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Abstract

Let S be a finite non-commutative semigroup. The commuting graph of S, denoted
G(S), is the graph whose vertices are the non-central elements of S and whose edges are
the sets {a, b} of vertices such that a # b and ab = ba. Denote by T'(X) the semigroup of
full transformations on a finite set X. Let J be any ideal of T'(X) such that J is different
from the ideal of constant transformations on X. We prove that if | X| > 4, then, with a few
exceptions, the diameter of G(J) is 5. On the other hand, we prove that for every positive
integer n, there exists a semigroup S such that the diameter of G(5) is n.

We also study the left paths in G(S), that is, paths a1 —as — - - - — @y, such that a1 # am,
and a1a; = ama; for all i € {1,...,m}. We prove that for every positive integer n > 2,
except n = 3, there exists a semigroup whose shortest left path has length n. As a corollary,
we use the previous results to solve a purely algebraic old problem posed by B.M. Schein.
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1 Introduction

The commuting graph of a finite non-abelian group G is a simple graph whose vertices are all
non-central elements of G and two distinct vertices z,y are adjacent if xy = yx. Commuting
graphs of various groups have been studied in terms of their properties (such as connectivity or
diameter), for example in [4], [6], [9], and [15]. They have also been used as a tool to prove group
theoretic results, for example in [5], [12], and [13].

The concept of the commuting graph carries over to semigroups. Let S be a finite non-
commutative semigroup with center Z(S) = {a € S : ab = ba for all b € S}. The commuting
graph of S, denoted G(S5), is the simple graph (that is, an undirected graph with no multiple
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edges or loops) whose vertices are the elements of S — Z(S) and whose edges are the sets {a, b}
such that a and b are distinct vertices with ab = ba.

This paper initiates the study of commuting graphs of semigroups. Our main goal is to study
the lengths of minimal paths. We shall consider two types of paths: ordinary paths from graph
theory and so called left paths.

We first investigate the semigroup T'(X) of full transformations on a finite set X, and deter-
mine the diameter of the commuting graph of every ideal of T'(X) (Section 2). We find that,
with a few exceptions, the diameter of G(J), where J is an ideal of T'(X), is 5. This small diam-
eter does not extend to semigroups in general. We prove that for every n > 2, there is a finite
semigroup S whose commuting graph has diameter n (Theorem 4.1). To prove the existence of
such a semigroup, we use our work on the left paths in the commuting graph of a semigroup.

Let S be a semigroup. A path a1 —as — -+ — a,, in G(S) is called a left path (or I-path) if
a1 # am and ara; = apa; for every i € {1,...,m}. If there is any I-path in G(S), we define the
knit degree of S, denoted kd(S), to be the length of a shortest l-path in G(S5).

For every n > 2 with n # 3, we construct a band (semigroup of idempotents) of knit degree
n (Section 3). It is an open problem if there is a semigroup of knit degree 3. The constructions
presented in Section 3 also give a band S whose commuting graph has diameter n (for every
n > 4). As another application of our work on the left paths, we settle a conjecture on bands
formulated by B.M. Schein in 1978 (Section 5). Finally, we present some problems regarding the
commuting graphs of semigroups (Section 6).

2 Commuting Graphs of Ideals of T'(X)

Let T'(X) be the semigroup of full transformations on a finite set X, that is, the set of all functions
from X to X with composition as the operation. We will write functions on the right and compose
from left to right, that is, for a,b € T(X) and z € X, we will write za (not a(z)) and z(ab) = (za)b
(not (ba)(z) = b(a(x))). In this section, we determine the diameter of the commuting graph of
every ideal of T'(X). Throughout this section, we assume that X = {1,...,n}.

Let I" be a simple graph, that is, I' = (V, E'), where V is a finite non-empty set of vertices and
E C {{u,v} :u,v € V,u # v} is a set of edges. We will write u — v to mean that {u,v} € E. Let

u,w € V. A path in T from u to w is a sequence of pairwise distinct vertices u = vy, v2,...,Vym = W
(m > 1) such that v; — v;41 for every i € {1,...,m — 1}. If X is a path vy, ve,..., vy, we will
write A = v; — vy — -+ — v, and say that X\ has length m — 1. We say that a path A from u to w

is a minimal path if there is no path from u to w that is shorter than .

We say that the distance between vertices u and w is k, and write d(u,w) = k, if a minimal
path from u to w has length k. If there is no path from u to w, we say that the distance between
uw and w is infinity, and write d(u, w) = co. The maximum distance max{d(u,w) : u,w € V}
between vertices of I is called the diameter of I'. Note that the diameter of I' is finite if and only
if " is connected.

If S is a finite non-commutative semigroup, then the commuting graph G(S) is a simple graph
with V =5 — Z(S) and, for a,b € V, a — b if and only if a # b and ab = ba.

For a € T(X), we denote by im(a) the image of a, by ker(a) = {(z,y) € X x X : za = ya}
the kernel of a, and by rank(a) = |im(a)| the rank of a. It is well known (see [7, Section 2.2])
that in T'(X) the only element of Z(T(X)) is the identity transformation on X, and that T'(X)
has exactly n ideals: Jy, Ja, ..., J,, where, for 1 <r <n,

Jr ={a € T(X) : rank(a) < r}.

Each ideal J, is principal and any a € T'(X) of rank r generates J,.. The ideal J; consists of the
transformations of rank 1 (that is, constant transformations), and it is clear that G(Jy) is the
graph with n isolated vertices.



Let S be a semigroup. We denote by G;(S) the subgraph of G(S) induced by the non-central
idempotents of S. The graph G(.5) is said to be the idempotent commuting graph of S. We first
determine the diameter of G (J,.). This approach is justified by the following lemma.

Lemma 2.1. Let a,b € J,. be such that ab # ba. Then there are idempotents ey, ea, ..., ex € J,
(k> 1) such that a — ey — ez — - -+ — e, — b is a minimal path in G(J,) from a to b.

Proof. Let a —ay —as — -+ — a, — b be a minimal path in G(J,) from a to b. Then k > 1
since ab # ba. Since J, is finite, there is an integer p > 1 such that a} is an idempotent in J,.
Since a; commutes with a and as, the idempotent e; = a’f also commutes with a and as, and so

a—e; —ag—---—ai—b. Repeating the foregoing argument for as, ..., ar, we obtain idempotents
€s,...,€e in J,. such that a —e; —eg — --- — e — b. Since the patha —ay —as —--- —ap — b is
minimal, it follows that a, eq, es, ..., ex, b are pairwise distinct and the patha—e; —es—---—ep—0b
is minimal. O

It follows from Lemma 2.1 that if d is the diameter of G(J,.), then the diameter of G(J,.) is
at most d + 2.

2.1 Idempotent Commuting Graphs

In this subsection, we assume that n > 3 and 2 < r < n. We will show that, with some exceptions,
the diameter of G5 (J,.) is 3 (Theorem 2.8).

Let e € T(X) be an idempotent. Then there is a unique partition {41, Ay, ..., Ax} of X and
unique elements x1 € A1, x5 € Ao, ..., x; € Ay such that for every i, A;e = {z;}. The partition
{41 ..., A} is induced by the kernel of e, and {z1,...,x;} is the image of e. We will use the
following notation for e:

€ = (A1,1'1>(A2,£C2>...(Ak,$k>‘ (21)

Note that (X,x) is the constant idempotent with image {z}. The following result has been
obtained in [1] and [10] (see also [2]).

Lemma 2.2. Let e = (A1, 21)(Az, x2) ... (Ak, zk) be an idempotent in T(X) and let b € T(X).
Then b commutes with e if and only if for every i € {1,...,k}, there is j € {1,...,k} such that
zib=x; and A;b C A;.

We will use Lemma 2.2 frequently, not always mentioning it explicitly. The following lemma
is an immediate consequence of Lemma 2.2.

Lemma 2.3. Lete, f € J, be idempotents and suppose there is x € X such that x € im(e)Nim(f).
Then e — (X, z) — f.

Lemma 2.4. Let e, f € J,. be idempotents such that im(e) Nim(f) = (. Suppose there is
(z,y) € im(e) x im(f) such that (v,y) € ker(e) Nker(f). Then there is an idempotent g € J,
such thate — g — f.

Proof. Let e = (A1, x1) ... (Ag,zk) and f = (B1,y1) ... (Bm,Ym). We may assume that = x;
and y = y;. Since (z,y) € ker(e) Nker(f), we have y € A; and x € By. Let g = (im(e), z)(X —
im(e),y). Then g is in J, since rank(g) = 2 and r > 2. By Lemma 2.2, we have eg = ge (since
y € Ay) and fg = gf (since im(f) C X —im(e) and « € By). Hence e — g — f. O

Lemma 2.5. Let e, f € J, be idempotents such that im(e) Nim(f) = 0. Then there are idempo-
tents g,h € J, such thate—g—h — f.

Proof. Let e = (A1, 1) ... (Ag,2x) and f = (B1,y1) - - . (Bm, Ym)- Since im(e) Nim(f) = @, there
is i such that y; € A;,. We may assume that y; € A;. Let g = (X — {y1},21){v1},v1) and
h = (X,y1). Then g and h are in J, (since r > 2). By Lemma 2.2, eg = ge, gh = hg, and
hf = fh. Thus e —g—h— f. 0



Lemma 2.6. Let m be a positive integer such that 2m < n, o be an m-cycle on {1,...,m}, and

e= (A1, z1) (A2, x2) ... (A, Tm) and f = (B1,y1)(Ba,y2) ... (B, Ym)

be idempotents in T(X) such that x1,...,Tm,Y1,---,Ym are pairwise distinct, y; € A;, and
Zie € B; (1 <i<m). Suppose that g is an idempotent in T(X) such that e — g — f. Then:

(1) zj9 =z; and yjg =y, for every j € {1,...,m}.

(2) If 1 < 4,5 < m are such that A; = {x;,v;, 2}, B; = {y;,%jo, 2} and A; N Bj = {z}, then
zg = z.

Proof. Since eg = ge, x1g = x; for some i. Then x;9 = x; (since g is an idempotent). Thus,
e —g — f and Lemma 2.2 imply that y;g = y;. Since x; = Z(jo-1), € Bjs-1 and g commutes
with f, we have y;,-19 = y;,-1. But now, since y;,-1 € A;,-1 and g commutes with e, we have
Tig-1g = T;o—1. Continuing this way, we obtain z,,-xg = ;;—+ and y;;,-+g = Y;,—+ for every
ke {1,...,m —1}. Since o is an m-cycle, it follows that z;g = z; and y;g = y; for every
je{l,...,m}. We have proved (1).

Suppose A; = {z,¥:, 2}, Bj = {yj,%jo, 2}, and A; N B; = {z}. Then zg € {x;,y;, 2z} (since
x;9 = x; and eg = ge) and zg € {y;, zj0, 2} (since y;g = y; and fg = gf). Since A; N B; = {z},
we have zg = z, which proves (2). O

Lemma 2.7. Letn > 4. Ifn # 5 orr # 4, then for some idempotents e, f € J,., there is no
idempotent g € J, such thate —g— f.

Proof. Let n# 5 or r # 4. Suppose that » < n— 1 or n is even. Then there is an integer m such
that m <r and r < 2m < n. Let e and f be idempotents from Lemma 2.6. Then e, f € J, since
m < r. But every idempotent g € T'(X) such that e — g — f fixes at least 2m elements, and so
g ¢ Jy since r < 2m.

Suppose that » = n — 1 and n = 2m + 1 is odd. Then n > 7 since we are working under
the assumption that n % 5 or r # 4. We again consider idempotents e and f from Lemma 2.6,
which belong to J,. since m < n—1 = r. Note that X = {x1,...,Zm,¥1,---,Ym, 2} We
may assume that z € A,, and z € By. Since n > 7, we have m > 3. Thus, the intersection of
A = {&m, Ym, 2} and By = {y1, 22, 2} is {2z}, and so zg = z by Lemma 2.6. Hence g =idx ¢ J,,
which concludes the proof. O

Theorem 2.8. Let n > 3 and let J,. be an ideal in T(X) such that 2 <r <n. Then:
(1) If n=3 orn =05 and r = 4, then the diameter of Gp(J;) is 2.
(2) In all other cases, the diameter of Gy (J,) is 3.

Proof. Suppose n =3 or n =5 and r = 4. In these special cases, we obtained the desired result
using GRAPE [16], which is a package for GAP [8].

Let n > 4 and suppose that n # 5 or r # 4. By Lemmas 2.3 and 2.5, the diameter of G (J,.)
is at most 3. By Lemma 2.7, the diameter of G,(J;) is at least 3. Thus the diameter of G (J,.)
is 3, which concludes the proof of (2). O

2.2 Commuting Graphs of Proper Ideals of T'(X)

In this subsection, we determine the diameter of every proper ideal of T'(X). The ideal J; consists
of the constant transformations, so G(J1) is the graph with n isolated vertices. Thus J; is not
connected and its diameter is co. Therefore, for the remainder of this subsection, we assume that
n>3and 2 <r <n.

It follows from Lemma 2.1 and Theorem 2.8 that the diameter of G(.J,) is at most 5. We will
prove that this diameter is in fact 5 except when n =3 or n € {5,6,7} and r = 4. It also follows



from Lemma 2.1 that if e and f are idempotents in J,., then the distance between e and f in
G(J,) is the same as the distance between e and f in Gx(J,). So no ambiguity will arise when
we talk about the distance between idempotents in J,.

For a € T(X) and 2,y € X, we will write z % y when za = .

Lemma 2.9. Let a,b € T(X). Then ab = ba if and only if for all z,y € X, x % y implies
zb % yb.

Proof. Suppose ab = ba. Let 2,y € X with = % 1, that is, y = za. Then, since ab = ba, we have
yb = (za)b = x(ab) = x(ba) = (xb)a, and so xb = yb.

Conversely, suppose & — y implies zb = yb for all z,5y € X. Let € X. Since z % za, we
have zb % (za)b. But this means that (zb)a = (xa)b, which implies ab = ba. O

Let a € T(X). Suppose z1,..., 2, are pairwise distinct elements of X such that x;a = z;41
(1 <i<m)and z,,a = 1. We will then say that a contains a cycle (x1 xa... T).

Lemma 2.10. Let a € J, be a transformation containing a unique cycle (x12a... Tm). Let
e € J, be an idempotent such that ae = ea. Then x;e = x; for every i € {1,...,m}.

. . a, a, Q, Q,
Proof. Since a contains (1 x2 ... T,), we have 1 — x9 — + -+ — &, — 21. Thus, by Lemma 2.9,
a a a a
T1€ — To€ — =+ —> L€ —> T1€.

Thus (x1exqe. .. x,e) is a cycle in a, and is therefore equal to (21 @2 ... z,,). Hence, for every
i€ {1,...,m}, there exists j € {1,...,m} such that z; = z,e, and so z;e = (zje)e = z;(ee) =
Tie = T;. L]

To construct transformations a,b € J,. such that the distance between a and b is 5, it will be
convenient to introduce the following notation.

Notation 2.11. Let x1,...,%m, 21, ..., 2, be pairwise distinct elements of X, and let s be fixed
such that 1 < s < p. We will denote by

a=(xz5)(2p 2p_1... 121)(T1 T2 .. Tp) (2.2)
the transformation a € T(X) such that

Zpd = Zp—1, Zp—10 = Zp_2,...,220 = 21, 214 = T,

14 = T2, T2 = X3,..., Lyy—-10 = Ty, Ty = T,

and ya = z; for all other y € X. Suppose w € X such that w ¢ {x1,...,2p,21,...,2,} and
1 <t < pwith t #s. We will denote by

b= (xzs)(wz)(2p2p—1... z121)(T1 X2 . .. Ti) (2.3)
the transformation b € T'(X) that is defined as a in (2.2) except that wb = 2.

Lemma 2.12. Let a € J, be the transformation defined in (2.2) such that m+p > r. Let e € J,
be an idempotent such that ae = ea. Then:

(1) xe =a; for everyi € {1,...,m}.
(2) zje = Tpm—jt1 for every j € {1,...,p}.
(3) ye=xm—s foreveryy € X —{x1,...,m,21,...,2%p}.

(We assume that for every integer u, x, = x,, where v € {1,...,m} and u = v (mod m).)



Proof. Statement (1) follows from Lemma 2.10. By the definition of a, we have

a, a a a,
Zp —» Zp—1 > 21— T1.

Thus, by Lemma 2.9,
Zp€ i> Zp—1€ i) i) zZ1€ i) r1€e = 1.

Since zie % 1, either zie = x,,, or zie ¢ {x1,..., %, }. We claim that the latter is impossible.
Indeed, suppose z1e ¢ {z1,...,2m}. Then zje ¢ {z1,...,x} for every j € {1,...,p}. Thus
the set {z1,...,Tm, 216,...,2pe} is a subset of im(e) with m + p elements. But this implies that

e ¢ J, (since m +p > r), which is a contradiction. We proved the claim. Thus z1e = z,,. Now,
29 5 216 = Ty, which implies zoe = x,,_1. Continuing this way, we obtain zze = x,,_o, 24 =
ZTm—3,.... (A special argument is required when j = gm + 1 for some ¢ > 1. Suppose g = 1,
that is, j = m + 1. Then z;e N Zj_1e = Zme = 1, and so either zje = x,, or zje = z;. But the
latter is impossible since we would have ,, = z1e = z;(ee) = zje = z1, which is a contradiction.
Hence, for j = m + 1, we have zje = x,,. Assuming, inductively, that z;e = x,, for j = gm + 1,
we prove by a similar argument that z;e = z,, for j = (¢ + 1)m + 1.) This concludes the proof
of (2).

Lety € X —{x1,...,%m,21,...,2}. Then y % z,, and so ye % zse = Tp,_s41. Suppose s is
not a multiple of m. Then x,,_s11 # x1, and so ye N Tm—s+1 implies ye = x,,—s. Suppose s is
a multiple of m. Then ye % 2,,_s41 = x1, and so either ye = x,, or ye = z;. But the latter is
impossible since we would have x,, = z1e = y(ee) = ye = 21, which is a contradiction. Hence,
for s that is a multiple of m, we have ye = x,,,, which concludes the proof of (3). O

The proof of the following lemma is almost identical to the proof of Lemma 2.12.

Lemma 2.13. Let b € J,. be the transformation defined in (2.3) such that m+p > r. Lete € J,
be an idempotent such that be = eb. Then:

(1) zie =x; for everyi € {1,...,m}.

(2) zje = m—_j41 for every j € {1,...,p}.

(3) we =xp—t.

(4) ye = x5 for everyy € X — {x1,..., Tmy 21, - -, Zp, W}.

Lemma 2.14. Let n € {5,6,7} and r = 4. Then there are a,b € Jy such that the distance
between a and b in G(Jy) is at least 4.

Proof. Let a = (x4)(341)(12) and b = (x1)(213)(34) (see Notation 2.11). Suppose e and f are
idempotents in Jy such that a — e and f —b. Then, by Lemma 2.12, e = ({...,3,1},1)({4, 2},2)

and f = ({...,2,3},3)({1,4},4), where “...” denotes “5” (if n = 5), “5,6” (if n = 6), and
“5,6,7” (if n = 7). Then e and f do not commute, and so d(e, f) > 2. Thus d(a,b) > 4 by
Lemma 2.1. O

Lemma 2.15. Let n € {6,7} and r = 4. Let a € Jy be a transformation that is not an
idempotent. Then there is an idempotent e € Jy commuting with a such that rank(e) # 3 or
rank(e) = 3 and ye~! = {y} for some y € im(e).

Proof. If a fixes some x € X, then a commutes with e = (X, z) of rank 1. Suppose a has no fixed
points. Let p be a positive integer such that aP is an idempotent. If a contains a unique cycle
(z1 z2), then e = aP has rank 2. If a contains a unique cycle (1 x2 x5 24) or two cycles (x1 x2)
and (y1 y2) with {z1,x2} N {y1,y2} = 0, then e = a? has rank 4.

Suppose a contains a unique cycle (z1 x2x3). Define e € T(X) as follows. Set x;e = 1z,
1< <3,



Suppose there are y,z € X — {x1, z2, 23} such that ya = z and za = z; for some i. We may
assume that za = x1. Define ze = x3 and ye = z5. Let u and w be the two remaining elements in
X (only u remains when n = 6). Since rank(a) < 4, we have {u,w}a C {z, 21,22, 23}. Suppose
ua = wa = z. Define ue = xo and we = x5. Then e is an idempotent of rank 3 such that ae = ea
and z1e~! = {z1}. Suppose ua or wa is in {x1, 72,23}, say ua € {x1, 72, 23}. Define ue = u,
and we = x;—1 (if wa = x;), where z;_; = x5 if i = 1, or we = x5 (if wa = 2). Then e is an
idempotent of rank 4 such that ae = ea.

Suppose that for every y € X — {x1,z2, 23}, ya € {x1,x2,23}. Select z € X — {x1, 29,23}
and define ze = z. For every y € X — {2, 21,29, x5}, define ye = ;1 if ya = x;. Then e is an
idempotent of rank 4 such that ae = ea.

Since a € Jy, we have exhausted all possibilities, and the result follows. O

Lemma 2.16. Let n € {6,7} and r = 4. Then for all a,b € Jy, the distance between a and b in
G(J4) is at most 4.

Proof. Let a,b € Jy. If a or b is an idempotent, then d(a,b) < 4 by Lemma 2.1 and Theorem 2.8.
Suppose a and b are not idempotents. By lemma 2.15, there are idempotents e, f € J, such that
ae = ea, bf = fb, if rank(e) = 3, then ye~! = {y} for some y € im(e), and if rank(f) = 3, then
yf~! = {y} for some y € im(f). We claim that there is an idempotent g € J; such that e —g— f.
If im(e) Nim(f) # @, then such an idempotent g exists by Lemma 2.3. Suppose im(e) Nim(f) = 0.
Then, since n € {6,7}, both rank(e) + rank(f) < 7. We may assume that rank(e) < rank(f).
There are six possible cases.
Case 1. rank(e) = 1.

Then ¢ = (X,z) for some z € X. Let y = xf. Then (z,y) € im(e) x im(f) and (z,y) €
ker(e) Nker(f). Thus, by Lemma 2.4, there is an idempotent g € J4 such that e — g — f.
Case 2. rank(e) = 2 and rank(f) = 2.

We may assume that e = (A;,1)(A2,2) and f = (B1,3)(Be,4). If {1,2} C B; or {3,4} C A;
for some i, then we can find (z,y) € im(e) x im(f) such that (z,y) € ker(e) Nker(f), and so a
desired idempotent g exists by Lemma 2.4. Otherwise, we may assume that 3 € A; and 4 € As.

If 1 € By or 2 € By, then Lemma 2.4 can be applied again. So suppose 1 € By and 2 € B;. Now
we have

e={...,3,1,1)({....4,2},2) and f = ({...,2,3},3)({...,1,4},4).
We define g € T'(X) as follows. Set zg = x for every z € {1,2,3,4}. Let x € {5,6,7} (x € {5,6}
ifn=20). If z € A1 N By, define xg = 3; if x € A; N By, define zg = 1; if x € Ay N By, define
xg = 2; finally, if z € As N By, define xg = 4. Then ¢ is an idempotent of rank 4 and e — g — f.
Case 3. rank(e) = 2 and rank(f) = 3.

We may assume that e = (A41,1)(A42,2) and f = (B1,3)(B2,4)(Bs,5). If {3,4,5} C Ay or
{3,4,5} C Ay, then Lemma 2.4 applies. Otherwise, we may assume that 3,4 € A; and 5 € A,.
If 1 € By UBs or 2 € Bs, then Lemma 2.4 applies again. So suppose 1 € B3 and 2 € B; U Bs.
We may assume that 2 € By. Note that if z € {6,7}, then z cannot be in By since z € By would
imply that there is no y € im(f) such that yf~! = {y}. So now

e=({...341,1{....522) and f = ({...,2,3},3)({4},4)({...,1,5},5).

We define g € T'(X) as follows. Set zg = x for every xz € {1,2,3,5} and 49 = 3. Let z € {6,7}.
If z € A1 N By, define zg = 3; if z € A; N By, define zg = 1; if z € Ay N By, define zg = 2; finally,
if z € Ay N Bs, define zg = 5. Then g is an idempotent of rank 4 and e — g — f.
Case 4. rank(e) = 2 and rank(f) = 4.

We may assume that e = (A3, 1)(A3,2) and f = (B, 3)(B2,4)(Bs, 5)(By,6). If {3,4,5,6} C
Ay or {3,4,5,6} C Ay, then Lemma 2.4 applies. Otherwise, we may assume that 3,4,5 € A; and
6 € A2 or 3,4 € Al and 5,6 € AQ.



Suppose 3,4,5 € A; and 6 € As. If 1 € By U By U B3 or 2 € By, then Lemma 2.4 applies. So
suppose 1 € By, and we may assume that 2 € B;. Now we have

e=({...,3,4,51}1)({...,6,2},2),
F=0 2,853 4L {....505)....1,6},6).

We define g € T'(X) as follows. Set zg = z for every x € {1,2,3,6}, 49 = 3, and 5g = 3. Define
Tg=3if7€ A and 7€ BiUByUB3; 7g=1i7€ Ay and 7 € By; Tg=21if 7 € Ay and
7€ BiUByUB;3; and 7Tg =6 if 7 € Ay and 7 € By. Then g is an idempotent of rank 4 and
e — g — f. The argument in the case when 3,4 € A; and 5,6 € A, is similar.

Case 5. rank(e) = 3 and rank(f) = 3.

Since both e and f have an element in their range whose preimage is the singleton, we
may assume that e = (Aq,1)(A42,2)({3},3) and f = (B1,4)(B2,5)({6},6). If {1,2} C B, or
{4,5} C A; for some i, then Lemma 2.4 applies. Otherwise, we may assume that 4 € A; and
5€ As. If 1 € By or 2 € By, then Lemma 2.4 applies again. So suppose 1 € By and 2 € B;. So
now

e={..., 41}, D({...,52},2)({3},3) and f = ({...,2,4},4)({...,1,5},5)({6},6).

We define g € T(X) as follows. Set g = x for every = € {1,2,4,5}, 3g = 1, and 6g = 4. Define
Tg=4if7€ Ayand 7€ By;7Tg=1if7€ Ay and 7 € By; 7g =2if 7 € Ay and 7 € By; and
Tg=5if 7€ Ay and 7 € By. Then g is an idempotent of rank 4 and e — g — f.

Case 6. rank(e) = 3 and rank(f) = 4.

We may assume that e = (A, 1)(A2,2)({3},3) and f = (B1,4)(B2,5)(Bs,6)({7},7). If
{4,5,6} C A; or {4,5,6} C Ay, then Lemma 2.4 applies. So we may assume that 4,5 € A; and
6 € Ay. If 1 € By UBs or 2 € Bs, then Lemma 2.4 applies again. So we may assume that 1 € Bs
and 2 € By. So now

e={...,451}L1){...,6,2},2)({3},3),
f=..,2,4, 9. ..,5}5)({...,1,6},6)({7},7).

We define g € T'(X) as follows. Set xg = x for every = € {1,2,4,6} and 5g = 4. Define 79 = 4 if
T€A;7Tg=6if 7€ Ay;3g=3if 3 € By U Ay; and 3g =1 if 3 € B3. Then g is an idempotent
of rank 4 and e — g — f.

O

Theorem 2.17. Let n > 3 and let J, be an ideal in T(X) such that 2 < r <mn. Then:
(1) If n=3 orn € {5,6,7} and r = 4, then the diameter of G(J,.) is 4.
(2) In all other cases, the diameter of G(J,.) is 5.

Proof. Let n = 3. Then the diameter of G(Jz) is at most 4 by Lemma 2.1 and Theorem 2.8. On
the other hand, consider a = (31)(12) and b = (21)(13) in J5. Suppose e and f are idempotents
in Jy such that a—e and f —b. By Lemma 2.12, e = ({1}, 1)({3,2},2) and f = ({1}, 1)({2, 3}, 3).
Then e and f do not commute, and so d(e, f) > 2. Thus d(a,b) > 4 by Lemma 2.1, and so the
diameter of G(.J3) is at least 4.

Let n € {5,6,7} and r = 4. If n = 5, then the diameter of G(.J;) is at least 4 (by Lemma 2.14)
and at most 4 (by Lemma 2.1 and Theorem 2.8). If n € {6, 7}, then the diameter of G(J4) is at
least 4 (by Lemma 2.14) and at most 4 (by Lemma 2.16). We have proved (1).

Let n > 4 and suppose that n ¢ {5,6,7} or r # 4. Then the diameter of G(J,) is at most 5
by Lemma 2.1 and Theorem 2.8. It remains to find a,b € J, such that the distance between a
and b in G(J,) is at least 5. We consider four possible cases.



Case 1. r = 2m — 1 for some m > 2.

Then 2 <m <r <2m <n. Let z1,...,Zm,¥y1,...,Ym be pairwise distinct elements of X.
Let

a=(xy)(y1y2.. . ymx1)(T1 T2 ... Ty) and b= (xx3) (T2 T3 ... Tn—1T1Y1)(Y1 Y2 - - - Ym)

(see Notation 2.11) and note that a,b € J, and ab # ba. Then, by Lemma 2.1, there are
idempotents ey, ...,ex € J. (k> 1) such that a —e; — -+ — e, — b is a minimal path in G(J,.)
from a to b. By Lemma 2.12,

€1 = (Ala .’L’1>(A2,132> e (Amal:m> a‘nd €L = (B17y1>(B27y2> e (B77L7ym>?

wherey; € 4, (1 <i<m),z;y1 € B; (1 <i<m),and x; € B,,. Let g € T(X) be an idempotent
such that e; — g — ex. By Lemma 2.6, 2;g = z; and y;g = y; for every j € {1,...,m}. Hence
rank(g) > 2m > r, and so g ¢ J,. It follows that the distance between e; and ey, is at least 3,
and so the distance between a and b is at least 5.

Case 2. r = 2m for some m > 3.

Then 3<m <r=2m<n. Let x1,...,Zm,¥Y1,--.,Ym,2 be pairwise distinct elements of X.
Let

a=(xy2)(zy1y2... Ymx1)(T1 T2 ... Tpy),

b= (xx1)(zxs) (223 . T X1 Y1)(Y1Y2 -+ Ym)

(see Notation 2.11) and note that a,b € J,. and ab # ba. Then, by Lemma 2.1, there are
idempotents eq,...,ex € J. (k> 1) such that a —e; — -+ — ex, — b is a minimal path in G(J;)
from a to b. By Lemma 2.12,

e1 = (A1, 21) (A, 22) ... (A, ) and ex = (B1,y1)(B2,Y2) - - - (Bm, Ym),

where y; € A; (1 < i < m), ;41 € B; (1 < i < m), 21 € By, 4, = {Tm,Ym, 2}, and
By = {y1,x2,2}. Let g € T(X) be an idempotent such that e; — g —e;. By Lemma 2.6, 2,9 = z;
and y,g = y; for every j € {1,...,m}, and zg = z. Hence rank(g) > 2m+1>r, and so g ¢ J,.
It follows that the distance between e; and ey is at least 3, and so the distance between a and b
is at least 5.

Case 3. r = 4.

Since we are working under the assumption that n ¢ {5,6,7} or r # 4, we have n ¢ {5,6,7}.
Thus n > 8 (since r < n —1). Let

a:(l 2 3 456 78 9...n) andb:(l 2 3 456 7 8 9...n>

2 3 41 2 3 4 1 1...1 5 6 78 6 78 5 1...1/)°
Note that a,b € Jy, ab # ba, (1234) is a unique cycle in a, and (56 78) is a unique cycle in b.
By Lemma 2.1, there are idempotents eq,...,e; € Jy (k> 1) such that a —e; — -+ —ep — b is
a minimal path in G(Jy) from a to b. By Lemma 2.10, ie; = ¢ and (4 + i)ex, = 4 + i for every
i€{1,2,3,4}. By Lemma 2.9, 5e; = 1 or 5e; = 5. But the latter is impossible since with 5e; = 5
we would have rank(e;) > 5. Similarly, we obtain 6e; = 2, Te; = 3, 8e; = 4, 2e;, = 5, 3e;, = 6,
der, = 7, and leg = 8. Let g € T(X) be an idempotent such that e; — g — e. By Lemma 2.6,

jg = j for every j € {1,...,8}. Hence rank(g) > 8 > r, and so g ¢ Jy. It follows that the
distance between e; and ey is at least 3, and so the distance between a and b is at least 5.

Case 4. r = 2.
In this case we let

Q
I
N\
N o~
= N
N W
—
—
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Note that a,b € Jo, ab # ba, (12) is a unique cycle in a, and (34) is a unique cycle in b. By
Lemma 2.1, there are idempotents eq,...,ex € Jo (k > 1) such that a —e; —--- —ex, —bis a
minimal path in G(J2) from a to b. By Lemma 2.10, le; = 1, 2e; = 2, 3¢, = 3, and 4ej, = 4.
By Lemma 2.9, 3e; = 1 or 3e; = 3. But the latter is impossible since with 3e; = 3 we would
have rank(e;) > 3. Again By Lemma 2.9, 4e; = 2 or 4e; = y for some y € {4,5,...,n}. But
the latter is impossible since we would have ye; = y and again rank(e;) would be at least 3.
Similarly, we obtain 2e;, = 3, and le,, = 4. Let g € T'(X) be an idempotent such that e; — g — ex.
By Lemma 2.6, jg = j for every j € {1,...,4}. Hence rank(g) > 4 > r, and so g ¢ Jo. It
follows that the distance between e; and ey is at least 3, and so the distance between a and b is
at least 5.

Thus the diameter of G(J,.) is at least 5, which concludes the proof of (2). O

2.3 The Commuting Graph of 7'(X)

Let X be a finite set with |X| = n. It has been proved in [9, Theorem 3.1] that if n and n — 1
are not prime, then the diameter of the commuting graph of Sym(X) is at most 5, and that
the bound is sharp since the diameter of G(Sym(X)) is 5 when n = 9. In this subsection, we
determine the exact value of the diameter of the commuting graph of T'(X) for every n > 2.
Throughout this subsection, we assume that X is a finite set with n > 2 elements.

Lemma 2.18. Let n > 4 be composite. Let a, f € T(X) such that a, f # idx, a € Sym(X), and
f is an idempotent. Then d(a, f) < 4.

Proof. Fix z € im(f) and a cycle (z1...2,) of a such that € {z1,...,2,,}. Consider three
cases.

Case 1. a has a cycle (y1 ...yx) such that k does not divide m.
Then a™ is different from idx and it fixes z. Thus ¢ —a™ — (X, z) — f, and so d(a, f) < 3.
Case 2. a has at least two cycles and for every cycle (y; ...yx) of a, k divides m.

Suppose there is z € im(f) such that z € {y1,...,yr} for some cycle (y; ...yx) of a different
from (21 ...x,). Since k divides m, there is a positive integer ¢ such that m = tk. Define
e € T(X) by:

T1€ =Y1,y. .., LK€ = Yky Tk4+1€ = Y1, ..., L2kE = Y,y ... 7$(t,1)k+1€ =Y1y.-. 5, Ttp€ = Yk, (24)

and ye = y for all other y € X. Then e is an idempotent such that ae = ea and z € im(e). Thus,
by Lemma 2.3, a — e — (X, 2) — f, and so d(a, f) < 3.

Suppose that im(f) € {z1,...,2m}. Consider any cycle (y;...yx) of a different from
(x1...%m). Since im(f) C {z1,...,2m}, y1f = x; for some i. We may assume that y; f = 1.
Define an idempotent e exactly as in (2.4). Then im(e) Nim(f) = 0, (y1,2z1) € im(e) x im(f),
and (y1,21) € ker(e) Nker(f). Thus, by Lemma 2.4, there is an idempotent g € T(X) — {idx }
such that e — g — f. Hence a — e — g — f, and so d(a, f) < 3.

Case 3. a is an n-cycle.

Since n is composite, there is a divisor k of n such that 1 < k& < n. Then o # idx is
a permutation with & > 2 cycles, each of length m = n/k. By Case 2, d(a*, f) < 3, and so
d(a, f) < 4. O

Lemma 2.19. Let n > 4 be composite. Let a,b € T(X) such that a,b # idx and a € Sym(X).
Then d(a,b) < 5.

Proof. Suppose b ¢ Sym(X). Then b* is an idempotent different from idy for some k& > 1. By
Lemma 2.18, d(a, b*) < 4, and so d(a,b) < 5.

Suppose b € Sym(X). Suppose n — 1 is not prime. Then, by [9, Theorem 3.1], there is a path
from a to b in G(Sym(X)) of length at most 5. Such a path is also a path in G(T'(X)), and so
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d(a,b) < 5. Suppose p =n —1 is prime. Then the proof of [9, Theorem 3.1] still works for a and
b unless a” = idx or b* = idx. (See also [9, Lemma 3.3] and its proof.) Thus, if a” # idx and
bP # idx, then there is a path from a to b in G(Sym(X)) of length at most 5, and so d(a,b) < 5.
Suppose a? = idx or b = idx. We may assume that b = idx. Then b is a cycle of length
p, that is, b = (x1...2p)(z). Thus b commutes with the constant idempotent f = (X,z). By
Lemma 2.18, d(a, f) < 4, and so d(a,b) < 5. O

Lemma 2.20. Let X = {x1,...,Zm, Y1, Yk}, a € Sym(X), and b= (y1...yp 1) (1 ... Tm)-
If ab = ba then a = idx.

Proof. Suppose ab = ba. By Lemma 2.9,
b b b b b b b b
T10 — ToG — -+ — Typa — 16 and  y1a — Yol — -+ - — YA — T1d. (2.5)
Since (z1 2 ... T,,) is a unique cycle in b, (2.5) implies that

T1a4 = Tg, T2@ = Tgii,. .., Tm@ = Tqrm—1, (2.6)

where ¢ € {1,...,m} (2g4i = Tgti—m if ¢ +¢ > m). Thus z;a = x; for some j. Since y; b, 1
and z,, —b> r1, we have yia —b> zi0 = x; and T,a i> z16 = xj. Suppose j > 2. Then
z;b~! = {z;_1}, and so yya = zj_1 = x,a. But this implies y; = z,, (since a is injective),
which is a contradiction. Hence j = 1, and so x1a = x1. But then z;a = z; for all i by (2.6).

Since yia LN r1a = 21, we have yra = yi since 110! = {yp, 2 }. Let i € {1,...,k — 1} and

. b _
suppose y;11a = y;+1. Then y;a = y; since y;a — y;y1a = yir1 and y; 110~ = {y;11}. It follows
that y;a = y; for alli € {1,...,k}. O
Lemma 2.21. Let m be a positive integer such that 2m < n, o be an m-cycle on {1,...,m},

a € Sym(X), and
e= (A1, 21)(A2,22) ... (A, Tm) and f = (B1,y1)(B2,y2) - - (Bm, Ym)

be idempotents in T(X) such that x1,...,Zm,Y1,---,Ym are pairwise distinct, y; € A;, and
Zie € B; (1 <i<m). Then:

(1) Suppose X = {x1,...,Tm,Y1,.--,Ym,2} and z € A; N B; such that A; N B; = {z}. If
e—a—f, thena=idx.

(2) Suppose X = {x1,....Tm Y1, Ym, 2, W}, 2 € A; N Bj such that A; N B; = {z}, and
w € Ag N By such that Ag N By = {w}, where s #i andt # j. Ife—a — f, then a =idx.

Proof. To prove (1), suppose e —a — f and note that A; = {x;,v;, 2} and B; = {y;,zj,, 2}. By
Lemma 2.2, there is p € {1,...,m} such that z;a = =, and A;a C A,. Suppose p # i. Then
A, = {zp,yp}, and so A;a cannot be a subset of A, since a is injective. It follows that p = i,
that is, z;a = z; and A;a C A;. Similarly, y;a = y; and Bja C B;. Thus za € 4, N B; = {z},
and so za = z. Hence, since a is injective, y;a = ;.

We have proved that z;a = z;, y;a = y;, and za = z. We have B; = {y;, 25} or B; =
{Yi, %io, 2} Since y;a = y;, we have B;a C B; by Lemma 2.2. Since za = z and a is injective, it
follows that x;,a = x;,. By the foregoing argument applied to A;, = {Zis, ¥ic }, We obtain y;,a =

Yio- Continuing this way, we obtain x;,xa = x;,x and y;,ra = Yo+ for every k € {1,...,m — 1}.
Since o is an m-cycle, it follows that z;a = z; and y;9 = y; for every j € {1,...,m}. Hence
a = idx. We have proved (1). The proof of (2) is similar. O

Theorem 2.22. Let X be a finite set with n > 2 elements. Then:

(1) If n is prime, then G(T(X)) is not connected.
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(2) If n =4, then the diameter of G(T'(X)) is 4.
(3) If n > 6 is composite, then the diameter of G(T(X)) is 5.

Proof. Suppose n = p is prime. Consider a p-cycle a = (1 z2...2,) and let b € T'(X) be such
that b # idx and ab = ba. Let x4 = x1b. Then, by Lemma 2.9, 2;b = x4y, forevery i € {1,...,p}
(where 2q4; = Zgyi—m if ¢+ >m). Thus b = a?, and so, since p is prime, b is also a p-cycle. It
follows that if ¢ is a vertex of G(T'(X)) that is not a p-cycle, then there is no path in G(T(X))
from a to ¢. Hence G(T'(X)) is not connected. We have proved (1).

We checked the case n = 4 directly using GRAPE [16] through GAP [8]. We found that,
when | X| = 4, the diameter of G(T'(X)) is 4.

Suppose n > 6 is composite. Let a,b € T(X) such that a,b # idx. If a € Sym(X) or
b € Sym(X), then d(a,b) < 5 by Lemma 2.19. If a,b ¢ Sym(X), then a,b € J,_1, and so
d(a,b) < 5 by Theorem 2.17. Hence the diameter of G(T'(X)) is at most 5. It remains to find
a,b € T(X) — {idx} such that d(a,b) > 5.

For n € {6,8}, we employed GAP [8]. When n = 6, we found that the distance between

the 6-cycle @ = (123456) and b = (1 2345 6) in G(T'(X)) is at least 5. And when

2 35 1 2 4
12345678)

n = 8, the distance between the 8-cycle a = (12345678) and b = (2 31148 6 5

in G(T(X)) is at least 5.
To verify this with GAP, we used the following sequence of arguments and computer calcu-
lations:

1. By Lemma 2.1, if there exists a path a — ¢y —co — ... — ¢ — b, then there exists a path
a—e; —es —...— e — b, where each e; is either an idempotent or a permutation;

2. Let E be the set idempotents of T'(X)—{idx } and let G = Sym(X)—{idx}. For A C T'(X),
let C(A)={f € EUG: (Juea)af = fa};

3. Calculate C(C'({a})) and C({b});
4. Verify that for all ¢ € C(C({a})) and all d € C({b}), cd # dc;

5. If there were a path a — ¢; — ¢co — ¢3 — b from a to b, then we would have ¢ € C(C({a})),
cs € C({b}), and cac3 = c3ca. But, by 4., there are no such ¢y and ¢z, and it follows that
the distance between a and b is at least 5.

Let n > 9 be composite. We consider two cases.
Case 1. n=2m + 1 is odd (m > 4).
Let X ={a1,...,Zm, Y1, -, Ym, 2} Consider

a=(zyi1y2. . YmT1)(T12T2... Tp) and b= (2223 .. T T12Y2)(Y1Y2 - - Ym)-

Let A be a minimal path in G(T(X)) from a to b. By Lemma 2.20, there is no g € Sym(X) such
that g # idx and ag = ga or bg = gb. Thus, by the proof of Lemma 2.1, A\ =a—e; —---—e — b,
where e; and ey are idempotents. By Lemma 2.12,

e1 = (A1, 21) (A, 22) ... (A, ) and ex = (B1,y1)(B2,Y2) - - - (Bm, Ym),

where y; € A, (1 < i <m), ;41 € B; (1 <i < m), 1 € By, A = {Zm,Ym, 2}, and
By = {y1,22,2}. Since m >4, A, N By = {z}. Thus, by Lemma 2.21, there is no g € Sym(X)
such that g # idy and e; — g — ea. Hence, if ) contains an element g € Sym(X), then the length
of X is at least 5. Suppose A does not contain any permutations. Then A is a path in J,_4
and we may assume that all vertices in A except a and b are idempotents (by Lemma 2.12). By
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Lemma 2.6, there is no idempotent f € J,_; such that e; — f — eg. (Here, the m-cycle that
occurs in Lemmas 2.6 and 2.21 is 0 = (12...m).) Hence the length of X is at least 5.

Case 2. n =2m + 2 is even (m > 4).

Let X ={x1,...,Tm,Y1,---,Ym, 2, w}. Consider

a = (Zylyg... ymwa?2>(:c1z2... :cm) and b: (wchxg... I’m_QZL'ml’l’Im_ly2>(y1y2... ym)

Let A be a minimal path in G(T(X)) from a to b. By Lemma 2.20, there is no g € Sym(X) such
that g # idx and ag = ga or bg = gb. Thus, by the proof of Lemma 2.1, \=a—e; —---—ep — b,
where e; and e are idempotents. By Lemma 2.12,

e1 = (A1, 21)(Az, z2) ... (A, @) and ey = (B, y1)(B2,y2) - - - (Bmy Um)s

where Yi € Az (1 < { < m)a Tit1 € Bz (1 < 1 <m— 3)a Tm € Bm,—27 Ty € Bm,—h Tm—1 € Bmv
Al = {1’1,2/1,’(1)}, Am = {xmvymaz}, Bl = {yth,Z}v and B’m = {ymaxmflaw}' Since m > 47
AN By ={z} and A; N B, = {w}. Thus, by Lemma 2.21, there is no g € Sym(X) such that
g # idx and e; — g — ea. Hence, as in Case 1, the length of A is at least 5. (Here, the m-cycle
that occurs in Lemmas 2.6 and 2.21 is 0 = (1,2...,m —3,m — 2, m,m — 1).)

Hence, if n > 6 is composite, then the diameter of G(T'(X)) is 5. This concludes the proof. O

3 Minimal Left Paths

In this section, we prove that for every integer n > 4, there is a band S with knit degree n. We
will show how to construct such an S as a subsemigroup of 7'(X) for some finite set X.

Let S be a finite non-commutative semigroup. Recall that a path a1 —ag — -+ — a,, in G(5)
is called a left path (or l-path) if a; # a,, and a1a; = ama; for every ¢ € {1,...,m}. If there is
any [-path in G(S), we define the knit degree of S, denoted kd(S), to be the length of a shortest
l-path in G(S). We say that an [-path A from a to b in G(S) is a minimal l-path if there is no
l[-path from a to b that is shorter than .

3.1 The Even Case

In this subsection, we will construct a band of knit degree n where n > 4 is even. The following
lemma is obvious.

Lemma 3.1. Let ¢y, ¢y, e € T(X) such that e is an idempotent. Then:
(1) cye = ecy if and only if x € im(e).
(2) cze = cye if and only if (x,y) € ker(e).

Now, given an even n > 4, we will construct a band S such that kd(S) = n. We will explain
the construction using n = 8 as an example. The band S will be a subsemigroups of T'(X), where

X = {y07y17y27y3ay4 - 1)0,1)1,’1}2,'U3,U4,ZL’1,{E2,(E3,$4,U1,U2,U3,U4,T,S},

and it will be generated by idempotent transformations ai,as, as, a4, by, b, b3, by, €1, whose im-
ages of the generators are defined by Table 1.

We will define the kernels in such a way that the generators with the same index will have the
same kernel. For example, ker(a;) = ker(b;) = ker(ey) and ker(ag) = ker(bs). Let i € {2,3,4}.
The kernel of a; will have the following three classes:

Class-1 = im(a;+1) U...Uim(ag) Uim(by) U ... Uim(b;—1),
Class-2 = im(b;41) U...Uim(by) Uim(er) Uim(aq) U... Uim(a;—1),
Class-3 = {x;, u; }.
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Yo 1 Y1
Yyr T2 Y2
Y2 T3z Y3
Ys Ta Y4
Yg U U1
U1 U2 U2
V2 Uz Uz
U3 Ug V4
Vg T s

[y
~— || — || N | —

Table 1: Images of the generators.

For example, ker(ag) has the following classes:

Class-1 = {y2, 3,3, T4, Ya, U1, 1},
Class-2 = {U27UB,U37U4>U477'757y07$1791}a
Class-3 = {x2,uz}.

We define the kernel of a; as follows:

Class-1 = im(as) Uim(as) Uim(aq) U {s} = {y1, 22, y2, T3, Y3, T4, Y4, S},
Class-2 = im(by) Uim(b3) Uim(bs) U {yo} = {v1, u2, v, us, v3, ug, va, Yo

Class-3 = {x1,u1,7}.

Now the generators are completely defined since ker(b;) = ker(a;), 1 < i < 4, and ker(e;) =
ker(ay). Order the generators as follows:

a1, a2, as, a4, by, ba, b3, by, €. (3.1)

Let S be the semigroup generated by the idempotents listed in (3.1). Since the idempotents with
the same index have the same kernel, they form a right-zero subsemigroup of S. For example,
{a1,b1,e1} is a right-zero semigroup: aja; = bja; = eja1 = az, arby = biby = e1by = by, and
are; = bie; = eje; = e;. The product of any two generators with different indices is a constant
transformation. For example, asas = cy,, aaa2 = cy,, and a1bs = c¢,,. The semigroup S consists
of the nine generators listed in (3.1) and 10 constants:

S = {a17a27a37a47 blbea b3a b4a €1, Cygs Cyy 5 Cyss Cyz s Cyys Cuyy Cugy Cugy Cuys Cs}a

so S is a band. Note that Z(S) = 0. Each idempotent in (3.1) commutes with the next
idempotent, so a; — as — a3 — ag — by — ba — bg — by — €7 is a path in G(S). Moreover, it is a
unique [-path in G(S), so kd(S) = 8.

We will now provide a general construction of a band S such that kd(S) = n, where n is even.

Definition 3.2. Let £ > 2 be an integer. Let
X = {yanlvu'ayk :UO7U17"'7Uk7x17'"axkaulv"'7ukaras}'

We will define idempotents aq,...,ag,b1,..., bk, e as follows. For i € {1,...,k}, let

il’l’l(ai) = {yiflwxi?yi}a
im(b;) = {vi—1,ui,vi},

im(ey) = {vk,r, s}

14



For ¢ € {2,...,k}, define the ker(a;)-classes by:

Class-1 = im(ai_H) U...U 1m(ak) U 1m(b1) U...u im(bi_1>,
Class-2 = im(bj+1) U ... Uim(bg) Uim(e;) Uim(ar) U ... Uim(a;—1),
Class-3 = {x;, u; }.

(Note that for i = k, Class-1 = im(b) U ... Uim(bx—1) and Class-2 = im(ey) Uim(a;) U... U
im(ai_l).)
Define the ker(aq)-classes by:

Class-1 = im(az) U ... Uim(ay) U {s},
Class-2 = im(be) U ... Uim(bg) U {yo},
Class-3 = {x1, u1,7}.

Let ker(b;) = ker(a;) for every ¢ € {1,...,k}, and ker(e;) = ker(a;1). Now, define the subsemi-
group S¥ of T(X) by:

S(’f = the semigroup generated by {ay,...,ar,b1,...,bg,e1}. (3.2)

We must argue that the idempotents aq,...,ax,b1,...,bs,e1 are well defined, that is, for
each of them, different elements of the image lie in different kernel classes. Consider a;, where
i € {2,...,k}. Then im(a;) = {yi—1,i,y;}. Then y; lies in Class-1 (see Definition 3.2) since
y; € im(a;41) (or y; € im(by) if i = k), y;—1 lies in Class-2 since y;_1 € im(a;_1), and z; lies in
Class-3. Arguments for the remaining idempotents are similar.

For the remainder of this subsection, S§ will be the semigroup (3.2). Our objective is to prove
that S§ is a band such that m =ay —---—ar — by —--- — by, — e1 is a shortest [-path in S{f. Since
7 has length 2k = n, it will follow that S¥ is a band with knit degree n.

We first analyze products of the generators of SE.

Lemma 3.3. Let 1 <i < j < k. Then:

1

a;b; = b;, bja; = a;, arer = biey = ey, e1a1 = bia; = ay, and e1by = a1by = by.

2

a;a; = cy;_, and aja; = cy,.

3) aibj = ¢y, and ajb; = cy,_, .

5 bzb] = C/Uj71 and b]bl = Cy; -

6

e1a; = cy,_, and aje; = cs.

(1)
(2)
(3)
(4) biaj = ¢y, and bja; = ¢y, .
(5)
(6)
(7)

erb; = Cy; and bje; = ¢y, .

Proof. Statement (1) is true because the generators of S& are idempotents and the ones with the
same index have the same kernel. By Definition 3.2, Class-2 of ker(a;) contains both im(a;_1) =
{yj—2,zj—1,yj—1} and im(a;) (since ¢ < j). Since y;_1 € im(a;) = {y;-1,2;,y;}, a; maps all
elements of Class-2 to y;_1. Hence a;a; = ¢y, ,. Similarly, since i < j, Class-1 of ker(a;)
contains both im(a;4+1) = {¥i, Ti+1, ¥i+1} and im(a;). Since y; € im(a;) = {yi—1, i, ¥}, a; maps
all elements of Class-1 to y;. Hence aja; = ¢,,. We have proved (2). Proofs of (3)-(7) are
similar. For example, bje; = ¢,, because Class-2 of ker(e;) = ker(a1) contains both im(b;) and
im(bg) = {vk—1, uk, vk}, and v € im(eq). O

The following corollaries are immediate consequences of Lemma 3.3.
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Corollary 3.4. The semigroup Sk is a band. It consists of 2k +1 generators from Definition 3.2
and 2k + 2 constant transformations:

S={ai,...,ar,b1,..., bk, €1,Cy, Cyryre vy Cypy Cors ey Cops Cs
Corollary 3.5. Let g,h € S§ be generators from the list
a1y, 0k, 01,...,05, €1. (3.3)
Then gh = hg if and only if g and h are consecutive elements in the list.

Lemma 3.3 gives a partial multiplication table for S§. The following lemma completes the
table.

Lemma 3.6. Let 1 <p<kandl<i<j<k. Then:

(1) Cy,Ap = Cy,» Cypbp = Cupqs Cy; @ = Cy;_q5 Cy; Qi = Cyys Cyibj = Cy;; Cyjbi = Cy;_1; Cy,€1 = Cs,
Cyolp = Cy,_1, Cyobp = Cy,, and cyper = cy,.

(2) coap = ¢y, 1, Coybp = Cu,, Co@; = Cy;,y Co0; = Cy,_y, Cubj = Co_y, Coibi =y, and

J J
Cy,€1 = Cy, -

(3) csaj =cy,_,, csbj = ¢y, Csa1 = ¢y, Csby = ¢y, and cseq = cs.

Proof. We have ¢, a, = c,, since y, € im(a,). By Definition 3.2, Class-1 of ker(b,) contains
both im(ap+1) and im(b,—1). Since y, € im(ap41) and vp—1 € im(bp—1), both y, and v,_; are
in Class-1. Hence y,b, = v,_1b, = v,_1, where the last equality is true because v,_1 € im(by).
Thus ¢, b, = ¢y, ,. By Definition 3.2, y, and s belong to Class-1 of ker(e;), and s € im(e1). It
follows that c, e = c;. Again by Definition 3.2, yo and y,_1 belong to Class-2 of ker(a,), and
Yp—1 € im(a,). Hence cyya, = cy,_,. Similarly, cy,b, = c,, and ¢, e1 = ¢,,. By Lemma 3.3,

(Cyl i)aj = Cy; (aiaj) = Cy; Cy;_1 = Cy;_1;
y; i = ( Cy; j)ai = Cy; (ajai) = Cy;Cy; = Cyy»
Cy ( Z)bJ = cyi (a‘lb]) = Cyz'CUj = C’Uj7
= (cy,

j)bi = Cy; (a’jbi) = Cy;Cviq = Cujq-

[

CZUJ

We have proved (1). Proofs of (2) and (3) are similar. O

Table 2 presents the Cayley table for S3.

a;  as b1 by €1 Cy, Cyi Cy, Cy Cyy Cs
ap | a1 ¢y br cu, €1 Cyy Cy Cyy  Cup Cuy  Cs
az | ¢y, az ¢y, by Cs ¢y Gy Gy, Cup Gy Cs
bi | a1 ¢y, b1 ¢y, e ¢y €y Cy, Cy  Cy, Cs
a2  Cy, by cy, Gy Cy  Cyy  Cup Cuy  Cs
er | a1 ¢y, b1 cw, €1 Gy, Cy  Cys Cup  Cuy  Cs

Cyi | €y Cyr Cya Cuy  Cs  Cyp Cyp Cyp  Coy Cop  Cs
Cys Cy, Cys Cys Cuy Cs Cyo Cyy Cys Cuy Cuy Cs
1| G Cy2 Cur Cur Cup Cyg Cyr Cyy Cup Cup G
Cuy Cyo Cy, Coy Cuy Cuy Cyo Cy, Cyy Cuy Cuy Cs

Cs | Cyy Cyr Cyy Cuy  Cs  Cyy Cyp  Cyy,  Cyp Cyy  Cs

Table 2: Cayley table for S3.
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Lemma 3.7. Let g, h,c, € S5 such that c. is a constant and g—c, — h is a path in G(S¥). Then
gh = hg.

Proof. Note that g, h are not constants since different constants do not commute. Thus g and
h are generators from list (3.3). We may assume that g is to the left of h in the list. Since
¢, commutes with both g and h, z € im(g) Nim(h) by Lemma 3.1. Suppose g = a;, where
1<i<k—1. Then h = a;y; since a;41 is the only generator to the right of a; whose image is
not disjoint from im(a;). Similarly, if g = a then h =by;if g =b; (1 <i < k—1) then h = b;1;
and if g = by then h = e;. Hence gh = hg by Corollary 3.5. O

Lemma 3.8. The paths
(i) m=cyy—a1—--—ap—by — - — by — ¢y,
(i) m=cy, —a2—-—ar—b1—---— by —e1 —cs
are the only minimal l-paths in G(S¥) with constants as the endpoints.

Proof. We have that 7 and 75 are [-paths by Lemmas 3.3 and 3.6. Suppose that A = ¢, —
.-+ — ¢, is a minimal l-path in G(S§) with constants c, and ¢, as the endpoints. Recall
that z,w € {yo,y1,---,Yk,V1,---,Vk, S} We may assume that z is to the left of w in the list
YOs YLy -« Yk, V1« - -, Uk, S. Since A is minimal, Lemma 3.7 implies that A does not contain any
constants except ¢, and c¢,,. There are five cases to consider.

(a) A=rc¢y, — - —¢y,;, where 0 <i < j <k

(b) A=cy, =+ —cy;, where 0 <i <k, 1 <j <k

(¢c) A=¢y, —--— s, where 0 <i < k.

(d) A=cy, == —cy;, where 1 <i < j < k.

() A=cy, — - —cs, where 1 <i < k.

Suppose (a) holds, that is, A = ¢,, —--- —h —¢,,, 0 <i < j < k. Since hc,, = ¢, h, either

h =ajor h =aj41 (where ag41 =by) (since aj and a;41 are the only generators that have y; in
their image). Suppose h = a;1. Then, by Corollary 3.5, either A = ¢,, — - —a; — a1 — ¢y,
or A =¢y, — -+ —ajp2 — ajr1 — ¢y, (Where ajio =by if j =k —1,and aj10 = bp if j = k). In

the latter case,

)\:Cyi —~-~—a1—el—bk—~-~—bl—ak—-~-—aj+2—aj+1—cyj,
which is a contradiction since a; and e; do not commute. Thus either A = ¢,, —--- —a; — ¢,
or A= ¢y, — -+ —a; —aji1 — ¢y,. In either case, A contains a;, and so cy,a; = cy,a; (since A

is an [-path). But, by Lemma 3.6, ¢,,a; = ¢,, , and ¢,,a; = c,,. Hence ¢, , = ¢,,, which is a
contradiction.

Suppose (b) holds, that is, \ =c¢,, —g—--—h—¢,;, 0<i<kand 1< j <k Thengis
either a; or a;41 (9 = a;41 if ¢ = 0) and h is either b; or b; 41 (where byy1 = e1). In any case,
A=c¢y, —g—-++—ax—by—---—h—c,. Suppose i > 1. Then, by Lemma 3.6 and the fact

that A is an l-path, ¢,, = ¢,,b1 = ¢,;b1 = ¢,,, which is a contradiction. If ¢ = 0 and j < k, then
Cyp_y = CyoQk = Cy,af = Cy,, Which is again a contradiction. If i = 0 and j = k, then g = ay,
and so A = 1.

Suppose (c) holds, that is, A\=¢,, —g— - —ar —b1 — - — by —e1 — ¢, 0 < i < k, where
g is either a; or a;41 (9 = aj41 if i = 0). If ¢ > 1, then ¢,, , = ¢, b; = ¢csb; = ¢,,, which is a
contradiction. If ¢ = 0, then ¢,, = cy,e1 = cse1 = cs, which is a contradiction. If i = 1 and
g = a1, then X is not minimal since ¢, — a2, so a; can be removed. Finally, if i =1 and g = a,
then \ = T2.
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Suppose (d) holds, that is, A = ¢,, —g —---—h —¢,;, 1 <i < j <k, where g is either
b, or b;11 and h is either b; or bj41 (where by11 = e1). In any case, A contains b;, and so
Co;_y = Cy;bj = ¢y;b; = ¢y, which is a contradiction.

Suppose (e) holds, that is, A =¢,, — -+ —e1 —¢s, 1 <i < k. Then ¢,, = ¢,,e1 = cs€1 = s,
which is a contradiction.

We have exhausted all possibilities and obtained that A must be equal to 7, or 7. The result
follows. O

Lemma 3.9. The pathm = a; — -+ —ay —by — - — by, — ey is a unique minimal l-path in G(SE)
with at least one endpoint that is not a constant.

Proof. We have that 7 is an [-path by Lemmas 3.3 and 3.6. Suppose that A=e¢—---— fisa
minimal /-path in G(S%) such that e or f is not a constant.

We claim that A does not contain any constant c,. By Lemma 3.7, there is no constant c,
such that \=e —---—¢, — -+ — f (since otherwise A\ would not be minimal). We may assume
that f is not a constant. But then e is not a constant either since otherwise we would have that
ef is a constant and ff = f is not a constant. But this is impossible since A is an [-path, and so
ef = ff. The claim has been proved.

Thus all elements in A are generators from list (3.3). We may assume that e is to the left of
f (according to the ordering in (3.3)). Since A is an [-path, e = ee = fe. Hence, by Lemma 3.3,

e=apand f =b, (forsome pe{l,...,k})ore=0b; and f =e; or e =ay and f =e;.
Suppose that e = a, and f = b, for some p. Then, by Corollary 3.5, A =a, —--- —ap — b1 —
-+ —b,. (Note that A\ =ap —ap—1 —---—ai; —e; — by —--- — b, is impossible since a1e1 # e1a1.)

If p > 1 then, by Lemma 3.3, ¢,, = apb1 = b,b; = c,,, which is a contradiction. If p = 1, then
Cyn_, = a1ap = biby = ¢y, , which is again a contradiction.

Suppose that e =b; and f =e;. Then A =b;—---—by—e;, and so ¢y, _, = b1by = e1by = ¢y,
which is a contradiction.

Hence we must have e = a; and f = e;. But then, by Corollary 3.5, A=a; —--- —ax — by —
<o+ — by —e; = w. The result follows. O

Theorem 3.10. For every even integer n > 2, there is a band S with knit degree n.

Proof. Let n = 2. Consider the band S = {a,b, ¢, d} defined by the following Cayley table:

QL O T

QU o Q|
QL TS
L O T OO0
QU QA S QAU

It is easy to see that the center of S is empty and a — b — ¢ is a shortest I-path in G(S). Thus
kd(S) = 2.

Let n = 2k where k > 2. Consider the semigroup S§ defined by (3.2). Then, by Corollary 3.4,
S’(’)C is a band. The paths 7y, 79, and 7 from Lemmas 3.8 and 3.9 are the only minimal [-paths
in G(SF). Since 7, has length 2k + 1 = n + 1, 7 has length 2k + 2 = n + 2, and 7 has length
2k = n, it follows that kd(S%) = n. O

3.2 The Odd Case

Suppose n = 2k + 1 > 5 is odd. We will obtain a band S of knit degree n by slightly modifying
the construction of the band S§ from Definition 3.2. Recall that S§ has knit degree 2k (see the
proof of Theorem 3.10). We will obtain a band of knit degree n = 2k + 1 by simply removing
transformations e; and ¢, from S(])“.
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Definition 3.11. Let k£ > 2 be an integer. Consider the following subset of the semigroup S
from Definition 3.2:

St =85y —{er,es} ={at, ..., b1y Dky Cyoy Cyrs e e oy Cyps Corsy -+ Coy }- (3.4)
By Lemmas 3.3 and 3.6, S} is a subsemigroup of SJ.

Remark 3.12. Note that r and s, which still occur in the domain (but not the image) of each
element of S¥, are now superflious. We can remove them from the domain of each element of
S} and view S} as a semigroup of transformations on the set

X:{y07y17"'ayk :U07’l)1,...7’l)k7.'171,...,wk,Uh...,U]c}.

It is clear from the definition of S that the multiplication table for ST is the multiplication
table for S§ (see Lemmas 3.3 and 3.6) with the rows and columns e; and cg removed. This new
multiplication table is given by Lemmas 3.3 and 3.6 if we ignore the multiplications involving e;
or cs. Therefore, the following lemma follows immediately from Corollary 3.4 and Lemmas 3.8
and 3.9.

Lemma 3.13. Let S¥ be the semigroups defined by (3.4). Then S¥ is a band and T = ¢y — a1 —

oo —ap — by — - — b — ¢y, is the only minimal I-path in G(ST).

Theorem 3.14. For every odd integer n > 5, there is a band S of knit degree n.

Proof. Let n = 2k + 1 where k > 2. Consider the semigroup S¥ defined by (3.4). Then, by
Lemma 3.13, Sf isaband and 7 = ¢y, —a; — -+ —ar — by — -+ — by, — ¢y, is the only minimal
l-path in G(S¥). Since 7 has length 2k + 1 = n, it follows that kd(S¥) = n. O

The case n = 3 remains unresolved.

Open Question. Is there a semigroup of knit degree 37

4 Commuting Graphs with Arbitrary Diameters

In Section 2, we showed that, except for some special cases, the commuting graph of any ideal
of the semigroup 7'(X) has diameter 5. In this section, we use the constructions of Section 3 to
show that there are semigroups whose commuting graphs have any prescribed diameter. We note
that the situation is (might be) quite different in group theory: it has been conjectured that there
is an upper bound for the diameters of the connected commuting graphs of finite non-abelian
groups [9, Conjecture 2.2].

Theorem 4.1. For every n > 2, there is a semigroup S such that the diameter of G(S) is n.

Proof. Let n € {2,3,4}. The commuting graph of the band S defined by the Cayley table in the
proof of Theorem 3.10 is the cycle a — b — ¢ — d — a. Thus the diameter of G(S) is 2. Consider
the semigroup S defined by the following table:

Ao T

o0 Y M
Ao T T
o 0 o oo
o o0 o o

Note that Z(S) = () and G(5) is the chain a — b — ¢ — d. Thus the diameter of G(S) is 3. The
diameter of G(Jy4) is 4 (where J4 is an ideal of T(X) with | X| = 5).
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Let n > 5. Suppose n is even. Then n = 2k + 2 for some k£ > 2. Consider the band
S§ from Definition 3.2. Since ¢y, and a; are the only elements of S§ whose image contains
Yo, they are the only elements of S§ commuting with ¢y, (see Lemma 3.1). Similarly, e; and
cs are the only elements commuting with cs. Therefore, it follows from Corollary 3.5 that
Cyo — @1 —++—aj —by — -+ — b —e1 — ¢, is a shortest path in G(S§) from ¢, to c,, that is, the
distance between ¢y, and c¢s is 2k +2 =n. Since ay — -+ —ap — by —--- — by — e; is a path in
G(Sk), Cy; @i = Q;Cy, and ¢, b; = bicy, (1 < i < k), it follows that the distance between any two
vertices of G(SE) is at most 2k + 2. Hence the diameter of G(SE) is n.

Suppose n is odd. Then n = 2k+1 for some k > 2. Consider the band S¥ from Definition 3.11.
Then ¢y, —ag — -+ —ag — by — - — b, — ¢y, is a shortest path in G(ST) from ¢y, to c,,, that is,
the distance between c,, and ¢,, is 2k+1 = n. As for S¥, we have c,,a; = a;c,, and ¢, b; = b;cy,
(1 < i < k). Thus the distance between any two vertices of S¥ is at most 2k + 1, and so the
diameter of G(S¥) is n. O

5 Schein’s Conjecture

The results obtained in Section 3 enable us to settle a conjecture formulated by B.M. Schein in
1978 [14, p. 12]. Schein stated his conjecture in the context of the attempts to characterize the
r-semisimple bands.

A right congruence 7 on a semigroup S is said to be modular if there exists an element e € S
such that (ex)rx for all z € S. The radical R, on a band S is the intersection of all maximal
modular right congruences on S [11]. A band S is called r-semisimple if its radical R, is the
identity relation on S.

In 1969, B.D. Arendt announced a characterization of r-semisimple bands [3, Theorem 18].
In 1978, B.M Schein pointed out that Arendt’s characterization is incorrect and proved [14, p. 2]
that a band S is r-semisimple if and only if it satisfies infinitely many quasi-identities: (1) and
(A,) for all integers n > 1, where

(1) zx=zy=zy=yx,
(4,) x1T9 = Tow1 ATag = T3T2 A ... ATy 1Ty = TpTp_1 A\

ANT1T1 = TpT1 NT1T2 = TpXTa N ... NT1Ty = TpTy = T1 = Tp.

Schein observed that (A;) and (As) are true in every band, that (As) easily follows from (1),
and that Arendt’s characterization of r-semisimple bands is equivalent to (1). He used the last
observation to show that Arendt’s characterization is incorrect by providing an example of a band
T for which (1) holds but (A4) does not. We note that Schein’s example is incorrect since the
Cayley table in [14, p. 10], which is supposed to define T, does not define a semigroup because
the operation is not associative: (4% 1)1 =10 # 8 = 4% (1x1). However, Schein was right that
it is not true that condition (1) implies (A,,) for all n. The semigroup S3 (see Table 2) satisfies
(1) but it does not satisfy (As) since a; — ag — by — by — €1 is an l-path (so the premise of (As)
holds) but a; # e;.
At the end of the paper, Schein formulates his conjecture [14, p. 12]:

Schein’s Conjecture. For every n > 1, (4,) does not imply (A,4+1).

The reason that Section 3 enables us to settle Schein’s conjecture is the following lemma.

Lemma 5.1. Let n > 1 and let S be a band with no central elements. Then S satisfies (Ay) if
and only if G(S) has no l-path of length < n.

Proof. First note that (A,,) can be expressed as: for all z1,...,z, € S,

x1— - —xp and z1x; = Tpxy (1 <i<n) =z =), (5.1)
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(Here, we allow 2 — z and do not require that x1,...,x, be distinct.)

Assume S satisfies (A4, ). Suppose to the contrary that G(S) has an l-path A =x; —--- —
of length < n, that is, kK < n. Then x1 — -+ — ) — Tp41 — - -+ — Tp, Where x; = xy, for every
ie{k+1,...,n}, and so 1 = x, = x by (5.1). This is a contradiction since A is a path.

Conversely, suppose that G(S) has no l-path of length < n. Let 21 —- -+ —x,, and z12; = 2,25
(1 <i < n). Suppose to the contrary that xy # x,. If there are i and j such that 1 < i< j<n
and z; = x;, wecanreplace x1 — -+ —x; — - —T; — - —Tp With 1 — - =2y —2j411 — - — 2.
Therefore, we can assume that x1,...,z, are pairwise distinct. Recall that S has no central
elements, so all x; are vertices in G(S). Thus z; — - -+ — &, is an I-path in G(S) of length n — 1,
which is a contradiction. O

First, Schein’s conjecture is false for n = 3.
Proposition 5.2. (43) = (A4).
Proof. Suppose a band S satisfies (As), that is,

T1To = Tox1 A\ Taks = T3To A X121 = T3T1 A T1T9 = T3xo A T123 = T3x3 = 1 = 3.  (5.2)
To prove that S satisfies (A4), suppose that

Y1y2 = YoY1 AY2Y3 = Y3Y2 N YsYa = YayYs AY1y1 = Ya¥1 NY1Y2 = YaY2 NY1Y3 = Yay3 AN Y1Ya = YalYa.
Take z1 = y1, 2 = Yyays, and x3 = y4. Then z1, z9, x5 satisfy the premise of (5.2):
T1T2 = Y1Y2Y3 = Y1Y3Y2 = YaYsY2 = Ys3Y4Y2 = Ys¥Yi1y2 = YsYy2Yy1 = Y2Y3yir = 1221,

T3 = Y2Y3lYa = Y2YaY3 = Y2Y1Y3 = Y1Y2Ys = YaY2y3 = T3T2,
T1T1 = Y1Y1 = YalY1 = T3T1, T1T2 = Y1Y2Y3 = YaY2Ys = T3T2, T1T3 = Y1Y4 = Y4Y4 = T3T3.

Thus, by (5.2), y1 = 21 = &3 = ya4, and so (A4) holds. O
Second, Schein’s conjecture is true for n # 3.
Proposition 5.3. Ifn > 1 and n # 3, then (A,) does not imply (Any1).

Proof. Consider the band S = {e, f,0}, where 0 is the zero, ef = f, and fe =e. Then e —0— f,
ee = fe, e0 = f0, ef = ff, and e # f. Thus S does not satisfy (A3). But S satisfies (As) since
(A2) is true in every band. Hence (A3) does not imply (As).

Let n > 4. Then, by Theorems 3.10 and 3.14 and their proofs, the band S constructed in
Definition 3.2 (if n is even) or Definition 3.11 (if n is odd) has knit degree n. By Lemmas 3.3
and 3.6, S has no central elements. Since kd(S) = n, there is an I-path in G(S) of length n and
there is no I-path in G(S) of length < n. Hence, by Lemma 5.1, S satisfies (4,,) and S does not
satisfy (An41). Thus (A,) does not imply (A,41)- O

6 Problems

We finish this paper with a list of some problems concerning commuting graphs of semigroups.
(1) Is there a semigroup with knit degree 37 Our guess is that such a semigroup does not exist.

(2) Classify the semigroups whose commuting graph is eulerian (proposed by M. Volkov). The
same problem for hamiltonian and planar graphs.

(3) With the exception of the complete graph, is it true that for all finite connected graphs I,
there is a semigroup S such that G(S) = T'?
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(8)

Is it true that for all natural numbers n > 3, there is a semigroup S such that the clique
number (girth, chromatic number) of G(S) is n?

Classify the semigroups S such that the clique and chromatic numbers of G(.S) coincide.

Calculate the clique and chromatic numbers of the commuting graphs of T'(X) and End(V),
where X is a finite set and V' is a finite-dimensional vector space over a finite field.

Let G(S) be the commuting graph of a finite non-commutative semigroup S. An rl-path is
a path a; — -+ — ap, in G(5) such that a; # a,, and aja;a1 = ama;a, foralli=1,... m.
For ri-paths, prove the results analogous to the results for [-paths contained in this paper.

Find classes of finite non-commutative semigroups such that if S and T are two semigroups
in that class and G(S) =2 G(T), then S = T.
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