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Abstract. This paper extends the results of the previous work of the authors

on the classification on noncommutative domain algebras up to completely

isometric isomorphism. Using Sunada’s classification of Reinhardt domains in
Cn, we show that aspherical noncommutative domain algebras are isomorphic

if and only if their defining symbols are equivalent, in the sense that one can be
obtained from the other via permutation and scaling of the free variables. Our

result also shows that the automorphism groups of aspherical noncommutative

domain algebras consists of a subgroup of some finite dimensional unitary
group. We conclude by illustrating how our methods can be used to extend to

noncommutative domain algebras some results from analysis in Cn with the

example of Cartan’s lemma.

1. Introduction

Noncommutative domain algebras, introduced by Popescu [5], provide a gener-
alization of noncommutative disk algebras and serve as universal operator algebras
for a large class of noncommutative domains, i.e. noncommutative analogues of do-
mains in Cn. This paper extends the results of the previous work of the authors [1]
on the classification on noncommutative domain algebras up to completely isomet-
ric isomorphism. Our present work uses the classification of Reinhardt domains by
Sunada in [8] to provide a complete classification a large class of noncommutative
domain algebras in terms of their defining symbol. This class consists of the as-
pherical noncommutative domain algebras whose symbol is polynomial, as we shall
define in the first section of this paper.

Let us introduce the objects of interest in this paper, as well as the notations we
will use throughout our exposition. Popescu noncommutative domains are defined
by means of a symbol, which is a special type of formal power series. Let F+

n

be the free semigroup on n generators g1, . . . , gn and identity g0. If X1, . . . , Xn

belong to any ring, and if α ∈ F+
n is written as α = gi1 · · · gin , then we write Xα =

Xi1 · · ·Xin . With these notations, a free formal power series f =
∑
α∈F+

n
aαXα
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with real coefficients aα (α ∈ F+
n ) is regular positive if:

(1.1)


ag0

= 0,
agi > 0 if i = 1, . . . , n,
aα ≥ 0 for all α ∈ F+

n

supn∈N∗

(∣∣∣∑|α|=n a2
α

∣∣∣ 1
n

)
<∞.

Let us be given a regular positive free formal power series f =
∑
α∈F+

n
aαXα in

n indeterminates, and a Hilbert space H. We define the noncommutative domain:

Df (H) = {(T1, . . . , Tn) ∈ B(H) :
∑
α∈F+

n

aαTαT
∗
α ≤ 1}

where B(H) is the Von Neumann algebra of all bounded linear operators on H and
1 is its identity. The interior of Df (Ck) will be denoted by Dkf . Popescu proved

in [5] that certain weighted shifts on the full Fock space `2(F+
n ) of Cn provide a

model for all n-tuples in all domains Df (H). Specifically, as shown in [5], one can

find positive real numbers (bα)α∈F+
n

and define linear operators W f
i on `2 (F+

n ) such
that:

W f
i δα = 2

√
bα
bgiα

δgiα,

where {δα : α ∈ F+
n } is the canonical basis of `2(F+

n ). Then (W f
1 , . . . ,W

f
n ) ∈

Df (`2(F+
n )) and the coefficients (aα)α∈F+

n
can be recovered from the coefficients

(bα)α∈F+
n

. We then define:

A(Df ) = span{Wα : α ∈ F+
n }

i.e. A(Df ) is the norm closure in B(H) of the algebra generated by W f
1 , . . . ,W

f
n .

The fundamental property of this algebra is that:

Proposition 1.1 (Popescu). Let f =
∑
α∈F+

n
aαXα be a regular positive free power

series in n indeterminates. Let H be a Hilbert space. Let (T1, . . . , Tn) ∈ Df (H).
Then there exists a (necessarily unique) completely contractive unital algebra mor-

phism Φ : A(DF ) −→ B(H) such that Φ(W f
j ) = Tj for j = 1, . . . , n.

The algebra A(Df ) is the noncommutative domain algebra of symbol f . When
f = X1 + · · ·+Xn, the algebra A (Df ) is the disk algebra in n -generators. In [1],
we used techniques of complex analysis on domains in Cn to study the isomorphism
problem for noncommutative domain algebras. In our context, the category NCD
of noncommutative domain algebras consists of the algebras A(Df ) for all positive,
regular n-free formal power series f for objects, and completely isometric unital
algebra isomorphisms for arrows. We then constructed for each k ∈ N a contravari-

ant functor Dk from NCD to the category HDkn2 of connected open subsets of Ckn2

with holomorphic maps. Given a regular positive formal n-free formal power series
f , the functor Dk associates to A(Df ) the domain Dkf . The key observation of [1]

is that any isomorphism Φ : A(Df )→ A(Dg) in NCD gives rise to a biholomophic

map Φ̂k = Dk(Φ) from Dkg onto Dkf , and this construction is functorial (contravari-

ant). Thus, Dk give fundamental invariants of noncommutative domain algebras.
We showed in [1, Theorem 3.18] that if Φ : A(Df ) → A(Dg) is an isomorphism in
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NCD such that Φ̂1(0) = 0 then there is an invertible matrix M ∈ Mn×n(C) such

that

 W g
1

...
W g
n

 = (M ⊗1`(F+
n ))

 W f
1

...
W f
n

. We could then use this result to character-

ize the disk algebra among all noncommutative domain algebras [1, sec 4.3]: A(Df )
is isomorphic to the n-disk algebra in NCD if and only if f = X1 + . . .+Xn after
possible rescaling (i.e. replacing each indeterminate with a multiple of itself). We
could also distinguish between the instructive examples f = X1 +X2 +X1X2 and
g = X1 +X2 + 1

2X1X2 + 1
2X2X1 in NCD [1, sec. 4.2].

In this paper, we extend our results to characterize a large class of noncommuta-
tive domain algebras in terms of their symbol. For instance, we strengthen [1, sec.
4.2] by showing that, given f = X1 +X2 +X1X2, the algebra A(Df ) is isomorphic
in NCD to A(Dg) if and only if, after permuting and rescaling the indeterminates
in g, we have f = g.

In [7, Theorem 4.5], Popescu proved that two noncommutative domain algebras
are isomorphic in NCD if and only if their corresponding noncommutative domains
are biholomorphic, in the generalized sense of Popescu. Thus, our result extends
to the biholomorphic classification of noncommutative domains in terms of their
defining symbols. We note that Popescu’s result applies to a larger class of domain
algebras and noncommutative domains associated with the Berezin transform. We
refer to [7, Theorem 4.5] for details.

Thus, this paper continues the program initiated in [1] with three new results.
First, we show that Sunada’s classification of Reinhardt domains [8] allows one to
prove that for a large class of noncommutative domains, the only possible automor-
phisms are linear. Second, we show that for that class of domains, the isomorphism
problem is fully solved, as isomorphisms correspond to a simple form of equivalence
on regular positive n-free formal power series . As a third matter, we show that
the same techniques allow us to obtain a generalization of the Cartan’s lemma to
noncommutative domain by different means than [6, 7]. We expect that many re-
sults of complex analysis in several variables can be generalized to noncommutative
domain algebras in a similar manner.

2. aspherical noncommutative domain algebras

This first section applies Sunada’s classification of Reinhardt domains to the clas-
sification of noncommutative domain algebras. In [1], we showed how to classify
all noncommutative domain algebras isomorphic to the disk algebras. In this pa-
per, we will provide a complete classification for the class of polynomial aspherical
domains as defined below.

Definition 2.1. Let f, g be two regular positive free power series in n indeter-
minates. We say that f and g are permutation-rescaling equivalent if there exists
a permutation σ of {1, . . . , n} and a nonzero positive numbers λ1, . . . , λn such
that g(λ1Xσ(1), . . . , λnXσ(n)) = f(X1, . . . , Xn) where X1, . . . , Xn are the indeter-
minates.
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One checks easily that permutation-rescaling equivalence is an equivalence rela-
tion of regular positive free power series. It was shown in [1, Lemma 4.4] that if f
and g are regular positive free formal power series in n indeterminates, and f and
g are permutation-rescaling equivalent, then A(Df ) and A(Dg) are isomorphic.

Definition 2.2. Let f be a positive regular n-free formal power series. Then f is
spherical if it is permutation-rescaling to some g such that:

D1
g = {(z1, . . . , zn) ∈ Cn : |z1|2 + · · ·+ |zn|2 < 1}.

Definition 2.3. Let f be a positive regular n-free formal power series. Then f is
aspherical if f is not spherical.

Definition 2.4. A free power series f is a free polynomial if, writing f =
∑
α∈F+

n
aαXα,

the set {α ∈ F+
n : aα 6= 0} is finite. We shall write n-free polynomial for a free

polynomial in n-indeterminates.

Definition 2.5. The noncommutative domain A (Df ) is aspherical when f is as-
pherical, and polynomial when f is a free polynomial.

It should be noted that there are domains which are not aspherical but not iso-
morphic to the disk algebras. Let us give a few examples to illustrate our definition.

Example 2.6. Let f = 1
2X1 + 1

2X2 + 1
2X

2
1 + 1

2X
2
2 +X1X2. Then D1

f is the open

unit ball of C2. Yet, by [1, Theorem 4.7], we know that A(Df ) is not a disk algebra.

Example 2.7. Let f = 1
2X1 + 1

2X2 + 1
2 (X1 + X2)2. Using [1, Theorem 4.7], we

see again that A(Df ) is not isomorphic to a disk algebra in NCD. However, there
is a completely bounded isomorphism from the disk algebra onto A(Df ). This
illustrates the importance of our choice of isomorphisms as completely isometric
unital algebra isomorphisms.

Example 2.8. Let f = X1 + X2 + 3X1X2, g = 2X1 + X2 + 6X2X1 and h =
X1 + 2X2 +X2

1 . All three symbols are polynomial and aspherical. We will show in
Theorem (2.15) that A(Df ) and A(Dg) are isomorphic, but A(Df ) and A(Dg) are
not.

It is of course quite easy to produce examples of polynomial aspherical symbols,
so our work will apply to a large class of examples.

It is immediate, by definition, that:

Observation 2.9. Let f be a positive regular free formal power series in n inde-

terminates. Then D1
f is a bounded Reinhardt domain in Cn2

.

Now, Sunada in [8, Theorem A] shows that up to rescaling-permutation of the
canonical basis vectors of Cn, all bounded Reinhardt domains can be written in a
normalized form. We cite this theorem with the necessary notations added in the
statement.

Theorem 2.10 (Sunada, Theorem A). Let D be a bounded Reinhardt domain in
Cn. Up to applying to D a map of the form (z1, . . . , zn) ∈ Cn 7→ (λ1zσ(1), . . . , λnzσ(n))
with σ some permutation of {1, . . . , n} and λ1, . . . , λn some nonzero complex num-
bers, D can be described as follows. There exists integers 0 = n0 < n1 < . . . <
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ns = n, integers p, r ∈ {1, . . . , n} with nr = p and a bounded Reinhard domain D1

in Cn−p such that, if for any z = (z1, . . . , zn) ∈ Cn we set zj = (znj−1+1, . . . , znj )
and r = n− p, then:

• D∩(Cp×{0}) = {(z1, . . . , zs) ∈ Cn : |z1| < 1∧· · ·∧|zr| < 1∧(zr+1, . . . , zs) =
(0, . . . , 0)}
• {0} ×D1 = D ∩ ({0} × Cn−p),
• We have:

D = {(z1, . . . , zs) : |z1| < 1 ∧ . . . ∧ |zr| < 1∧(
zr+1∏r

j=1(1− |zj |2)qr+1,j
, . . . ,

zs∏r
j=1(1− |zj |2)qs,j

)
∈ D1

}
where qr+1,1, . . . , qs,r are positive nonzero real numbers distinct from 1.

We also observe that if f is a regular positive n-free power series, then D1
f ∩

(Cp × {0}) = D1
g for the power series g obtained by evaluating Xp+1, . . . , Xn to

0. One readily checks that g is a regular positive p-free power series. This simple
observation will prove useful.

Our strategy to prove our main theorem of this section, Theorem (2.14), is as
follows. Let f be a regular positive aspherical n-free polynomial.

(1) Since f is aspherical, n1 < n and thus r < s in Theorem (2.10) for D1
f .

(2) We first show that D1
f can not be a product of bounded Reinhardt domains.

This implies that r ∈ {0, 1} in Theorem (2.10) for D1
f .

(3) We then show that if n = 2, i.e. f has only two indeterminates, then D1
f

can not be a Thullen domain [9]. This implies that r = 0 in Theorem (2.10)
for D1

f for an arbitrary n.

(4) We then conclude, using ([8, Corollary 2, sec. 6. p. 126]), that the auto-
morphism group of D1

f fixes the origin.

To implement this approach, we start with a few lemmas.

Lemma 2.11. Let f be a positive regular n-free formal polynomial. Then Df (C)
is not a Cartesian product of bounded domains.

Proof. Up to rescaling, we assume that aα = 1 for all words α of length 1. Assume
that there are two domains D and D′, respectively in Cp and Cq with p + q = n,
p, q > 0 and such that:

D1
f = D ×D′.

Let (z1, . . . , zp) ∈ D be a boundary point. Then (z1, . . . , zp, 0, . . . , 0) ∈ Cn is also a
boundary point of D1

f . Hence: ∑
α∈F+

p

aα |zα|2 = 1.

Let (w1, . . . , wq) ∈ D′\ {0}. Then (z1, . . . , zp, w1, . . . , wq) ∈ D1
f , so (if we let zp+1 =

w1, . . . , zn = wq):

1 ≥
∑
α∈F+

n

aα |zα|2 ≥
∑
α∈F+

p

aα |zα|2 + |w1|2 + · · ·+ |wq|2

≥ 1 + |w1|2 + · · ·+ |wq|2 > 1
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which is a contradiction. Hence D1
f is not a product of domains in proper subspaces

of Cn. �

Thullen [9] proved that all bounded Reinhardt domains containing the origin
in C2 are biholomorphic to either the unit ball, the polydisk, a domain whose
automorphism group fixes 0, or to a Thullen domain:

{(z, w) ∈ C2 : |z|2 + |w|2q ≤ 1}

for some q ∈ (0, 1)∪(1,∞). This result, of course, is generalized in Theorem (2.10).
We will start by showing that in two dimensions, Thullen domains are not in the
range of the object map of the functor s D1.

Lemma 2.12. Let f be an aspherical positive regular 2-free formal polynomial.
Then Df (C) is not a Thullen domain [9].

Proof. Assume Df (C) is a Thullen domain [9]. Up to applying a rescaling and
permutation of the free variables of f ([1, Lemma 4.4]), there exists q ∈ (0, 1)∪(1,∞)

such that, writing τ : (z1, z2) 7→ |z1|2 + |z2|2q − 1, we have:

D1
f =

{
(z, w) ∈ C2 : τ (z, w) < 0

}
and the boundary ∂D1

f of D1
f is then{

(z1, z2) ∈ C2 : τ (z1, z2) = 0
}

.

We shall adopt the standard notation that given (z1, z2) ∈ C2, we have zj =
xj + iyj for xj , yj ∈ R. We identity C2 with R4. Then:

τ : (x1, y1, x2, y2) 7→ x2
1 + y2

1 + (x2
2 + y2

2)q − 1.

Let ∇ denote the gradient operator on R4 (i.e., with usual abuse of notations,

∇ =


∂
∂x1
∂
∂y1
∂
∂x2
∂
∂y2

). Then for all (z1, z2) ∈ ∂D1
f ):

∇τ(z1, z2) =


2x1

2y1

2qx2(x2
2 + y2

2)q−1

2qy2(x2
2 + y2

2)q−1

 .

On the other hand, by definition, the boundary of D1
f is:{

(z1, z2) ∈ C2 :
∑

aα |zα|2 − 1 = 0
}

.

To simplify notations, we shall introduce the coefficients (cn,m)n,m∈N as follows:

cn,m =
∑{

aα : α ∈ F+
2 , |α|1 = n ∧ |α|2 = m

}
where |α|i is the number of times the generator gi appears in the word α (i = 1, 2).
Thus we can write for all (z1, z2) ∈ C2:∑

α∈F+
2

aα |zα|2 =
∑
n,m∈N

cn,m |z1|2n |z2|2m .
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Now, let:

ρ : (z1, z2) ∈ C2 7→
∑
n,m∈N

cn,m |z1|2n |z2|2m − 1.

We thus have:

ρ(x1, y1, x2, y2) =
∑
n,m∈N

cn,m(x2
1 + y2

1)n(x2
2 + y2

2)m − 1.

Then for all (z1, z2) ∈ ∂D1
f :

∇ρ(z1, z2) =


∑
n,m∈N,(n,m) 6=(0,0) cn,m2nx1(x2

1 + y2
1)n−1(x2

2 + y2
2)m∑

n,m∈N,(n,m)6=(0,0) cn,m2ny1(x2
1 + y2

1)n−1(x2
2 + y2

2)m∑
n,m∈N,(n,m)6=(0,0) cn,m2mx2(x2

1 + y2
1)n(x2

2 + y2
2)m−1∑

n,m∈N,(n,m) 6=(0,0) cn,m2my2(x2
1 + y2

1)n(x2
2 + y2

2)m−1



=


2x1

(
c1,0 +

∑
n,m∈N,n>1 ncn,m(x2

1 + y2
1)n−1(x2

2 + y2
2)m

)
2y1

(
c1,0 +

∑
n,m∈N,n>1 ncn,m(x2

1 + y2
1)n−1(x2

2 + y2
2)m

)
2x2

(
c0,1 +

∑
n,m∈N,m>1mcn,m(x2

1 + y2
1)n(x2

2 + y2
2)m−1

)
2y2

(
c0,1 +

∑
n,m∈N,m>1mcn,m(x2

1 + y2
1)n(x2

2 + y2
2)m−1

)


The tangent plane in R4 to a boundary point (z1, z2) (where z2 6= 0 so that we
work at a regular point for τ) of D1

f is the orthogonal space to any normal vector

to the boundary of D1
f at that point, namely it is the orthogonal of ∇ρ (z1, z2), as

well as the orthogonal space to ∇τ (z1, z2) (see, for instance, [4, chapter 3]). Thus,
these two vectors must be co-linear. In particular, let us focus on the first and third
coordinates. It is therefore necessary that if x1 6= 0, x2 6= 0:c1,0 +

∑
n,m∈N,n>1

ncn,m(x2
1 + y2

1)n−1(x2
2 + y2

2)m

 q(x2
2 + y2

2)q−1

= c0,1 +
∑

n,m∈N,m>1

mcn,m(x2
1 + y2

1)n(x2
2 + y2

2)m−1.

which is equivalent to:c1,0 +
∑

n,m∈N,n>1

ncn,m|z1|2n−2|z2|2m
 q|z2|2q−2

= c0,1 +
∑

n,m∈N,m>1

mcn,m|z1|2n|z2|2m−2.

Now, since (z1, z2) is on the boundary of the Thullen domain D1
f , we have τ (z1, z2) =

0 i.e. |z1|2 = 1− |z2|2q. Hence:c1,0 +
∑

n,m∈N,n>1

ncn,m

(
1− |z2|2q

)n−1

|z2|2m
 q |z2|2q−2

= c0,1 +
∑

n,m∈N,m>1

mcn,m

(
1− |z2|2q

)n
|z2|2m−2

.
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This identity must be valid for all (z1, z2) on the boundary of D1
f except when

z2 = 0. Thus it is true on a neighborhood of 0, except at 0. Hence both sides of
this identity must be continuous at 0 since the right hand side is as a polynomial
in R2. This precludes that q < 1. Hence q > 1 and we get at the limit when z2 → 0
that 0 = c0,1, which contradicts the definition of f regular positive. So Df (C) is
not a Thullen domain. �

Remark 2.13. An important observation is that Thullen domains are a special case
of the domains described in Theorem (2.10). Indeed, assume, in the notations of
2.10, that n = 2, s = 2, r = 1. Then D1, which is a bounded Reinhard domain in
C which we can put in standard form, is just the unit disk in C, so:

D = {(z1, z2) ∈ C2 : |z1| < 1 ∧ |z2| < (1− |z1|2)q}(2.1)

= {(z1, z2) ∈ C2 : |z1|2 + |z2|2/q < 1}(2.2)

which is to say that D is a Thullen domain [9]. In particular, if n is now
arbitrary, s > r > 1, then the intersection of D with the plane spanned by the first
and (p+ 1)th canonical basis vectors of Cn is a Thullen domain.

Theorem 2.14. Let f be a aspherical regular positive n-free polynomial. Then the
automorphism group of Df (C) fixes 0.

Proof. By [1, Proposition 3.11], D1
f is a bounded Reinhardt domain in Cn.

Up to replacing f by a permutation-scaling equivalent symbol, we can assume
that D1

f is in standard form, i.e. of the form given in Theorem (2.10). We recall

from [1, Lemma 4.4] that if two symbols are permutation-scaling equivalent, then
their associated noncommutative domain algebras are isomorphic.

We shall now use the notations of Theorem (2.10) applied to D1
f .

By definition of aspherical, D1
f is not the open unit ball of Cn, so n1 < n, r < s

and p < n.

Assume now that r ≥ 1. Then D1
f ∩ (Cp × {0}) is a product of open unit balls.

Yet, if g is obtained from f by mapping Xp+1, . . . , Xn by 0, then g is a regular
positive p-free polynomial such that D1

g × 0 = D1
f ∩ (Cp×{0}) by construction. By

Lemma (2.11), D1
g is not a proper product, so it must be at most one unit ball.

Hence, r = 1.

Therefore, in general, r ∈ {0, 1}. Assume that r = 1, so 1 ≤ p < n (since r < s
as well). Let h be the regular formal 2-free polynomial obtained from f by mapping
X2, . . . , Xp, Xp+2, . . . , Xn to 0 (once again it is immediate to check that indeed h is
a regular positive polynomial in indeterminates X1, Xp+1). In particular, observe
that D1

h is the intersection of D1
f by the plane spanned by the first and (p + 1)th

canonical basis vector in Cn. By Remark (2.13), D1
h is a Thullen domain. By

Lemma (2.12), this is impossible. So we have reached a contradiction.

Hence r = 0. By [8, Corollary 2 of Theorem B, sec 6. p.126], all automorphisms
of D1

f fix 0. Our theorem is proven.
�
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Applying [1, Theorem 3.18], we get the following important result:

Theorem 2.15. Let f and g be regular positive n-free polynomials, with f aspheri-

cal. Then if Φ : A (Df )→ A (Dg) is an isomorphism, then Φ̂(0) = 0 and therefore,
there exists M ∈Mn×n (C) such that: Φ(W f

1 )
...

Φ(W f
n )

 = (M ⊗ 1`2(Fn))

 W g
1

...
W g
n

 .

Proof. Let λ = Φ̂(0). Assume λ 6= 0. Let j ∈ {1, . . . , n} such that λj 6= 0 where
λ = (λ1, . . . , λn). Let ρ be the linear transformation of Cn given by the matrix 1j−1

−1
1n−j

 in the canonical basis of Cn (where 1k is the identity of

order k for any k ∈ N). Then ρ(λ) 6= λ. By [1, Lemma 4.4], there exists a unique
automorphism ρ̃ of A (Dg) such that D1(ρ̃) = ρ since ρ only rescale the coordinates.
Let τ = Φ−1◦ρ̃◦Φ: by construction, τ is an automorphism of A (Df ), and moreover

τ̂ (0) = Φ̂−1 (ρ (λ)) 6= 0 since Φ̂−1 is injective. Thus τ̂ is an automorphism of
Df (C) which does not fix 0. By Theorem (2.14), since f is aspherical, this is a

contradiction. Hence Φ̂(0) = 0. The theorem follows from [1, Theorem 3.18]. �

Corollary 2.16. Let f, g be aspherical regular positive n-free polynomials. Then
there exist an isomorphism Φ from A (Df ) onto A (Dg) if and only if there exists
an invertible matrix M ∈Mn×n (C) such that: W f

1
...
W f
n

 = (M ⊗ 1`2(Fn))

 W g
1

...
W g
n

 .

In particular, the automorphism group of aspherical polynomial noncommutative
domain algebras consists only of invertible linear transformation on the generators,
in contrast with the disk algebras which have the full automorphism group of the
unit ball as a normal subgroup of automorphism [3]. We also contrast this result
to the computation of other nontrivial automorphism groups associated to the disk
algebras in [2].

Corollary 2.17. Let f be an aspherical regular positive n-free polynomial. The
automorphism group of A(Df ) is a subgroup of the unitary group U(n).

We can now see immediately that Theorem (2.15) solves Example (2.8).

3. Classification of polynomial aspherical noncommutative domains
algebras

This section establishes an explicit equivalence on aspherical regular positive
n-free polynomials which corresponds to isomorphism of the associated noncom-
mutative domain algebra. This result generalizes [1, sec 4]

We defined in [1] dual maps associated to an isomorphism in NCD as follows. Fix
f and g two regular, positive n-free formal power series, and let Φ : A(Df )→ A(Dg)
be an isomorphism in NCD. Let k ∈ N, k > 0. For any λ = (λ1, · · · , λn) ∈
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Dkf ⊆ (Mk×k(C))n, there exists a unique completely contractive representation

πλ : A(Dg) → Mn×n(C) such that π(W g
j ) = λj for j = 1, . . . , n. Now, ρ = πλ ◦ Φ

is a completely contractive representation of A(Df ) on Mn×n(C), so there exists

(µ1, . . . , µn) ∈ Dkf such that ρ(W f
j ) = µj for j = 1, . . . , n. We set Φ̂k(λ1, . . . , λn) =

(µ1, . . . , µn). We showed in [1] that these maps are biholomorphic and that this
construction is functorial and contravariant.

We start with a combinatorial result.

Proposition 3.1. Let f =
∑
α∈F+

n
afαXα and g =

∑
α∈F+

n
agαXα be regular positive

n-free polynomials. Up to rescaling, we assume afα = agα = 1 for all words α of

length 1. Let Φ : A (Df ) −→ A (Dg) be an isomorphism such that Φ̂(0) = 0. Let
U = [uij ]1≤i,j≤n ∈Mn×n (C) be the unitary matrix such that for all i ∈ {1, . . . , n}:

(3.1) Φ
(
W f
i

)
=

n∑
j=1

uijW
g
j .

We define the support function sΦ of Φ by setting, for any subset A of {1, . . . , n}:

sΦ (A) = {j ∈ {1, . . . , n} : ∃i ∈ A uij 6= 0} .

Then there exists partitions {σ1, . . . , σp} and {ψ1, . . . , ψp} of {1, . . . , n} such that
for all i ∈ {1, . . . , p} we have sΦ (σi) = ψi, sΦ−1 (ψi) = σi and |σi| = |ψi|. Moreover,
if A ⊆ {1, . . . , n} satisfies sΦ−1 ◦ sΦ(A) = A , then:

A =
⋃
{σi : i ∈ {1, . . . , p} ∧ σi ⊆ A} .

Proof. Since Φ is an isomorphism such that Φ̂(0) = 0, we conclude by [1, Theorem
3.18] that there exists a unitary U = [uij ]1≤i,j≤n ∈ Mn×n (C) such that Equal-
ity (3.1) holds for i ∈ {1, . . . , n}. Note that by definition sΦ(A) =

⋃
i∈A

sΦ ({i}).

Moreover, for the same reason, there exists V = [vij ]1≤i,j≤n ∈Mn×n (C) such that

Φ−1(W g
i ) =

∑n
j=1 vijW

f
j and it is immediate that V = U∗ i.e.:

Φ−1 (W g
i ) =

∑
ujiW

f
j .

This implies that for A ⊆ {1, . . . , n} we have:

sΦ−1(A) = {j ∈ {1, . . . , n} : ∃i ∈ A vij 6= 0} by definition,

= {j ∈ {1, . . . , n} : ∃i ∈ A uji 6= 0} since V = U∗.

In particular:

k ∈ sΦ ({i}) ⇐⇒ i ∈ sΦ−1 ({k}) .

Thus i ∈ sΦ−1 ◦ sΦ ({i}).
We now observe that given any partition {σ1, . . . , σn}, if we set ψi = sΦ (σi) for

all i ∈ {1, . . . , n} , then |ψi| ≥ |σi| for all i ∈ {1, . . . , n}. Indeed, fix i ∈ {1, . . . , n}.
Let j ∈ σi. By definition:

Φ(W f
j ) =

∑
k∈ψi

ujkW
g
k .
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Since Φ is injective and
{
W f

1 , . . . ,W
f
n

}
and {W g

1 , . . . ,W
g
n} are linearly independent

sets, we have:

|σi| = dim span {Wj : j ∈ σi} = dim span
{

Φ(W f
j ) : j ∈ σi

}
≤ dim span {W g

k : k ∈ ψi} = |ψi| .

If, moreover, σi = sΦ−1 (ψi) for all i ∈ {1, . . . , n}, then one gets |σi| = |ψi| for
i ∈ {1, . . . , n}.

Now, we turn to the construction of a partition {σ1, . . . , σn} of {1, . . . , n} such
that sΦ−1 ◦ sΦ (σi) = σi for all i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}. Set A0 = {i} and
Am+1 = sΦ−1 ◦ sΦ (Am) for all m ∈ N. Let k ∈ Am for some m ∈ N. Then there
exists j ∈ sΦ (Am) such that ukj 6= 0. Since j ∈ sΦ ({k}) we have k ∈ sΦ−1 ({j}) ⊆
sΦ−1 ◦sΦ(Am). Hence k ∈ Am+1. So (Am)m∈N is a sequence of subsets of {1, . . . , n}
increasing for the inclusion. Since {1, . . . , n} is finite, there exists N ∈ N such that
AN = AN+1. We define cl (i) = AN .

We thus construct subsets cl(1), . . . , cl(n) of {1, . . . , n} such that i ∈ cl (i) for
all i ∈ {1, . . . , n}, so

⋃
i∈{1,...,n}

cl(i) = {1, . . . , n}. To show {cl(1), . . . , cl(n)} is a

partition, it is thus sufficient to show that if, for some i, j ∈ {1, . . . , n} cl(i)∩cl(j) 6=
∅ then cl(i) = cl(j).

To do so, let us assume that k ∈ cl(i). Since sΦ−1 ◦sΦ (cl (i)) = cl(i) by definition,
we conclude that cl(k) ⊆ cl(i). On the other hand, by construction, there exists
j1, . . . , jq (for q ≤ n) such that j1 = i, jq = k and jm+1 ∈ sΦ−1 ◦ sΦ ({jm}). Fix
m ∈ {1, . . . , q}. Since jm+1 ∈ sΦ−1 ◦ sΦ ({jm}) there exists rm ∈ sΦ ({jm}) such
that jm+1 ∈ sΦ−1 ({rm}) so rm ∈ sΦ ({jm+1}). Since rm ∈ sΦ ({jm}) we have
jm ∈ sΦ−1 ({rm}) and therefore jm ∈ sΦ−1 ◦sΦ (jm+1). Hence, i ∈ cl(k). Therefore,
cl(k) = cl(i).

Assume now that cl (i)∩cl(j) 6= ∅ for some i, j ∈ {1, . . . , n}. Let k ∈ cl (i)∩cl(j).
We have shown that cl(i) = cl(k) = cl(j). Therefore, {cl(1), . . . , cl(n)} is a partition
of {1, . . . , n} such that sΦ−1 ◦ sΦ (cl(i)) = cl(i) for i = 1, . . . , n. We rewrite this
partition as {σ1, . . . , σp} (the order is unimportant). Setting ψi = sΦ (σi) for i =
1, . . . , p, we have found a partition satisfying our theorem.

Note, at last, that if A ⊆ {1, . . . , n} such that sΦ−1 ◦ sΦ (A) = A then for i ∈ A
then

sΦ−1 ◦ sΦ(i) ⊆ sΦ−1 ◦ sΦ (A) = A

and thus cl(i) ⊆ A, as desired. �

We now show that the permutation-rescaling equivalence on symbols corresponds
precisely to isomorphism of polynomial aspherical noncommutative domain alge-
bras. To this end, we shall recall the following observations. Let f =

∑
α aαXα be

a regular positive n-free formal power series.

(1) There exists positive real numbers bα for all α ∈ F+
n such that Wj maps

the canonical basis vector δα at α ∈ F+
n to

√
bα
bgjα

δgjα for j = 1, . . . , n [5].

(2) The correspondence between the coefficients (aα)α∈F+
n

and (bα)α∈F+
n

is bi-

jective [5].
(3) For any α ∈ F+

n we have ‖W f
α‖ = 1

bfα
[5].
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(4) The Pythagorean identity holds for the weighted shifts W f
α in the following

sense:

‖
k∑
j=1

cjW
f
αj‖

2 =

n∑
j−1

|cj |2‖W f
αj‖

2

where c1, . . . , ck are arbitrary complex numbers and α1, . . . , αn ∈ F+
n of are

all words of the same length [1].

We now can show:

Theorem 3.2. Let f, g be two regular, positive n-free polynomials. There exists an

isomorphism Φ : A (Df ) −→ A (Dg) such that Φ̂(0) = 0 if and only if f and g are
permutation-rescaling equivalent.

Proof. Write f =
∑
afαXα and g =

∑
agαXα. Up to rescaling (see [1, Lemma 4.4]),

we assume afα = agα = 1 for all words α of length 1. We first assume that there

exists an isomorphism Φ : A (Df ) −→ A (Dg) such that Φ̂(0) = 0. By Proposition
(3.1), we can find a partition {σ1, . . . , σp} of {1, . . . , n} such that sΦ−1 ◦sΦ (σi) = σi
for all i ∈ {1, . . . , p}, where sΦ (resp. sΦ−1) is the support function for Φ (resp.
Φ−1). Up to permutation of the free variables in g we may assume that sΦ (σi) = σi
for i ∈ {1, . . . , p}.

Let l ∈ N with l > 1 be given. The finite set
{
bfα, b

g
α : α ∈ F+

n ∧ |α| = l
}

of real

numbers has a smallest number, which we note bfω (if the minimum is reached for a
coefficient for g instead, we flip the notations for f and g for this case), with ω ∈ F+

n

and |ω| = l. We write ω = gi1 · · · gil where g1, . . . , gn are the canonical generators of

F+
n . Now, since Φ is an isometry and is implemented on the generators W f

1 , . . . ,W
f
n

by a scalar unitary [uij ]1≤i,j≤n acting on (W g
1 , . . . ,W

g
n) (see Proposition (3.1) for

notations), we have:

1

bfω
=

∥∥W f
ω

∥∥2
=
∥∥Φ
(
W f
ω

)∥∥2

=

∥∥∥∥∥
l∏

k=1

Φ
(
W f
ik

)∥∥∥∥∥
2

=

∥∥∥∥∥∥
l∏

k=1

∑
rk∈sΦ({ik})

uikrkW
g
rk

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

r1∈sΦ({i1})

· · ·
∑

rl∈sΦ({il})

ui1r1ui2r2 · · ·uilrlW g
r1 · · ·W

g
rl

∥∥∥∥∥∥
2

=
∑

r1∈sΦ({i1})

· · ·
∑

rl∈sΦ({il})

|ui1r1 |
2 |ui2r2 |

2 · · · |uilrl |
2 1

bggr1 ···grl
.

Thus, since U is unitary, we conclude that 1

bfω
is a convex combination of elements

in
{

1

bfα
, 1
bgα

: α ∈ F+
n ∧ |α| = l

}
, though it is its maximum. This is only possible if:

∀r1 ∈ sΦ ({i1}) · · · ∀rl ∈ sΦ ({i1})
1

bggr1 ···grl
=

1

bfω
.
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Let us adopt the following notation. A word α will be of type σi1 · · ·σil if
α = gr1 · · · grn for rj ∈ σj with j = 1, . . . , l. Let σv1

· · ·σvl be the type of the ω as
above. By repeating the above argument, we can thus show that bfα = bgα = bfω for
all α of type ω.

We can now repeat the proof above by picking the minimum of{
1

bfα
,

1

bgα
: α ∈ F+

n ∧ |α| = l ∧ α is not of the same type as ω

}
and so forth until we exhaust the set

{
1

bfα
, 1
bgα

: α ∈ F+
n ∧ |α| = l

}
to show that

bfα = bgα = bfω for all α ∈ F+
n with |α| = l. This completes our proof. �

Corollary 3.3. Let Let f, g be two regular positive n-free polynomials, and assume
f is aspherical. Then A (Df ) and A (Dg) are isomorphic if and only if f and g are
scale-permutation equivalent.

Proof. This results follows from Theorem (2.14) and Theorem (3.2). �

We can summarize the current understanding of classification for noncommuta-
tive domain algebra:

Theorem 3.4. Let f be a regular, positive n-free polynomial. Then:

• If f =
∑
ciXi for some c1, . . . , cn ∈ (0,∞) then A (Df ) is isomorphic to

the disk algebra An,
• If f is aspherical, then A (Dg) is isomorphic to A (Df ) if and only if f = g

after rescaling/permutation of the free variables of g.

This leaves the matter of classifying A (Df ) when f is spherical, i.e. Df (C) is
the closed unit ball of Cn, yet f is not of degree 1.

4. Cartan’s Lemma

In [6, Theorem 1.4] and [7, Theorem 4.5], Popescu establishes a generalization
of Cartan’s Lemma, first in the context of the unit ball of B(H) for a Hilbert space
H, then for a large class of noncommutative domains that includes the domains
considered in this paper. We propose to illustrate in this section that our methods,
as implemented in this paper and in [1], can be used to obtain a simpler proof
of these results. We refer to [5, 6, 7] for definitions and the general theory of
holomorphic functions in the context of noncommutative domains. We shall only
use the following special case of holomorphic functions:

Definition 4.1. Let f be a positive, regular n-free formal power series. A holo-
morphic map F with domain and codomain Df is the given of a family of complex
coefficients (cα)α∈F+

n
such that, for any Hilbert space H, the function:

FH : (T1, . . . , Tn) ∈ interiorDf (H) 7−→

∑
α∈F+

n

c1,αTα, . . . ,
∑
α∈F+

n

c1,αTα


is well-defined and its range is a subset of the interior of Df (H).
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Remark 4.2. The domain and codomain of a holomorphic function, in this context,
is the noncommutative domain Df which, itself, is not a set, but a map from
separable Hilbert spaces to subsets of the algebra of linear bounded operators on
the given Hilbert space. Note moreover that the domain and codomain of the maps
induced on various noncommutative domains by holomorphic maps are the interior
of the noncommutative domains.

Definition 4.3. Let f be a positive, regular, n-free formal power series. A biholo-
morphic map F on Df is a holomorphic map from Df to Df such that there exists
a holomorphic map G from Df to Df such that F ◦G and G ◦ F both induce the
identity on DF (H) for all Hilbert spaces H.

Remark 4.4. By definition, the map induced by a holomorphic map on a specific
noncommutative domain is a holomorphic map on the interior of this domain.

Theorem 4.5 (Cartan’s Lemma). Let f be a regular positive n-free formal power
series. Let F be a biholomorphic map of Df such that F (0) = 0. Then F is linear.

Proof. By definition, there exists complex coefficients (cj,α)j∈{1,...n},α∈F+
n

such that

for all Hilbert space H and all (T1, . . . , Tn) ∈ interiorDf (H) we have:

FH(T1, . . . , Tn) =

∑
α∈F+

n

c1,αTα, . . . ,
∑
α∈F+

n

c1,αTα

 ∈ interiorDf (H).

When H = Ck, we will write Fk for the biholomorphic map induced by F on Dkf
for k ∈ N, k > 0.

Since this proof is essentially the same as [1, Theorem 3.18], we shall only deal
with the case where α ∈ F+

n , |α| ≤ 2 and n = 2.
By definition, F induces a biholomorphic map F1 on D1

f . This map fixes 0 and

D1
f is a circular domain (even Reinhardt) in Cn, Cartan’s lemma [4] implies that

F1 is linear.
Now, the jth coordinate of F1(z1, z2) for an arbitrary (z1, z2) ∈ D1

f is:

cj,g1z1 + cj,g2z2 + cj,g1g1z
2
1 + cj,g2g2z

2
2 + (cj,g1g2 + cj,g2g1)z1z2 + · · ·

so the linearity of F1 implies that:

cj,g1g1z
2
1 + cj,g2g2z

2
2 + (cj,g1g2 + cj,g2g1)z1z2 + · · · = 0

which in turns shows that cj,g1g1
= cj,g2g2

= cj,g1g2
+ cj,g2g1

= 0. To show that
cj,g1g2 = cj,g2g1 = 0 we go to higher dimensions. Again by definition, F induces a
biholomorphic map on D2

f . The later domain is circular (not Reinhardt in general),

and thus again by Cartan’s lemma [4], since F2(0) = 0 we conclude that F2 is linear.
Now, a quick computation shows that the (2, 1) component of the jth coordinate

of F2(M,N) where M =

[
λ1 λ2

λ3 λ4

]
and N =

[
λ5 λ6

λ7 λ8

]
are 2 × 2 complex

matrices in D2
f is given by:

cj,g1
λ2 + cj,g2

λ6 + cj,g1g2
(λ1λ6 + λ2λ8) + cj,g2g1

(λ2λ5 + λ4λ6)

+ terms of higher degrees in λ1, . . . , λ8

so linearity of F2 implies that cj,g1g2
= cj,g2g1

= 0.
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The proof for higher terms is similar and undertaken in [1, Theorem 3.18].
�

We expect that the same method of reduction to finite dimension can yield
other generalizations of results from the study of domains in complex analysis to
the framework of Popescu’s noncommutative domains.
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