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Abstract

We consider the Hamilton formulation as well as the Hamiltonian flows
on a symplectic (phase) space. These symplectic spaces are derivable from
the Lie group of symmetries of the physical system considered. In Part
2 of this work, we then obtain the Hamiltonian formalism in the Hilbert
spaces of square integrable functions on the symplectic spaces so obtained.

1 Introduction
There has been a long history of classical mechanics, culminating in a differentio-
geometric formulation in what is called a phase space in physics or a symplectic
space in mathematics. In the "historic formulation" of classical mechanics, one
takes the position(s), q, and momentum(a), p, for a massive particle(s) to make
up the phase space, and the time is added on as a parameter. These ps and
qs are augmented by the equations of time propagation via a Lagrangian or
a Hamiltonian as the propagator of the time. These equations are Lagrange’s
or Hamilton’s equations, and are usually presented by variational techniques.
Meanwhile, (non-relativistic, spinless) quantum mechanics was formulated as
a Hilbert space of functions on configuration space (or on momentum space).
In 1931 [1], there was an effort to put classical mechanics also on a Hilbert
space. This was the work of B. O. Koopman who succeeded in putting the (non-
relativistic, spinless) phase space formulation in a Hilbert space of functions of
the ps and qs. Then the world waited until V. Guillemin and S. Sternberg in
1984 published a book "Symplectic Techniques in Physics". [2] In this book,
they proved that every symplectic space, Γ, with a symplectic symmetry group,
G, which is a Lie group, arises as (the orbit of) a quotient of G with certain
subgroups H. Thus we have Γ = ∪g∈GG/(g ◦ H ◦ g−1) or Γ = G/H. The
second was used by one of the present authors [3] to make progress in that every
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quantum realization was an irreducible representation of G obtained from the
Hilbert space of Koopman, suitably generalized, via the orbit in G of a coherent
state, η, on the quantum Hilbert space. This means that, for any ψ ∈ Hquantum
with < ·, · > as the inner product, < U(σ(x))η, ψ > is in HKoopman, where
σ : G/H → G is a (Borel) section, and U is a representation of G on Hquantum .
(There are more requirements on η. See [3].) The part that HKoopman played
in this was merely its existence. There was no effort in [3] to put in the details
of the classical mechanics into the Koopman formalism in general, and then
compare with the resultant quantum mechanical representation(s). We shall do
the first of these here and in Part 2 when G is the Heisenberg, the rotation, the
Galilei, the Lorentz, and the Poincaré groups. For other groups central to the
classical mechanics of interacting systems, see the forthcoming paper(s) by J. J.
Sławianowski and F. E. Schroeck [4].
We have two facts of which many in the physics community will have to

beware. In this formalism on phase space, we will have to work on the Hilbert
space in the following fashion:
First: Many physicists are used to thinking that all actions of G on a man-

ifold M are from the left (W (g)x = gx), but here this will not "work" except
for the simplest of cases. This "simplest case" is the Heisenberg group, most
other cases having only the action "on the right" to embed classical mechan-
ics as we will show. We will illustrate that this holds in the case of G = the
Heisenberg group but that this does not hold for the rotation group or other
groups in general. The action on the right is one of two possibilities: For every
x ∈ G/H, there is at least one gx ∈ G such that x = gx ◦ H. We will define
either (a) W (g)x = (gx ◦ g−1) ◦ H, or (b) W (g)x = gx ◦ H ◦ g−1. We will
show that (a) is not well defined in general, but that (b) is, if we write it as
W (g)x = gx ◦ g−1 ◦ (g ◦H ◦ g−1). Thus, we will have to work in the orbit of
the symplectic space G/H in the classical case. The action of g on the right of
gx ◦ H is necessitated by the requirement that G/H is a phase space and we
will search for canonical variables, which we will explain. Hence, by the action
on the right we obtain classical mechanics (and on the left we obtain quantum
mechanics as in [3]). This is similar to action on the left versus right having the
following physical interpretation for internal degrees of freedom of which many
other physicists may be cognizant: We paraphrase, "The action on the left cor-
responds to the physical space and has Euler variables; the action on the right
corresponds to the ’material space’ and has Lagrange variables." [6] We also see
that by the trick of having the action on the right for canonical variables, we
frequently avoid the problem of making up "canonical variables" from the Lie
algebra relations which simply does not work out. See for example [7].
Second: We will show that there is an intimate connection between the phase

space formulation and the representation on HKoopman = L2(phase space) and
its irreducible components. This hosts some surprising results, in that there are
many "results" of quantum mechanics that say you can not do somethings; we
shall do them all. It furthermore does not matter whether we do them classically
or quantum mechanically.
In the next section we will consider the historical Hamiltonian formalism.
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In Section 3 we shall define a general symplectic (phase) space. In Section 4 we
make a connection between a symplectic space and the orbit of G/H, where G
is the group of symmetries and H is a certain subgroup of G. Then in Part 2,
we will illustrate all of this with several examples and then continue with the
connection with Hilbert spaces.

2 Historical Hamiltonian Formalism
We let x = (p, q) denote a general element of any phase space, Γ, where p, q are
vectors of dimension equal to half the dimension of the phase space (symplectic
space). The ps and qs are to be canonical coordinates of the phase space. We
let H(p, q) denote the Hamiltonian of the system. Then we have Hamilton’s
equations of motion:

∂H

∂pj
=

dqj
dt

,
∂H

∂qj
= −dpj

dt
, (1)

where t is the (proper) time. These express the fact that these coordinates are
in fact canonical coordinates. For any functions f, h ∈ C∞(Γ), we define the
Poisson bracket by

{f, h} =
X
j

µ
∂f

∂qj

∂h

∂pj
− ∂f

∂pj

∂h

∂qj

¶
. (2)

We note that in Γ there are many sets of canonical coordinates, but that we
have the same results for any canonical coordinates. [5, pp 254-255] Also we
have for all f , h, and k ∈ C∞(Γ),

{f, h} = −{h, f},
{f, f} = 0 (a redundant equation),

{f, c} = 0 for any c that does not depend on p or q,

{f, h+ k} = {f, h}+ {f, k},
{f, hk} = {f, h}k + h{f, k}, (3)

and also
{f, {h, k}}+ {h, {k, f}}+ {k, {f, h}} = 0, (4)

the last of which is called Jacobi’s identity. We have, for any function of the ps
and qs, u ∈ C∞(Γ), and time, t, as well,

du

dt
= {H,u}+ ∂u

∂t
.

Thus if ∂u∂t = 0, then u is a constant of the motion iff {H,u} = 0. From Jacobi’s
identity,

if {H, f} = 0 = {H,h}, then {H, {f, h}} = 0;
so, {f, h} is also a constant of the motion.
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There are important relations between the canonical ps and qs, namely

{qj, pk} = δjk,

{qj , qk} = 0 = {pj , pk} (5)

for any components of the ps and qs. Futhermore, for any K ∈ C∞(Γ),

{qj ,K} =
∂K

∂pj
, and {pj ,K} = −

∂K

∂qj
(6)

from (2).
To treat Γ as a phase (or symplectic) space, we first define TxΓ as the tangent

space at a point x ∈ Γ, and TΓ = ∪x∈ΓTxΓ. Then we define the tangent vectors
by the following: For f ∈ C∞(Γ), define Xf ∈ TΓ by

Xf =

(dimΓ)/2X
k=1

µ
∂f

∂qk

∂

∂pk
− ∂f

∂pk

∂

∂qk

¶
. (7)

Let [A,B] ≡ AB −BA for A, B ∈ TΓ. Then

[Xf ,Xh] = X{f,h},

and
[Xf , [Xh,Xk]] + [Xh, [Xk,Xf ]] + [Xk, [Xf ,Xh]] = 0

for all f, h, k ∈ C∞(Γ). That is, the set of the Xf s satisfy the Jacobi identities
also.
Furthermore, we have that, for all u ∈ C∞(Γ),

Xfu = {f, u}. (8)

The canonical coordinates have the following representations:

Xpj =

(dimΓ)/2X
k=1

µ
∂pj
∂qk

∂

∂pk
− ∂pj

∂pk

∂

∂qk

¶
= − ∂

∂qj
,

Xqj =

(dimΓ)/2X
k=1

µ
∂qj
∂qk

∂

∂pk
− ∂qj

∂pk

∂

∂qk

¶
=

∂

∂pj
. (9)

Consequently, these operators commute. Alternatively, by the Jacobi identity,
for any u ∈ C∞(Γ),

{qj , {pk, u}}+ {pk, {u, qj}}+ {u, {qj , pk}} = 0.

But the term {u, {qj , pk}} = 0 for all qj , pk; so,

{qj , {pk, u}} = {pk, {qj , u}},
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from which we obtain the same commutations.
The fact that the operators Xpj and Xqk commute allows us to define the

"flows" of any u ∈ C∞(Γ) with respect to Xf ; i.e., with respect to f . Let
u = u(0). Then,

[exp(−tXf )u] (0) =
¡
1 + (−t)Xf +

£
(−t)2/2

¤
Xf

2 + · · ·
¢
u, (10)

if u(t) is an analytic function of t. In particular,

[exp(−tXH)u] (0) =
¡
1 + (−t)XH +

£
(−t)2/2

¤
XH

2 + · · ·
¢
u

= u+ t
du

dt
+ t2/2

d2u

d2t
+ · · ·

= u(t). (11)

If one takes the commutation relations for the canonical coordinates to be
always zero, then there is a difficulty with making a connection with any group
for which the Lie algebra has commutations which do not vanish. We will have
more to say on this after we obtain a group representation on Γ. Assuming this
as a special case, we see that

exp(−tXH)qj = qj(t), and exp(−tXH)pj = pj(t). (12)

Hence XH is the generator of the map from the point (p, q) at time zero to the
point (p(t), q(t)) at time t. With the aid of the last equation in (3), we also have
for any analytic function of the ps, qs, and t,

[u(p, q)](t) = u(p(t), q(t)). (13)

Consequently, XH is also the generator of the map from u at time zero to u(t)
given by (13) at time t.
Similarly, on u an analytic function on Γ and denoting

P
j ajXqj by a ·Xq,

etc., we have

[exp(a ·Xq)u](p, q) = u(p+ a, q),

[exp(b ·Xp)u](p, q) = u(p, q − b) (14)

for all a, b ∈ Rn, n = dim(Γ)/2. Thus −Xqj is the generator for translations in
pj and Xpj is the generator for translations in qj .
Since the operators Xpj and Xqk commute, we obtain

exp(a ·Xq) exp(b ·Xp) = exp(a ·Xq + b ·Xp).

Therefore, we have a representation of R2n on the analytic vectors of Γ. We
may extend to all of C∞(Γ).
Now, rewriting Xf as

Xf =

(dimΓ)/2X
k=1

µ
∂f

∂qk
Xqk +

∂f

∂pk
Xpk

¶
= ∇qf ·Xq +∇pf ·Xp,
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we may write

exp(−tXf ) exp(a ·Xq) exp(b ·Xp)

= exp([a− t∇qf ] ·Xq + [b− t∇pf ] ·Xp). (15)

For example, if we have a Hamiltonian for our system, H0 + V , for H0 =P
j(2mj)

−1p2j and for V = a function of q only, then choosing f = H0 + V , we
obtain

exp(−tXH0+V ) exp(a ·Xq) exp(b ·Xp)

= exp([a− t∇qV ] ·Xq + [b− t∇pH0] ·Xp). (16)

Now, for mjvj = pj , bj − t∂H0

∂pj
= bj − t

pj
mj
= bj − tvj . Thus,

[exp(−tXH0+V ) exp(a ·Xq) exp(b ·Xp)u](p, q)

= u(p+ a− t∇qV, q − b+ tv), (17)

which is physically interpretable, and is a key element of the Hamiltonian for-
malism.

3 General Symplectic Spaces
We wish to generalize from the phase space R2n to a general phase space, Γ.
Hence, let M be a locally compact manifold and let its tangent space be TM .
We presume that TM has a finite dimensional basis {Xj}. Let the set of linear
functionals on the linear space TM be denoted T ∗M . Let {X∗j } (or {dXj}) be
the dual basis of T ∗M ; i.e.,

X∗j (Xk) = δj,k = dXj(Xk).

We shall use the notation {X∗j } for the dual basis henceforth. Define ∧0(T ∗M) =
C∞(M), ∧1(T ∗M) = T ∗M, and ∧m(T ∗M) as the linear space of m-fold prod-
ucts of elements of T ∗M that are antisymmetric in any two places. Elements
of ∧m(T ∗M) are called m-forms. The coboundary operator, δ, is defined as the
graded operator

δ : ∧m(T ∗M)→ ∧m+1(T ∗M)
for every m ∈ N ∪ {0}, given by

δf(x) =
nX
j=1

∂f

∂xj
(x)X∗j |x for f ∈ C∞(M), and x ∈M ;

δ

⎛⎝ nX
j=1

fj(x)X
∗
j |x

⎞⎠ =
nX

j,k=1

∂fj
∂xk

(x)X∗k |x ∧X∗j |x for fj ∈ C∞(M);

and δ(X ∧ Y ) = (δX) ∧ Y + (−1)qX ∧ δY (18)
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for X a q-form and Y an r-form. Since, for any f ∈ C∞(M) we have ∂2f
∂xj∂xk

=

∂2f
∂xk∂xj

, then δ2 = 0. Consequently

Im(δ|(m−1)−forms) ⊆ ker(δ|m−forms).

We next define

the set of m-cocycles = the set of closed m-forms

= Zm(T ∗M)

= ker(δ|m−forms)
= {m− forms ω | δω = 0}, (19)

and

the set of m-coboundaries = the set of exact (m− 1)-forms
= Bm(T ∗M)

= Im(δ|(m−1)−forms), (20)

and furthermore, by the inclusion in the previous sentence,

the nth de Rham cohomology (group) = Hm(T ∗M)

= Zm(T ∗M)/Bm(T ∗M). (21)

A 2-form ω is said to be non-degenerate if ω(X,Y ) = 0 for all Y ∈ TM im-
plies X = 0. Finally, a symplectic vector space is defined as a finite dimensional
vector space with a closed, non-degenerate 2-form (called the symplectic form).
A symplectic manifold, M , is a manifold such that for each x ∈ M , TxM is a
symplectic vector space. We will write M = Γ in this case.
By performing the following induction [2, pp 152-153] one may show that

every symplectic manifold has even dimension = 2n, n ∈ N, and that any 2-form
ω is associated with a basis {X∗j } such that

ω = X∗1 ∧X∗2 + · · ·+X∗2n−1 ∧X∗2n. (22)

Proof: Let V be an n-dimensional vector space and let ω be a 2-form on V
expressed in terms of a basis {Y ∗1 , · · ·, Y ∗n }:

ω =
X

1≤i<j≤n
aijY

∗
i ∧ Y ∗j.

If ω 6= 0, then by rearranging the basis if necessary, a12 6= 0. Define

ω = (Y ∗1 −
a23
a12

Y ∗3 − · · ·−
a2n
a12

Y ∗n ) ∧ (a12Y ∗2 + a13Y
∗
3 + · · ·+ a1nY

∗
n ) + ω0

where ω0 does not contain any expression involving Y ∗1 or Y
∗
2 . Define

X∗1 = Y ∗1 −
a23
a12

Y ∗3 − · · ·−
a2n
a12

Y ∗n ,

X∗2 = a12Y
∗
2 + a13Y

∗
3 + · · ·+ a1nY

∗
n
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and obtain
ω = X∗1 ∧X∗2 + ω0.

Iterate. ¥
Next, given a connected Lie group G, we obtain elements of the Lie algebra

g in the following fashion: Let ϕ : [−ε, ε] → G be a C∞ curve in G such that
ϕ(0) = 1. Then on u ∈ C∞(G), X ∈ g is defined by [Xu](g) = d

dtu(g◦ϕ(t))|t=0,
as t 7→ g ◦ϕ(t) ≡ lgϕ(t) is another curve such that g ◦ϕ(0) = g. We define lg as
the operation from the left:

lg : G→ G, lg(g1) = g ◦ g1 ∀g, g1 ∈ G.

Then for u ∈ C∞(G), we denote by the same symbol, [lgu](g0) = u(lgg
0) =

u(g ◦ g0). We obtain that the vector fields X ∈ TG as defined above are left
invariant, meaning lgX = Xlg as operators on C∞(G), and have the "same"
commutation relations from point g to point g0. From the definition, we compute
the left action of g ∈ G on X ∈ g written as (lg)∗ : TG→ TG. We define

(lg)
∗ω(X,Y, · · ·) = ω((lg)∗X, (lg)∗Y, · · ·),

for any m-form ω. We similarly define the right action of G by

rg : G→ G, rg(g1) = g1g
−1;

(rg)∗ : TG→ TG;

(rg)
∗ω(X,Y, · · ·) = ω((rg)∗X, (rg)∗Y, · · ·).

Then lgrg corresponds to conjugation in the group, and we have a special name
for the analog of (lg)∗ and (lg)∗ or (rg)∗ and (rg)∗, namely g∗ and g∗.
We define a symmetry group, or a symplectic group, as a groupG, G : Γ→ Γ,

with 2-form ω satisfying left invariance:

(l∗g)ω = ω for all g ∈ G. (23)

We note that for the left invariant vector fields, this is automatic.
For X ∈ TM , the contraction ιX is defined by

ιX : ∧m+1(T ∗M)→ ∧m(T ∗M),
[ιXω](Y1, · · ·, Ym) = ω(X,Y1, · · ·, Ym), (24)

for all m ∈ N.

Definition 1 A vector field X is Hamiltonian iff there is a function f ∈ C∞(M)
such that

ιXω = δf, (25)

where ω is the symplectic 2-form. Note that Xf is automatically Hamiltonian
for f ∈ C∞(M).
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It may be shown that this is a generalization of the Hamiltonian structure in
the last section. We will call such Hamiltonian vector fields as the/a Hamiltonian
on the phase space (M,ω) = (Γ, ω).
Furthermore, this symplectic space is exactly the phase space we have in

Section 2 for classical mechanics with

X2j = Xpj , X2j−1 = Xqj ,

ω(X,Y ) =
nX
j=1

³
X∗qj (X)X

∗
pj (Y )−X∗qj (Y )X

∗
pj (X)

´
, (26)

X,Y ∈ TΓ. With Xf satisfying (7), we then have

ω(Xf ,Xh) = {f, h}, f, h ∈ C∞(Γ).

In this fashion, we have generalized from the phase space being R2n to being
a general symplectic manifold.

4 Symplectic Space and G/H

We present a series of results that assert that we may consider a symplectic space
(Γ,Ω) where Ω is the symplectic 2-form on Γ as a manifold (G/H,ω) where ω is
a symplectic 2-form on G/H. Then we form the orbit of these (G/H,ω), and we
obtain the leaves of (Γ,Ω). That is, we present the general theory of classical
mechanics from the standpoint of a general locally compact Lie group, G, of
symmetries of a physical system. We follow [2].
We start with a differentiable manifoldM on which G acts on the left. Thus

for all g ∈ G, we have that

ϕg :M →M, ϕg(m) = gm (27)

is a diffeomorphism. Similarly, for all m ∈M , we have the diffeomorphism

ψm : G→M, ψm(g) = gm. (28)

Since the operation satisfies g1(gm) = (g1 ◦ g)m for all g1, g ∈ G, we obtain

(ϕgψm)(g1) = g(g1m) = (ψmlg)(g1)

or
ϕgψm = ψmlg. (29)

We also have ψgm(g1) = g1(gm) = (g1 ◦ g)m = ψmrg−1(g1), or

ψgm = ψmrg−1 . (30)

We want M to be a phase space, Γ, and that implies that it has a G-left
invariant 2-form, Ω. Now, the G-left invariance of the 2-form is equivalent to
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the G-left invariant Poisson bracket: Let (ϕg)∗ denote the left action of g on
X ∈ TΓ, and the action of g ∈ G on any 2-form by ϕ∗g:

[ϕ∗gΩ][Xf ,Xh] = Ω[(ϕg)∗Xf , (ϕg)∗Xh]. (31)

Then, if we have left invariance of the Poisson bracket, we have left invariance
of the 2-form Ω:

Ω[(ϕg)∗Xf , (ϕg)∗Xh] = X{ϕgf,ϕgh} = X{f,h} = Ω[Xf ,Xh]. (32)

The converse is proven similarly.
With this action, we have just proved

ϕ∗gΩ = Ω. (33)

Now, for each point x ∈ Γ, the 2-form on G, ψ∗xΩ, satisfies

l∗gψ
∗
xΩ = ψ∗xϕ

∗
gΩ = ψ∗xΩ; (34)

i.e., ψ∗xΩ is also left invariant.
Since the group action on the left commutes with the action on the right

[(lgrh)(k) = (rhlg)(k) ∀g, h, k ∈ G], we obtain

r∗hl
∗
g = l∗gr

∗
h.

Then for any left-invariant form ω on G, we obtain

l∗gr
∗
hω = r∗hl

∗
gω = r∗hω;

so, r∗hω is another left-invariant form on G. Also, (lgrg)(k) = g ◦ k ◦ g−1 is the
action of the group commutator, from which we obtain the action of g ∈ G on
the curves in G, from which we obtain the action of g ∈ G on elements in TG.
Hence

g 7→ (rg−1)
∗ (35)

defines a representation of G on the set of left-invariant 2-forms.
Finally, by

ψgx = ψxrg−1 ,

we obtain
ψ∗gxΩ = r∗g−1ψ

∗
xΩ.

Thus we have proven

Theorem 2 ([2, p 173]) A left-invariant 2-form Ω on Γ defines a map

Ψ : Γ→ {2-forms on G}

given by
Ψ(x) = ψ∗xΩ,

and furthermore, this map has a representation of G:

Ψ(gx) = r∗g−1Ψ(x). (36)
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We also have
δΨ(x) = δ(ψ∗xΩ) = ψ∗xδΩ = 0;

i.e., Ψ(x) is also a closed 2-form. Hence, Ψ : Γ→ Z2(g∗).
Consequently, we have

Theorem 3 ([2, p 173]) Given a symplectic space (Γ,Ω) with a (Lie) group of
symplectic symmetries G, we define a G morphism, Ψ : Γ→ Z2(g∗). Since the
map Ψ is a G morphism, Ψ(Γ) is a union of G orbits in Z2(g∗). In particular,
if the action of G on Γ is transitive, then the image of Ψ consists of a single G
orbit in Z2(g∗).

In view of the comment we made after equation (11), we may have trouble
when we try to connect elements of g with the canonical coordinates in Γ. We
note, however, that we will be making a connection by operating on the right
consistent with equation (30)!
By the next result, we may perform the inverse mapping as well: Now let G

be a locally compact Lie group with its Lie algebra g which is taken to be finite
dimensional. Let ω ∈ Z2(g∗). (If ω is not in the form of equation (22), it may
be put in that form using the induction in the proof.) Define

hω = {X ∈ g | ιXω = 0}.

Hence, if Y ∈ g is such that ιY ω = 0, then

DY ω = ιY δω + δ(ιY ω) = 0

since δω = 0, DY denoting the derivative in the direction of Y . Now if both X
and Y are in hω, we have

0 = DX(ιY ω) = ιDX(Y )ω + ιYDX(ω) = ιDX(Y )ω.

But one can show that DX(Y ) = [X,Y ]; so, ι[X,Y ]ω = 0; that is, hω is a Lie
algebra and a Lie subalgebra of g.
Next, form Hω, a subgroup of G, by exponentiating hω. We assume that

Hω is a closed subgroup of G. Hence G/Hω is a manifold. Then, we may prove
in one of two ways that G/Hω is a symplectic space:
Method 1: There is a map (a submersion) ρ : G → G/Hω such that the

leaves of the foliation are all of the form ρ−1(x) for x ∈ G/Hω. ρ is defined
by using local coordinates (x1, · · ·, xdimG) such that the leaves of the foliation
are given by x1 = constant, · · ·, xk = constant, and so that the tangent
space to G/Hω is spanned by ∂

∂xk+1
= Xk+1, · · ·, ∂

∂xdimG
= XdimG. Now write

ω =
PdimG aj,lX

∗
j ∧ X∗l where the aj,l are real-valued functions. Then the

condition

ι

µ
∂

∂xk+1

¶
ω = 0, · · ·, ι

µ
∂

∂xdimG

¶
ω = 0

implies that aj,l = 0 for j or l greater than k. The condition δω = 0 implies
that aj,l cannot depend on the coordinates xk+1, · · ·, xdimG. Thus we may use
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the coordinates x1, · · ·, xk as local coordinates on G/Hω. Therefore, we have
ρ(x1, · · ·, xdimG) = (x1, · · ·, xk), and locally ω = ρ∗ω where

ω =

dimG/HωX
aj,lX

∗
j ∧X∗l .

ω is non-degenerate and closed; i.e., symplectic.
Method 2: From the Campbell-Baker-Hausdorff Theorem, we see that, for

all X ∈ g and Y ∈ hω, eX ◦ eY = eX+Z for some Z ∈ hω. But eX ◦ eY is
any element in G/Hω, for G connected. Now ω(TeX , T eW ) = ω(X,W ) for
X, W ∈ g. Consequently, for Y,U ∈ hω, there exist V,Z ∈ hω such that
eX ◦ eY = eX+V , and eW ◦ eU = eW+Z . Hence,

ω(T (eX ◦ eY ), T (eW ◦ eU )) = ω(T (eX+V ), T (eW+Z))

= ω(X + V,W + Z)

= ω(X,W ).

Thus we have an element of Z2(T ∗(G/Hω)).
We will henceforth use (G/Hω, ω) or its orbit as the phase space (Γ,Ω).
We should prove the remark that a general action of G on G/Hω from the

left, denoted here by ·, or from the right, denoted here by ∗, is a representation
of G:

(l ◦ k) · (gHω) = [(l ◦ k) ◦ g]Hω

= [l ◦ (k ◦ g)]Hω

= l · [(k ◦ g)Hω]

= l · k · [gHω], (37)

and

(l ◦ k) ∗ (gHω) = (gHω) ◦ (l ◦ k)−1

= (gHω) ◦ (k−1 ◦ l−1)
= [(gHω) ◦ k−1] ◦ l−1

= l ∗ [(gHω) ◦ k−1]
= l ∗ [k ∗ (gHω)], (38)

for all l, k, g ∈ G. We will address the fact that this right action as it presently
stands, is not an action on G/Hω at all. It, however, will be seen to be an action
on the orbit of G/Hω.
In the special case of a Lie group in which the subgroup, Hω, is normal, (38)

may be rewritten:

(l ◦ k) ∗ (gHω) = [g ◦ (l ◦ k)−1]Hω

= [g ◦ k−1 ◦ l−1]Hω

= l ∗ [(g ◦ k−1)Hω]

= l ∗ k ∗ (gHω).

12



But we will have a difficulty in pushing the last through for all Lie groups, as
the element "k ∗ (gHω)" is not well-defined. If you have g ◦Hω = g0 ◦Hω then
you have g0 = g ◦ h for some h ∈ Hω and then (g ◦ k−1) ◦Hω = k ∗ (g ◦Hω) =
k ∗ (g0 ◦Hω) = k ∗ (g ◦ h ◦Hω) = (g ◦ h ◦ k−1) ◦Hω, but g ◦ h ◦ k−1 is not equal
to g ◦ k−1 even up to a multiplication on the left by some h0 ∈ Hω. (Unless Hω

is normal in G.)
Now we may address the fact that the right action is not an action on G/Hω

at all. We will take for an action on the right,

k ∗ (g ◦Hω) = (g ◦Hω) ◦ k−1 = (g ◦ k−1) ◦ (k ◦Hω ◦ k−1) (39)

where we may use k ◦Hω ◦ k−1 as a new "Hω0". If Hω is a closed subgroup of
G, then so is k ◦ Hω ◦ k−1. But this change from G/Hω to G/(k ◦ Hω ◦ k−1)
is in accordance with the fact that we have a symplectic manifold M , TxM ,
etc., and which is not simply a symplectic vector space. Consequently we have
k◦Hω◦k−1 = Hk∗ω = Hr∗kl

∗
kω
= Hr∗kω

, consistant with the form of the symplectic
manifold structure. This, in turn, says that we do not have a single symplectic
vector space, G/Hω, on which we work, but rather the following for the action
∗ on the right:

∗ : (G,∪0k∈GG/Hr∗kω
)→ ∪0k∈GG/Hr∗kω

,

∗ : (g0, g ◦Hr∗kω
) 7→ (g ◦ g−10 ) ◦Hr∗g0r

∗
kω
,

where ∪0 denotes the disjoint union and g, g0 ∈ G.
We will augment the above paragraphs with the following: Instead of l∗gω =

ω, suppose that you have g∗ω = ω. Then, for X ∈ hω and for all Y ∈ g,
0 = ω(X,Y ) = g∗ω(X,Y ) = ω(g∗X, g∗Y ). But the map Y 7→ g∗Y is one-to-
one; so, this makes ω(g∗X,Y ) = 0 for all Y ∈ g That is, g∗X ∈ hω. In this way
we obtain that g∗hω = hω for all g ∈ G, and then g ◦Hω ◦ g−1 = Hω; i.e., Hω is
normal in G. Hence we will get just one symplectic manifold (G/Hω, ω) which
is just a symplectic vector space! The converse is also valid. As an application
of this result, the Heisenberg group is commutative; so, every subgroup of the
Heisenberg group is normal and we obtain just one symplectic manifold that
is a symplectic vector space given any non-degenerate, closed 2-form. This,
however, does not generalize to other Lie groups.
Also, we should remark that for the case of the left regular representation

(quantum mechanics), it is enough to have a single ω ∈ Z2(g) and hence a single
G/Hω as lgG/Hω = G/Hω.

4.0.1 Comment on the Right Action

For x with a group action on both the left or the right, we have from the left

x 7→ d

dt
etXx |t=0≡ Xx

and from the right

x 7→ d

dt
xe−tX |t=0≡ xX.

13



In particular, if x = gHω and X ∈ hω, then for the right action, we have

−xX = −gHωX = − d

dt
gHωe

−tX |t=0= −
d

dt
gHω |t=0= 0.

Thus, on G/Hω, every element of hω has a right action equal to 0. However,
hω has a different character when operating from the left: Xx = XgHω. You
cannot do anything to simplify the action in general, because of the intervening
"g" which is variable. Similarly, if X and Y have [X,Y ] = Z ∈ hω, then when
operating from the right on any x ∈ G/Hω, we have x[X,Y ] = xZ = 0; that is,

xXY = xY X.

Thus the X and Y may be represented by partial derivatives when operating
on the right on G/Hω. We would like to generalize this result.
Now for classical mechanics, we wish to have canonical variables on ∪0G/Hr∗gω;

i.e., we wish to have elements of T (∪0G/Hr∗gω) that have commutation relations
(Lie brackets) that are zero on ∪0G/Hr∗gω. In view of the disjoint union, it suf-
fices to make that a zero on G/Hω and then perform the map X 7→ gXg−1 on
the functions on T (∪0G/Hr∗gω). We have just shown that some of the elements
of T (G/Hω) are of the form of elements that are in g and are not in hω; i.e., we
would like to have X,Y ∈ g/hω such that [X,Y ] ∈ hω for all X,Y in a basis for
T (G/Hω). But [g/hω, g/hω] is not in hω for a general Lie algebra. For example,
in the rotation group in three dimensions (see Part 2), one basis of generators is
{Jj | j ∈ {1, 2, 3}} with [J1, J2] = J3 and cyclically. You may choose ω such that
hω = {aJ3 | a ∈ R}. Then [J1, J2] ∈ hω, but [J1 + J3, J2] /∈ hω; i.e., canonical
coordinates are not {J1 + J3, J2} but are {J1, J2}.

Definition 4 (Tentative) Elements Xj of a basis of g/hω such that [Xj ,Xk] ∈
hω will be denoted by Xj ∈ g− hω.

Then we would have
[g− hω, g− hω] ⊆ hω (40)

implies "the commutator equals zero" on G/Hω.
This condition does not cover all cases in which X and Y apparently com-

mute when acting on G/Hω. Suppose we have a representation π on the right
of G on G/Hω. Denote the representation of g on G/Hω by π also. Then we
have [π(X), π(Y )] = π(Z), and π(hω) = 0. Next, suppose in addition we have a
Z ∈ g that has π(Z) having an eigenvalue, λ, on every vector in π(G/Hω); i.e.,
π(Z) = λ1. (Equivalently, we are working in a central extension of G with λ1
denoting the point (λ, e) in the extension. In this case, automatically we have
λ1 ∈ hω.) We now have λhω = hω; so, for every such representation π of G on
G/Hω, we have hω[π(X), π(Y )] = hωπ(Z) = λhω = hω. Consequently, we have
(G/Hω)e

Z = G/Hω. Now, if Z has a denumerable set of eigenvalues, we could
use the spectral theorem and decompose π(G/Hω) accordingly. We obtain the
following:
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Definition 5 Let G be a Lie group with a finite dimensional Lie algebra g; let
ω ∈ Z2(g) and let hω be its kernel. Assume that Hω is a closed subgroup of G
generated by the elements of hω. The set of all elements X and Y of g that, in
a representation π of g (or G) on G/Hω, have

[π(X), π(Y )] ⊆ π(hω) +R1 = R1 (40’)

form the set π(g− hω). In case π(g− hω) is not all of T (G/Hω) because some
of the pairs of elements have commutators that are operators that have non-
singleton spectrum, then we (direct) sum over the spectrum. The elements of
π(g− hω) are recognized potentially as a basis for T (G/Hω). They will be re-
ferred to as "being a set of canonical variables in π(G/Hω)."

We emphasize that if [π(X), π(Y )] = π(Z) 6= 0, then we have no representa-
tion π in which π(X) = λ1 or π(Y ) = λ1 for λ 6= 0. Consequently, the problem
becomes one of choosing which of the canonical variables we may choose to be
diagonalizable in terms of an eigenspectrum.
Furthermore, we may write (40’) as {for all Z ∈ g, [[π(X), π(Y )], π(Z)] = 0}

and interpret this as a condition that "[X,Y ] acts as a zero" on π(G/Hω). This
result is reminiscent of G. W. Mackey’s work on the Galilei group to obtain
interactions in quantum mechanics. [8]
In case (40’) fails to hold for all elements π(X) in a basis for π(g/hω), we

may still proceed chosing a partial basis for π(G/Hω) consisting of the π(X)s
for which (40’) hold; then make the Hamiltonian in terms of them, the rest of
the basis for π(G/Hω) being just orthogonal coordinates to complete the partial
basis to a basis. This will generate the canonical variables in general. We will
not have to resort to this case for most of the examples we will treat here.
For g(G/Hω)g

−1 = G/Hr∗gω, we have [Xj ,Xk] ∈ hω+R1 (maybe doing a cen-
tral extension of G) implies [(rg)∗Xj, (rg)∗Xk] ∈ (rg)∗(hω +R1). Consequently,
supposing the set {Xj} is a basis of canonical variables for G/Hω, then the
set {(rg)∗Xj} will be a basis of canonical variables on g(G/Hω)g

−1 = G/Hr∗gω.
By taking the disjoint direct sum over all g ∈ G we will obtain the canonical
variables for the symplectic manifold. Similarly for π(g(G/Hω)g

−1), etc.
For completeness, we note that we only ask that (40’) holds and not that

the commutators of things in Pn(g), the polynomials in g of order n, are in
π(hω) + R1, even for n = 2. In the case of the Heisenberg group, generalizing
(40), and not (40’), to Pn(g) is what Santille [9] calls the "problematic aspects
of the quantization of Hamilton’s equations into Heisenberg’s equations," or in
the language of Groenwald [10], von Hove [11], and others, a "full quantization"
does not exist. In this "quantization" a map from the classical variables to the
self-adjoint operators on some Hilbert space is assumed. (The recognition that
the operators may operate from the right or the left doesn’t seem to have been
made.) In Groenwald’s Theorem, it is shown that an inconsistency occurs when
polynomials of order 3 are considered. Here, we are interested only in satisfying
(40’). "Quantization" of arbitrary functions of the ps and qs are treated in [3]
as well as in Section 3 of Part 2, but that presupposes that we have a phase
space already.
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5 Summary
In Part 1, we have shown that any locally compact Lie group has, in theory,
classical interactions, H, on the classical variables defined on the appropri-
ate G/Hω by g0Hω 7→ g0Hωe

−itH = g0e
−itHHω. Then, on g(G/Hω)g

−1 =
G/Hr∗gω we have the corresponding form of the Hamiltonian given by g0Hr∗gω 7→
g0Hr∗gωe

−it(rg)∗H = g0e
−it(rg)∗HHr∗gω. Note the dependence on g ∈ G.
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