Bratteli diagram, denoted (V , E) is an infinite directed graph with vertex set
V and edge set E such that V and E are each the union of countably many pairwise
disjoint finite sets, V = ∪∞i=0Vi and E = ∪∞i=0Ei. The edges in Ei connect the vertices
in Vi and Vi+1. For notational purposes for each set Vn the vertices are numbered
0 through |Vn| − 1 = I(n). The vertices are drawn in ascending numerical order
from left to right. We will let a specific vertex v ∈ V be denoted by (n, k) whenever
v ∈ Vn and is the kth vertex. Every vertex has at least one edge connecting it to
the level below, and every vertex except (0, 0) has at least one edge connecting it
to the level above.

For n = 1, 2, . . . and j = 0, 1, . . . , dn let an,j ∈ N and pn(x) =

dn
∑

j=0

an,jx
j . Then

(p1(x), p2(x), . . . ) is a sequence of positive integer polynomials, where dn is the
degree of pn(x). Every such sequence determines a Bratteli-Vershik system. The
Bratteli diagram associated to this sequence is determined as follows:

(1) |V0| = 1 and |Vn| = |Vn−1|+ dn = 1 +
n
∑

j=1

dj .

(2) The number of edges from the vertex (n− 1, k) to vertex (n, k + j) is an,j

for 0 ≤ j ≤ dn and 0 for j < 0 and j > dn.

If for every n = 1, 2, . . . , we have that pn(x) = p(x) for some fixed polynomial
p(x), we call the system a p(x)-adic odometer.

Suppose we have a polynomial odometer system defined by polynomials (p1 (x) , p2 (x) , . . .).
Let c (n, k) be the number of edges from the top (level 0) to the kth vertex at level
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Figure 1. An example of a polynomial odometer associated to a
sequence beginning (1 + 2x+ 3x2, 2 + x, 3 + x+ 2x2, . . . ).

n. Note that by the above definition,

(1) c(n, k) =
∑

i+j=k

c(n− 1, j)an,i,

see Figure 2.

. . .

an,dn

an,dn−1

an,1

an,0

c(n, k)

c(n − 1, k − dn)

c(n − 1, k − dn + 1)c(n − 1, k − 1)

c(n − 1, k)

Figure 2. The recurrence relations of the c(n, k) seen graphically.

To any Bratteli diagram associate the space X = X(V , E) of infinite edge paths
on (V , E) beginning at the vertex v0 = (0, 0). If γ is a path in X , for each n =
0, 1, . . . , and k = 0, 1, . . . , I(n), denote by (n, kn(γ)) the vertex through which γ
passes on level n. Then denote by γi the edge along which γ travels between vertices
(i, ki(γ)) and (i + 1, ki+1(γ)). X is a compact metric space with the metric given
by, d(γ, ξ) = 2−j , where j = inf{i|γi 6= ξi}.

On any Bratteli diagram one can define a partial order on the set E of edges.
Specifically, two edges e and ẽ are said to be comparable if both e and ẽ terminate
into the same vertex. The edges’ sources may be different. We choose and fix a
total order on each set of edges with the same range. For the polynomial odometer
systems, the edge ordering increases from left to right.

e0 e2e1 e4

e3

Figure 3. An edge ordering. e0 < e1 < e2 < e3 < e4

On an ordered Bratteli diagram, the partial ordering of edges can be extended to
a partial ordering of the entire path space X . Two paths γ and ξ are comparable if
they agree after some level n (γj = ξj for all j ≥ n) and γn−1 6= ξn−1; then we define
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γ < ξ if and only if γn−1 < ξn−1. The set of maximal paths is denoted by Xmax.
For any path γ ∈ Xmax, and for all i ∈ {0, 1, . . .}, γi is a maximal edge according
to the partial ordering on edges. Likewise there are minimal paths, which make up

the set Xmin. Both Xmax and Xmin are countable. For k = 1, 2, . . . we define γ
(k)
max

to be the unique maximal path that passes through vertex (n, k) for all n for which

k ≤ I(n). Likewise, γ
(k)
min is the unique minimal path that passes through vertex

(n, I(n) − k) for all n for which 0 ≤ I(n) − k. We also define γ∞max (γ∞min) to be
the unique maximal (minimal) path for passing through vertex (n, I(n)) for all n.

Lastly, let γ
(0)
max (γ

(0)
min) be the unique maximal (minimal) path through vertex (n, 0)

for all n. We then define the adic transformation T : X → X to be the map that

sends γ ∈ X \Xmax to the next largest path, and γ
(k)
max to γ

(k)
min for k ∈ Z+ ∪ {∞}.

The basis of this topology consists of cylinder sets which specify a finite number
of edges. It can be assumed that the cylinders start from the root vertex (0, 0) and
specify every edge until the terminal vertex of the cylinder. In order to speak about
specific cylinders we introduce the following notation. Let Yn(k, 0) denote the mini-
mal cylinder into vertex (n, k) and Yn(k, i) = T i(Yn(k, 0)) for i = 0, 1, . . . , c(n, k)−1.

We will also let Yn = ∪
I(n)
k=0Yn(k, 0) be the union of all minimal cylinder sets which

terminate at level n.

Lemma 1. For all k, n ≥ 0, c (n, k) is the coefficient of xk in the polynomial
∏n

i=1 pi (x).

Proof. We will prove by induction. Clearly c(1, k) = a1,k. Assume for k =

0, . . . , I(n − 1), c(n − 1, k) is the coefficient of xk in the polynomial
∏n−1

i=1 pi(x).
Then

n−1
∏

i=1

pi(x) = c(n− 1, 0) + c(n, 1)x+ · · ·+ c(n, I(n− 1))xI(n−1),

and hence
n
∏

i=1

pi(x) =

dn
∑

i=0

I(n−1)
∑

j=0

c(n− 1, j)an,ix
i+j =

I(n)
∑

j=0

c(n, j)xj .

�

Lemma 2. Fix two vertices l and k on levels m, n respectively where m < n. Then
the number of paths from vertex l down to k is equal to the coefficient of xk−l in
the polynomial

∏n
i=m+1 pi (x).

The proof is as above.

Remark 3. Note that if (X,T ) is a polynomial odometer, then so is (X,T−1).
That is, if (X,T ) is a polynomial odometer defined by the sequence of polynomials
(pn(x))n∈N, then (X,T−1) is conjugate to an adic map on the ordered Bratteli
diagram defined by qn(x) = xdnpn(1/x) where dn is the degree of pn(x).

3. Ordered Groups

For every Bratteli diagram (V , E) there is an associated dimension group, denoted
K0(V , E), which is the direct limit of the following directed system:

Z|V0|=1 A1−−→ Z|V1| A2−−→ Z|V2| A3−−→ ...
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where for each i = 1, 2, . . . Ai is the group homomorphism determined by the inci-
dence matrix between levels i − 1 and i of the Bratteli diagram. The positive set
consists of the equivalence classes for which there is a nonnegative vector repre-
sentative. An order isomorphism between two such groups is an order-preserving
group isomorphism. The equivalence class of 1 ∈ Z is the distinguished order unit.
It is important to note that this dimension group is not dependent on the associated
dynamical system.

A dynamical system (X,T ) also has an associated dimension group, let C(X,Z)
denote the additive group of continuous functions from the space X to Z and define

∂TC(X,Z) = {g ◦ T − g | g ∈ C(X,Z)}.

The elements of ∂TC(X,Z) are called the coboundaries of (X,T ). In the case
that T is a homeomorphism, ∂TC(X,Z) ⊂ C(X,Z), and we define K0(X,T ) to be
C(X,Z)/∂TC(X,Z).

Theorem 4 ([14], Theorem 5.4 and Corollary 6.3). Let (X,T ) be a Cantor minimal
system with associated Bratteli diagram (V , E) then K0(V , E) ∼= K0(X,T ) by an
order isomorphism that maps distinguished order unit to distinguished order unit.

Except for the case of a sequence of constant functions, polynomial odometers are
not continuous on Xmax and the above notion is not well defined. Nevertheless, we
can slightly adjust the definition of K0(X,T ) to be C(X,Z)/(∂TC(X,Z)∩C(X,Z))
and arrive at the next theorem. The following theorem is stated for a wider class of
systems, but it is easy to see that the polynomial odometers satisfy all the necessary
conditions.

Theorem 5. Let (X,T ) be a Brattei-Vershik system for which |Vn| ≤ |Vn+1| and
there are a positive number of edges connecting vertex (n, k) and vertex (n+1, k+j)
where j = 0, 1, . . . , |Vn+1| − |Vn| and no edges elsewhere, and the edge ordering has
the property that the left most edge is the minimal edge and the right most edge is
the maximal edge. Then there is an order isomorphism

K0(V , E) ∼= K0(X,T )

which maps the distinguished order unit of K0(V , E) to the equivalence class of the
constant function 1.

Proof. This proof is an adaptation of the dynamical proof of Theorem 4 in [14]
given by Glasner and Weiss in [9]. The construction of the isomorphism is the
same and the adaptation comes in describing the elements of ∂TC(X,Z)∩C(X,Z).
We will describe the elements of ∂TC(X,Z) ∩C(X,Z) here and refer the reader to
[9] for the construction of the isomorphism.

Let f ∈ C(X,Z). Since X is compact, f is bounded and hence takes on only
finitely many values. Let {l1, . . . lj} be the set of these values and let Ui = f−1{li}
for each i. For γ ∈ Ui, let Cγ be a cylinder set containing γ and Cγ ⊂ Ui. Then
{Cγ |γ ∈ X} covers X , select a finite subcover {Cγ1 , Cγ2 , . . . , Cγr}. Then for some
s ∈ {1, 2, . . . , r}, Cγs is of longest length, N1(f), and f is constant on any cylinder
of length n ≥ N1(f).

Recall that Yn is the union of all the minimal cylinder sets into level n. Let G =
{g ∈ C(X,Z)|∃N2(g) such that g is constant on YN2(g)}. Note that if g is constant
on YN2(g) then for any n ≥ N2(g), g is constant on Yn. Define B = {g◦T−g|g ∈ G}.
We will show that B = C(X,Z) ∩ ∂TC(X,Z).
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Clearly B ⊂ ∂TC(X,Z) and we now show that B ⊂ C(X,Z). For f ∈ B
with f = g ◦ T − g, f is continuous on X \ Xmax, since g ∈ C(X,Z) and T is
continuous on X \ Xmax. Hence we only need to check continuity of f on Xmax.
Let m ≥ max{N1(g), N2(g)}, then g is constant on each cylinder of length m and
g is also constant on Ym. For γmax ∈ Xmax and ξ ∈ X , d(γmax, ξ) < 2−m implies
that γmax and ξ are both in the same maximal cylinder terminating at vertex
(m, km(γmax)), and hence g(γmax) = g(ξ). Since T (γmax) and T (ξ) are both in Ym,
we have (g ◦ T )(γmax) = (g ◦ T )(ξ). Hence f(γmax) = f(ξ), and so f is continuous.

All that is left to show is that ∂TC(X,Z) ∩C(X,Z) ⊂ B. Let f ∈ ∂TC(X,Z) ∩
C(X,Z) be given. Then f = g ◦ T − g for some g ∈ C(X,Z), and f is continuous.
We have to show that there is an N2(g) so that for each n ≥ N2(g), g takes the
same value on all of Yn. Since g ∈ C(X,Z), we can choose l = N1(g) such that
g is constant on cylinder sets of length l. Then for every level j ≥ l, and every
i ∈ {0, 1, . . . , dl+1 + dl+2 + · · ·+ dj},

(2) Yj(i, 0) ⊂ Yl(0, 0)

(see Figure 4). Now consider k < I(l) and γk
max ∈ Xmax. Then

(3) T (γk
max) = γk

min ∈ Yl(I(l)− k, 0) (see Figure 5).

Yl(0, 0)

(j, 0) (j, dl+1 + . . . dj)

Figure 4. Connections from level l to j.

Since f, g ∈ C(X,Z), there is a δ such that d(γk
max, ξ) < δ implies f(γk

max) = f(ξ)
and g(γk

max) = g(ξ). Let j be such that 2−j < δ and dl+1 + dl+2 + · · ·+ dj > k+ 1.
Let xi be the path in X such that xii = (γk

max)i for each i = 0, 1, . . . , j−1 and ξj 6=
(γk

max)j . Then f(γk
max) = f(ξ) and g(γk

max) = g(ξ) which implies (g ◦ T )(γk
max) =

(g ◦ T )(ξ). Since s(ξj) = (j, k), and ξj is the first non-maximal edge of ξ, Tξ is in
either Yj(k, 0) or Yj(k + 1, 0) depending on the source of the successor of ξj (see
Figure 6). Since k + 1 < dl+1 + dl+1 + . . . dj , Equation 2 implies Tξ ∈ Yl(0, 0).
Then (g ◦ T )(γk

max) = (g ◦ T )(ξ), and g constant on each cylinder of length l
implies g(Yl(I(l) − k, 0)) = g(Yl(0, 0)). Since k < I(l) was arbitrary, we have
shown that g is constant on all Yl(k, 0) for k < I(l). It remains only to show that
g takes this same value on Yl(I(l), 0). Consider γ∞max, and choose j ≥ l so that

2−j < δ. Then d(γ∞max, γ
I(j)
max) < δ, which implies γ∞max and γ

I(j)
max are both in the

maximal cylinder terminating at vertex (l, I(l)). Thus g(γ∞max) = g(γ
I(j)
max). Then

f(γ∞max) = f(γ
I(j)
max) and g(γ∞max) = g(γ

I(j)
max) implies (g ◦ T )(γ∞max) = (g ◦ T )(γ

I(j)
max).
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(l, k) (l, I(l)− k)

γk
max γk

min

Figure 5. T (γk
max) = γk

min ∈ Yl(I(l)− k, 0).

Thus Tγ∞max ∈ Yl(I(l), 0), Tγ
I(j)
max ∈ Yl(0, 0) and g constant on each cylinder of length

l implies g(Yl(0, 0)) = g(Yl(I(l), 0)). Hence g is constant on Yl, as required. �

γ Tγ

ξ

T ξLevel l

Level j T ξ

Figure 6. Tracking Tγ and Tξ.

In light of this isomorphism, we will use the two definitions interchangeably. We
now compute the dimension groups of polynomial odometers. The dimension group
of the diagram corresponding to the Pascal adic is computed in [19].

Theorem 6. The dimension group K0(V , E) associated to the Bratteli-Vershik sys-
tem associated to the sequence of positive integer polynomials (p1(x), p2(x) . . . ) is
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order isomorphic to the ordered group G of rational functions of the form

r(x)
∏m

i=1 pi(x)
,

where r(x) is any polynomial with integer coefficients such that deg(r(x)) ≤
∏n

i=1 pi(x).
Addition of two elements is given by normal rational function addition. The pos-
itive set consists of the elements of K0(V , E) such that there is an l for which the
numerator of

r(x)
∏m+l

i=m+1 pi(x)
∏m+l

i=1 pi(x)

has all positive coefficients. The distinguished order unit of K0(V , E) is the constant
polynomial 1.

Proof. We will construct an order isomorphism fromK0(V , E) intoG. The incidence
matrix, An is an |Vn−1| × |Vn| matrix with

(An)ij =

{

an,(j−i) if 0 ≤ j − i ≤ dn

0 otherwise

Identify Zi with the additive group of polynomials of degree at most i − 1,
Zi−1[x] in the following manner. For v = [v0 v1 . . . vi−1] in Zi, define v(x) in

Zi−1[x] by v(x) =
∑i−1

j=0 vjx
j . Now if v is a vector in Z1+

∑n−1
j=1 dj , we have

(vAn)(x) = v(x)pn(x). Under the above correspondence, An becomes multiplica-
tion by pn(x) for all n, and the transition functions Alm correspond to multiplication
by
∏m

i=l+1 pi(x).

Define ρn : Z(1+
∑

n
j=1 dj)[x] → G by ρn(r(x)) =

r(x)
∏n

i=1 pi(x)
. In order to satisfy

the hypothesis of the universal mapping property of direct limits, it needs to be
shown that for l ≤ m, ρl = ρm ◦Alm:

ρm ◦Alm(r(x)) = ρm(r(x)
∏m

i=l+1 pi(x))

=
r(x)

∏m
i=l+1 pi(x)

∏m
i=1 pi(x)

=
r(x)

∏l
i=1 pi(x)

= ρl(r(x)).

Hence the hypothesis for the universal mapping property of direct limits is sat-
isfied, and the ρl are constant on equivalence classes. It follows that there is a
unique homomorphism ρ : K0(V , E) → G, which can be defined on an equivalence

class by taking any representative in Z1+
∑

n
j=1 dj and applying ρn to it. An easy

computation shows that ρ is an order isomorphism with appropriate positive set
and distinguished order unit. �

4. States and Measures

Let (X,T ) be a polynomial odometer. Consider the set of states on K0(X,T )
i.e., the set of homomorphisms σ : K0(X,T ) → R which send the positve set in
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K0(X,T ) to R+ and the distinguished order unit to 1. The following two propo-
sitions apply in situations more general than for polynomial odometers (E.g., see
[14, 4]),

Proposition 7. Let (X,T ) be a polynomial odometer. Let µ be a T -invariant Borel
probability measure. The homomorphism σµ : [f ] 7→

∫

fdµ is a state on K0(X,T ).
Furthermore, the map µ 7→ σµ is a bijection from the set of T -invariant Borel
probability measures MT to the set of states on K0(X,T ).

Proof. That σµ is a state is clear. Any state σ on K0(X,T ) assigns positive values
to the semi-algebra of clopen sets to a Borel probability measure µ is standard (see
e.g. [23, Chapter 0]). The only thing to check is T -invariance of µ, and for this we
refer the reader to Lemma 3.2.6 of [1]. �

Given the above, we will think of elements ofMT interchangeably as measures
on X and states on K0(X,T ). Below gives another characterization of the states
on K0(X,T ), the proof follows from the definition of a state.

Proposition 8. Let G be a dimension group. That is,

G = Z
A1→ Zn(1) A2→ Zn(2) A3→ · · ·

where Ak are nonnegative n (k)×n (k − 1) matrices (n (0) = 1) and u is the equiva-
lence class of the sequence (1, A1, A2A1, . . .). There is a one-to-one correspondence
between the set of states on G and elements of the inverse limit

S (G) = {1}
A1← (Z+)

n(1) A2← (Z+)
n(2) A3←

That is, S (G) consists of sequences {µk} ∈ Rn(k) of row vectors which satisfy
µ0 = 1, µk = µk+1Ak and µk ≥ 0 for all k.

Note that S (G) is convex, and we have the natural (product) topology on S (G),
namely, for two sequences µ = [1, µ1, µ2, µ3, . . .], ν = [1, ν1, ν2, ν3, . . .] in S (G),
define d (µ, ν) =

∑∞
i=0 ‖µi − νi‖1 2−i.

Proposition 9. The spacesMT (with the weak*-topology) and S(T ) = S
(

K0(X,T )
)

(with the topology defined above) are affinely homeomorphic.

Proof. If µ is a sequence in S(T ), then the corresponding measure in MT is the
measure defined on cylinder sets in such a way that the measure of any cylinder
terminating into vertex (n, k) is µn(k). It is clear that the correspondence respects
convex combinations. We can enumerate the paths ending at vertex (n, k) ∈ Vn.
The topology onMT is metrizable with the metric

d (µ, ν) =
∞
∑

m=1

I(m)
∑

i=1

∣

∣

∣
µ
(

C
(m)
i

)

− ν
(

C
(m)
i

)∣

∣

∣
2−m

which is equivalent to the aforementioned metric on S (T ). �

Now we specialize to the polynomial odometer setting, and construct some ele-

ments of S (T ). Let α ∈ [0,∞). Consider the map mα : q(x)
p(x) 7→

q(α)
p(α) which takes

K0(X,T ) into R. It is easy to check that mα : K0(X,T ) → R is a homomor-
phism, that mα of a positive element is in R+ and mα (1) = 1, thus mα ∈ S (T ).

Note that since the elements of K0(X,T ) correspond to rational functions q(x)
p(x)
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where deg q ≤ deg p, and as such it makes sense to talk about the evaluation map

m∞ : q(x)
p(x) 7→ limn→∞

q(x)
p(x) as well.

By taking convex combinations of these point evaluation measures, we obtain
more states on K0(X,T ), and given a Borel probability measure m on [0,∞],

we can extend this idea to find more elements of S (T ) of the form m : q(x)
p(x) 7→

∫∞

0
q(x)
p(x)dm (x). The measures mα are the extreme points of the set of Borel mea-

sures on [0,∞].

Theorem 10 (Theorem 2.1 of [5]). If T is a p(x)-adic odometer, states of the
form mα for α ∈ [0,∞] are exactly the ergodic T -invariant measures, and the fully
supported ergodic measures correspond to the point evaluation measures mα where
α ∈ (0,∞).

In [1, 5], these measures are given by a parameter q which corresponds to a mα

where α is the unique solution in [0,∞] to the equation q = 1/p(x).

Remark 11. The case for which p(x) = x + 1 is commonly known as the Pascal
adic and many proofs exist, see [13, 15, 17, 20] and the references they contain. The
case for which p(x) has all ones for coefficients was proven by Méla in [15].

We will call a polynomial odometer reasonable if the states of the form mα

for α ∈ [0,∞] are exactly the ergodic invariant measures. With this terminology,
Theorem 10 above states that all p(x)-adic polynomial odometers are reasonable.
The Stirling system is an example of a non p(x)-adic polynomial odometer which
is also reasonable. The Stirling system, is the polynomial odometer (X,T ) defined
by pn (x) = (n+ x) (see figure 7).

Figure 7. The Stirling adic

Remark 12. The proof that the Stirling system is reasonable can be found in
[10, 11]. In the next section, we give a way to construct examples of polynomial
odometers which are not reasonable. Examples can also be found in [10].
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5. Unreasonable Examples

We wish to define a collection of polynomials pn (x) = an + x for the counterex-
ample. When pn (x) = an + x, we have that An is the (n+ 1)× n matrix

An =

























an 0 0 0 0

1 an 0
. . . 0

0 1 an

. . . 0

0 0
. . .

. . . 0

0
. . .

. . . 1 an

0 0 0 0 1

























Our counterexample will be constructed by recursively defining positive integers
an, and vectors µn such that µ0 = 1, µn = µn+1An and µn ≥ 0 for all n. First we
prove the key lemma.

Lemma 13. Given any set of n+1 positive numbers µn = (µn (0) , µn (1) , . . . , µn (n)),
there is an integer N such that for any integer an+1 > N there exists a set of
n + 2 positive numbers µn+1 = (µn+1 (0) , µn+1 (1) , . . . , µn+1 (n+ 1)) such that
µn = µn+1An+1.

Proof. Performing column reduction on the above matrix An+1 and solving, we
obtain the following.

µn+1 (k) =
n−k
∑

i=0

(−1)
i
µn (k + i)

(an+1)
i+1

+
(−1)

n−k+1
µn+1 (n+ 1)

(an+1)
n−k+1

where µn+1 (n+ 1) is a free variable. Fix a number s between 0 and µn (n) and set
µn+1 (n+ 1) = s. We have

µn+1 (n) =
µn (n)

an+1
−
µn+1 (n+ 1)

an+1

=
1

an+1
(µn (n)− s) > 0

Next we see

µn+1 (n− 1) =
µn (n− 1)

an+1
−

µn (n)

(an+1)
2 +

µn+1 (n+ 1)

(an+1)
2

=
1

an+1

(

µn (n− 1)−
(µn (n)− s)

an+1

)

so if an+1 is sufficiently large, we have µn+1 (n− 1) > 0. Similarly,

µn+1 (n− 2) =

2
∑

i=0

(−1)i µn (n− 2 + i)

(an+1)
i+1 −

µn+1 (n+ 1)

(an+1)
3

=
1

an+1

(

µn (n− 2)−
µn (n− 1)

an+1
+

(µn (n)− s)

(an+1)
2

)

So µn+1 (n− 1) > 0 if an+1 is sufficiently large. In like fashion, if an+1 is sufficiently
large, then µn+1 (k) > 0 for 0 ≤ k ≤ n+ 1. �
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Figure 8. The first two levels when a1 = a2 = 1

We may set a1 = a2 = 1 and set µ0 = 1, µ1 =
(

1
2 ,

1
2

)

, µ2 =
(

1
8 ,

3
8 ,

1
8

)

.
Then by the above lemma we may recursively choose {an : n ≥ 0} and {µn : n ≥ 0}

such that µ0 = 1, µn = µn+1An+1 and µn > 0 for all n ≥ 0. Consider the diagram
corresponding to this system with pn (x) = an + x and the invariant measure µ
corresponding to the sequence [1, µ1, µ2, µ3, . . .].

a3 a3 a3

a4 a4 a4 a4

Figure 9. The first four levels where a3 and a4 indicate the num-
ber of edges connecting the two vertices.

We would like to show that the point evaluations are not the entire set of ergodic
measures for the above system. The ergodic measures correspond to the extreme
points ofMT and therefore by the Krein-Milman Theorem convex combinations of
ergodic measures are dense in MT .

Proposition 14. There is an ǫ > 0 such that the measure µ constructed above is
not within ǫ of a convex combination of point evaluation states.

Proof. Suppose not, then for any n > 0 there is an integer M (n) > 0 and a choice

of α
(n)
i ∈ [0,∞] and λ

(n)
i ∈ [0, 1] for i = 1, 2, . . . ,M (n) such that



DIMENSION GROUPS AND INVARIANT MEASURES FOR POLYNOMIAL ODOMETERS 13

M(n)
∑

i=1

λ
(n)
i = 1

∣

∣

∣

∣

∣

∣

∣

M(n)
∑

i=1

λ
(n)
i

1
(

1 + α
(n)
i

)2 −
1

8

∣

∣

∣

∣

∣

∣

∣

<
1

n

∣

∣

∣

∣

∣

∣

∣

M(n)
∑

i=1

λ
(n)
i

α
(n)
i

(

1 + α
(n)
i

)2 −
3

8

∣

∣

∣

∣

∣

∣

∣

<
1

n

∣

∣

∣

∣

∣

∣

∣

M(n)
∑

i=1

λ
(n)
i

(

α
(n)
i

)2

(

1 + α
(n)
i

)2 −
1

8

∣

∣

∣

∣

∣

∣

∣

<
1

n

Now consider the same sequence of combinations of point evaluations in the Pascal

example, namely {µn} where µn =
∑M(n)

i=1 λ
(n)
i m(

α
(n)
i

) .

Since the set of T -invariant measures is compact (one can see from the state
characterization that the set of solutions is closed), a subsequence of these measures
µnk

must converge to an invariant measure µ. Further, the vector which gives the
value of the measure µ on the clopen sets corresponding to the three edges ending at
level 2 is

(

1
8 ,

3
8 ,

1
8

)

. This is a contradiction since there is no such invariant measure
for the Pascal example since there is no solution to

(

1

8
,
3

8
,
1

8

)

= (w, x, y, z)









1 0 0
1 1 0
0 1 1
0 0 1









with w, x, y, z ≥ 0. �

By the above, the collection of point evaluation measures {mα : α ∈ [0,∞]} for
the given example cannot be the set of all ergodic measures. Let us also show that
there is a choice of an ∈ N such that for the polynomial odometer with pn (x) =
an + x, not all point evaluation measures are ergodic.

We know that no matter what the values of an, there is a point evaluation
measure mα with α = 1. Let us call this measure ρ. Our goal is to create two
distinct invariant measures µ and ν with ρ = 1

2 (µ+ ν), thus showing that ρ is not
an extreme point ofMT .

Let a1 = a2 = 1, µ1 = (1
2 ,

1
2 ), and µ2 = (1

8 ,
3
8 ,

1
8 ). We first show that we can

choose an in such a way that 0 < µn < 2ρn for all n ∈ N. This is satisfied for
n = 1, 2 since ρ1 = (1

2 ,
1
2 ) and ρ2 = (1

4 ,
1
4 ,

1
4 ). Assume that µn < 2ρn. Then we can

choose an+1 large enough so that Lemma 13 is satisfied and

(4) µn < 2ρn

(

an+1

1 + an+1

)

.
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Since µn = µn+1An+1 we have for k = 0, 1, . . . , n that µn(k) = µn+1(k)+µn+1(k+
1), and hence for k = 0, 1, . . . , n

(5) µn+1(k) =
µn(k)− µn+1(k)

an+1
<
µn(k)

an+1
.

Also, for k = 0, . . . , n+ 1

(6) ρn+1(k) =
ρn(k)

1 + an+1
.

Combining 4, 5, and 6 we have for k = 0, 1, . . . , n

(7) µn+1(k) <
µn(k)

an+1
<

2ρn(k)

1 + an+1
= 2ρn+1(k).

For k = n+1, note from the proof of Lemma 13 that µn+1(n+1) is a free variable and
hence can be chosen so that 0 < µn+1(n+ 1) < 2ρn+1(n+ 1). Therefore µn < 2ρn

for all n = 0, 1, . . . . We can now define νn = 2ρn − µn. Then 0 < νn(k) < 1 for all
n = 0, 1, dots and k = 0, 1, . . . , n and 1

2 (µn + νn) = ρn for n = 0, 1, . . . . Therefore

the measures 1
2 (µ + ν) and ρ coincide on all clopen sets, which implies that they

are equal and proves that the measure ρ is not ergodic.

6. Isomorphism Theorem

In this section we characterize the kinds of unital ordered group isomorphisms
that can exist from K0(X,T )→ K0(Y, S) for two reasonable polynomial odometer
systems (X,T ) and (Y, S). With this characterization, we are able to address the
question of what sort of dynamical relation exists between two such systems when
the associated unital ordered groups are isomorphic.

First let us consider some possibilities for the isomorphism. As shown in Theorem
6 there is a sequence of polynomials {pn (x)} such that the group K0(X,T ) can be
presented in the form

K0(X,T ) =

{

q (x)

p1 (x) p2 (x) · · · pn (x)
: q (x) ∈ Z [x] , deg q (x) ≤

n
∑

i=1

deg pi (x)

}

.

One possibility is that K0(Y, S) is presented by the exact same set of polynomials
as K0(X,T ). Even this possibility is non-trivial as seen in the following example.

Example 15. Let (V , E ,≤) be the ordered Bratteli diagram defined by telescoping
the (1 + x)-diagram to every third level, and let (X,T ) be the associated polynomial
odometer system. Let ≤′be the left-right ordering on (V , E), and (X,S) the associ-
ated polynomial odometer system. One can show that there is no possible continuous
conjugacy between these two polynomial odometers. Whether there is a weaker kind
of conjugacy between them is an interesting problem, e.g. where continuity on all
of X is not required.

A second possibility is that K0(Y, S) is presented by replacing x by 1
x

in set of

polynomials for K0(X,T ).

Example 16. Let T be the p (x)-adic odometer with p (x) = 1 + 2x, and let S be
the q (x)-adic odometer with q (x) = 2 + x. Then we have a unital ordered group
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Figure 10. In the telescoping the dotted and the dashed paths
become edges and the dotted path is less than the dashed path.
Therefore the edge ordering is no longer left to right and hence the
identity map is not a conjugacy between (X,T ) and (X,S).

isomorphism h : K0(X,T )→ K0(X,S) given by

h :
r (x)

(1 + 2x)
n 7→

r
(

1
x

)

(

1 + 2
x

)n =
xnr

(

1
x

)

(2 + x)
n =

xnr
(

1
x

)

q (x)
n ∈ K0(X,S)

noting that since deg (r) ≤ n, xnr
(

1
x

)

∈ Z [x] with degree at most n.

A third, more subtle possibility is that an isomorphism is presented by replacing
x by a

b
x where a, b ∈ N.

Example 17. Let T be the p (x)-adic odometer with p (x) = 6 (1 + x), and let S
be the q (x)-adic odometer with q (x) = 6 (2 + 3x). Then we have an isomorphism
h : K0(X,T )→ K0(X,S) given by x 7→ 3

2x. More specifically,

h :
r (x)

6n (1 + x)n 7→
r
(

3
2x
)

6n
(

1 + 3
2x
)n =

r
(

3
2x
)

3n (2 + 3x)n =
2nr

(

3
2x
)

q (x)n ∈ K0(X,S)

h−1 :
r (x)

6n (2 + 3x)
n 7→

r
(

2
3x
)

6n
(

2 + 3
(

2
3x
))n =

r
(

2
3x
)

6n (2 + 2x)
n =

3nr
(

2
3x
)

(1 + x)n

p (x)
2n

∈ K0(X,T )

We show that in the case where the T and S are reasonable and h : K0(X,T )→
K0(Y, S) is a unital ordered group isomorphism, then it is a composition of isomor-
phisms of the above types.

Theorem 18. If (X,T ) and (Y, S) are two reasonable polynomial odometer systems
and K0(X,T ) is order isomorphic to K0(Y, S) by an isomorphism which identifies
distinguished order units. Then the isomorphism is given by x 7→ a

b
x for some

a, b ∈ N or by x 7→ a
b

1
x

for some a, b ∈ N.

Proof. Since the unital ordered groups are isomorphic there is an affine homeomor-
phism σ fromMS toMT . Since the homeomorphism σ respects extreme points, if
T and S are reasonable polynomial odometers and ES and ET are the extreme points
ofMS andMT respectively, then σ : ES → ET is an affine homeomorphism. Since
ES = ET = {mα : α ∈ [0,∞]} we have σ : mα 7→ mf(α) where f : [0,∞]→ [0,∞] is
a bijection. Because σ is weak*-continuous, f : [0,∞]→ [0,∞] is continuous in the
usual topology on [0,∞]. Since f must also be a bijection, f is a homeomorphism.
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Suppose that ζ : K0(X,T ) → K0(Y, S) is the isomorphism. Since for each µ in
MT , σ (µ) = µ ◦ ζ, we have σ (mα) = mα ◦ ζ = mf(α).

Let 1
p(t) ,

t
p(t) ∈ K0(X,T ), and let q0(t)

r0(t)
= ζ

(

1
p(t)

)

∈ K0(Y, S) and q1(t)
r1(t)

=

ζ
(

t
p(t)

)

∈ K0(Y, S) . We have for any α ∈ [0,∞], and i = 0, 1,

qi (α)

ri (α)
= mα

(

qi (t)

ri (t)

)

= mα ◦ ζ

(

ti

p (t)

)

= mf(α)

(

ti

p(t)

)

=
(f (α))i

p (f (α))

In particular, it follows from this that

f (α) =
q1 (α) r0 (α)

r1 (α) q0 (α)

for all α ∈ [0,∞]. That is to say, f (t) coincides with the rational function q1(t)r0(t)
r1(t)q0(t)

on [0,∞]. Since f is only defined on [0,∞] we can say without conflict of notation
that f (t) is a rational function with coefficients in Z. This rational function has
the following properties: it gives a homeomorphism from [0,∞] to itself and since
the same argument as above can be applied to f−1 (t), f−1 (t) is also a rational
function. The only way all of these conditions hold is if f (t) is a

b
t or a

bt
where

a, b ∈ N.

Now take an arbitrary element s(t)
p(t) ∈ K0(X,T ), and let ζ

(

s(t)
p(t)

)

= r(t)
q(t) . For

every α ∈ [0,∞], we have

r (α)

q (α)
= mα

(

r (t)

q (t)

)

= mα ◦ ζ

(

s (t)

p (t)

)

= mf(x)

(

s(t)

p(t)

)

=
s (f (α))

p (f (α))

which implies that ζ is given by the identity map or replacement of t by f (t) which
is a

b
t or a

bt
. �

Let us consider implications of the above theorem in the case where (X,T ) is the
Pascal adic system. Suppose (Y, S) is some other reasonable polynomial odometer
system such that K0(Y, S) is order isomorphic to K0(X,T ) with the distinguished
order units identified. Theorem 18 gives us very strict conditions on the order
isomorphism. In fact, in this case the conditions are strong enough to imply that
(Y, S) must be a polynomial odometer associated to a Bratteli diagram that is just
a telescoping (and possibly some trivial microscoping) of the Pascal diagram. In the
case of the Pascal, x 7→ 1/x is just the identity map, so we restrict our explanation
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to the case where elements of K0(Y, S) gets sent to elements of K0(X,T ) via the
map x 7→ (a/b)x. Let r(x) be a positive integer polynomial such that the two
functions 1/r(x) and x/r(x) are elements of K0(Y, S). Then

1

r(x)
7→

1

r
(

a
b
x
) =

s(x)

(x+ 1)m
∈ K0(X,T ),

for some integer polynomial s(x). Then, r
(

a
b
x
)

s(x) = (x + 1)m implies s(x) =

(x+ 1)j and r
(

a
b
x
)

= (x + 1)k. We also have

x

r(x)
7→

a
b
x

r
(

a
b
x
) =

a
b
x

(x+ 1)k
∈ K0(X,T ).

Therefore b = 1 and so r(ax) = (x+ 1)k which implies that a = 1.
We now wish to apply the above theorem to the following question. Given two

reasonable polynomial odometers and a unital order isomorphism from K0(X,T )
to K0(Y, S) what then can we say about the dynamical relation between (X,T )
and (Y, S)? Certainly there is a homeomorphism from X to Y which carries cofinal
points in X to cofinal points in Y , as this would be true for any Bratteli-Vershik
systems with isomorphic unital ordered groups via a homeomorphism like the one
constructed in the proof of Theorem 2.1 of [8]. As in that situation, however, we
would like to go further, and establish that the systems in question are actually
orbit equivalent - that the homeomorphism can be constructed in such a way that
the infinite minimal points and maximal points are identified. The additional tool
that is used in [8] is that the diagrams were simple. In our case, this is not true,
however, we are examining ordered Bratteli diagrams with a very specific structures,
and this we are able to use to prove a similar theorem.

In the below definition, we extend the notion of strong orbit equivalence as de-
fined by Giordano-Putnam-Skau. The term “extremely” is used here as a reference
to the fact that minimal and maximal points in the ordered diagrams are preserved
in the orbit equivalence in a particular way.

Definition 19. Let (V , E,≤) and (V ′, E ′,≤′) be ordered Bratteli diagrams, and
T : X → X and S : Y → Y the associated adic maps. Let Xmax and Ymax be
the set of infinite maximal points in X, Y , respectively. We say that (V , E ,≤) and
(V ′, E ′,≤′) are extremely orbit equivalent if there is a homeomorphism h : X → Y ,
and functions m,n : X → Z such that

(1) hT (x) = Sm(x)h (x) for all x ∈ X,
(2) hT n(x) (x) = Sh (x) for all x ∈ X,
(3) the h (Xmax) = Ymax,
(4) m (x) = n (x) = 1 for all x ∈ Xmax,
(5) m,n are continuous on X \Xmax.

Theorem 20. Suppose (X,T ) and (Y, S) are two reasonable polynomial odome-
ter systems. K0(X,T ) and K0(Y, S) are order isomorphic with distinguished order
units identified if and only if either the systems T and S are extremely orbit equiv-
alent or the systems T and S−1 are.

Proof. First suppose that either T and S are extremely orbit equivalent or T and
S−1 are extremely orbit equivalent. We will use the characterization of ∂SC(Y,Z)∩
C(Y,Z) used in the proof of Theorem 5. This states that f ∈ ∂SC(Y,Z) ∩C(Y,Z)
if and only if f = g ◦ S − g where g ∈ C(Y,Z) is constant on the union of minimal
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cylinder sets into level n for some n. Note that without loss of generality, we may
assume g ≡ 0 on the minimal cylinder sets into level n because for any constant k,
(g + k) ◦ S − (g + k) = g ◦ S − g.

Note that K0(Y, S) = K0(Y, S−1). This follows because if g ∈ C(Y,Z) then

g ◦ S − g = g′ ◦ S−1 − g′

where g′ = −g ◦ S. Further, if g is zero on minimal cylinder sets into level n in the
diagram for S then g ◦ S is zero on maximal cylinder sets into level n. But this
means that g′ is zero on minimal cylinder sets into level n in the diagram for S−1.

By the above paragraph, we may assume that T and S are extremely orbit
equivalent by a homeomorphism h : X → Y . Consider the isomorphism from
C(Y,Z) to C(X,Z) given by f 7→ f ◦ h.

Suppose f ∈ ∂SC(Y,Z) ∩ C(Y,Z). Then f = g ◦ S − g where g ∈ C(Y,Z) and g
is zero on the minimal cylinder sets into level n for some n. Therefore the function

g can be written in the form
∑K

k=1 ck1Ak
where ck ∈ Z and Ak ⊂ Y are cylinder

sets of nonminimal paths. We have

f = g ◦ S − g(8)

=

K
∑

k=1

ck1Ak
◦ S −

K
∑

k=1

ck1Ak
(9)

=

K
∑

k=1

ck (1S−1Ak
− 1Ak

)(10)

Now the set S−1Ak contains no maximal points so the function n(·) with Sh =
hT n(x) is continuous on S−1Ak. In particular, this means S−1Ak = ∪I

i=−IBk(i)

where Bk(i) is the clopen set of S−1Ak upon which Sh = hT i. Now

fh =

K
∑

k=1

ck (1S−1Ak
h− 1Ak

h)(11)

=

K
∑

k=1

I
∑

i=−I

ck
(

1h−1Bk(i) − 1h−1SBk(i)

)

(12)

=
K
∑

k=1

I
∑

i=−I

ck
(

1h−1Bk(i) − 1T ih−1Bk(i)

)

(13)

=

K
∑

k=1

I
∑

i=−I

ck
(

1T ih−1Bk(i) ◦ T
i − 1T ih−1Bk(i)

)

(14)

Now we have expressed fh as a sum of functions of the form a ◦ T i − a where
a ∈ C(X,Z). Note that for i > 0,

a ◦ T i − a =

i−1
∑

j=0

[(

aT j
)

◦ T −
(

aT j
)]

= b ◦ T − b

where b =
∑i−1

j=0 aT
j. For i < 0,

a ◦ T i − a = −

−1
∑

j=i

[(

aT j
)

◦ T −
(

aT j
)]

= b ◦ T − b
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where b = −
∑−1

j=i aT
j. This shows that fh ∈ ∂TC(X,Z), and finishes the proof of

the first direction.
Now for the other direction, let

(

V1, E1,≤1
)

and
(

V2, E2,≤2
)

be ordered Bratteli
diagrams for (X,T ) and (Y, S), respectively. The isomorphism of unital ordered
groups gives the existence of a Bratteli diagram (V , E) which when telescoped to
odd levels gives

(

V1, E1
)

and to even levels gives
(

V2, E2
)

, e.g. see [8]. There, one
uses this fact to construct a strong orbit equivalence, but this uses the fact that
the diagrams are simple, which is not the case for us. However, because of the
special form of the isomorphisms in our case we will be able to construct (V , E) in
a particular way, so that an orbit equivalence can be achieved.

Suppose {pk (x)} are the polynomials for (X,T ) and {qk (x)} the polynomials
for (Y, S). Let us assume that the isomorphism ζ is given by ζ : x 7→ a

b
x where

a, b ∈ N. If this is not the case, then replace T by T−1.
Let V0 = {v0}. Let E1 and V1 be as determined by the polynomial p1 (t). That

is, V1 = {(1, k) | 0 ≤ k ≤ I(n)} and the number of edges from V0 = {(0, 0)} to (1, j)
is equal to the coefficient of tj in p1 (t).

To form V2, note that there is a denominator polynomial, call it qn(1) (t), for

K0(Y, S), and polynomials ri ∈ Z [t] such that

ζ

(

ti

p1 (t)

)

=

(

a
b
t
)i

p1

(

a
b
t
) =

ri (t)

qn(1) (t)

for i = 0, 1, . . . , d (1). Note that it follows from the above that ri (t) =
(

a
b
t
)i
r0 (t)

for 0 ≤ i < d (1) and that
(

a
b

)i
r0 (t) ∈ Z [t].

Set V2 =
{

1, t, t2, . . . , td(2)
}

where d (2) = deg
(

qn(1) (t)
)

. Let the number of

edges from vertex tj in V1 to vertex tk in V2 be equal to the coefficient of tk−j in
(

a
b

)j
r0 (t). Then one can show that the number of edges from v0 to tk ∈ V2 is the

coefficient of tk in r0 (t) p1

(

a
b
t
)

. But since

ζ

(

1

p1 (t)

)

=
1

p1

(

a
b
t
) =

r0 (t)

qn(1) (t)

we have qn(1) (t) = r0 (t) p1

(

a
b
t
)

.
To form V3, note that there is a denominator polynomial, call it pm(2) (t), for

G (T ), and polynomials si ∈ Z [t] such that

ζ−1

(

ti

qn(1) (t)

)

=

(

b
a
t
)i

pm(2)

(

b
a
t
) =

si (t)

pm(2) (t)

for i = 0, 1, . . . , d (2). Set V3 =
{

1, t, t2, . . . , td(3)
}

where d (3) = deg
(

pm(2) (t)
)

.

Let the number of edges from vertex tj in V2 to vertex tk in V3 be equal to the

coefficient of tk−j in
(

b
a

)j
s0 (t). Again one can show that the number of edges from

a vertex tj ∈ V1 to tk ∈ V3 is the coefficient of tk−j in s0 (t) qn(1)

(

b
a
t
)

= pm(2) (t).
Continuing in this way, we construct a Bratteli diagram (V , E) which when tele-

scoped to odd levels gives a telescoping of
(

V1, E1
)

, and when telescoped to odd

levels gives a telescoping of
(

V2, E2
)

. For every vertex tk ∈ Vn ⊂ V , among all

edges terminating at tk we can identify a leftmost edge l (k, n) and a rightmost
edge r (k, n). The leftmost edge l (k, n) should have the property that it originates
at the vertex ti ∈ Vn−1 where i is the minimum exponent of a vertex connected to
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Figure 11. The first six levels of (V,E) corresponding to Example 17.

tk. The rightmost edge r (k, n) should have the property that it originates at the
vertex tj ∈ Vn−1 with the maximum exponent of a vertex connected to tk. Because
telescoping (V , E) to odd levels gives a telescoping of

(

V1, E1
)

, there is a bijection
φk between paths connecting individual vertices on levels m (k) and m (k + 1) in
(

V1, E1
)

to paths connecting the corresponding vertices on levels 2k and 2k + 2

in (V , E). Further, by the way the ordering on
(

V1, E1
)

is defined, we can define
φk in such a way that for any minimal path P , the image φk (P ) is comprised of
two leftmost edges in (V , E), and similarly for maximal paths and rightmost edges.
At the same time, we may define maps ψk between paths between levels n (k) and
n (k + 1) in

(

V2, E2
)

to paths connecting the corresponding vertices on levels 2k−1
and 2k + 1 in (V , E). Like the maps φk, these can be defined so that the image of
minimal/maximal paths are leftmost/rightmost paths.

Every point x ∈ X is a concatenation of paths P1P2P3 . . . where Pk originates at
a vertex at level m (k) and terminates at a vertex at level m (k + 1). Thus we can
define φ (x) = φ1 (P1)φ2 (P2)φ3 (P3) . . .. Similarly, we can define ψ (y) for y ∈ Y .
Finally, we can define the extremal orbit equivalence as the map ψ−1φ. �

One consequence of Theorem 18 and Theorem 20 is that the Pascal adic system
is extremely orbit equivalent to another reasonable system (Y, S), if and only if
(Y, S) is generated by a diagram that is a telescoping of the Pascal diagram.
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