
Non-Extendible Latin Cuboids

Darryn Bryant∗

db@maths.uq.edu.au,
Nicholas J. Cavenagh§†

nicholas cavenagh@yahoo.co.uk

Barbara Maenhaut∗

bmm@maths.uq.edu.au

Kyle Pula‡

jpula@math.du.edu

Ian M. Wanless§

ian.wanless@monash.edu

Abstract

We show that for all integers m > 4 there exists a 2m × 2m ×m
latin cuboid that cannot be completed to a 2m × 2m × 2m latin
cube. We also show that for all even m /∈ {2, 6} there exists a
(2m−1) × (2m−1) × (m−1) latin cuboid that cannot be extended
to any (2m−1)× (2m−1)×m latin cuboid.

1 Introduction

There is a celebrated result due to Marshall Hall [6] that every latin rectangle
is completable to a latin square. However, the equivalent statement in higher
dimensions is not true. The purpose of this paper is to investigate the extent
to which it fails.

We think of a 3-dimensional array as having layers stacked on top of each
other. It also has lines of cells in three directions, obtained from fixing two
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coordinates and allowing the third to vary. The lines obtained by varying
the first, second and third coordinates will be known respectively as columns,
rows and stacks. The first, second and third coordinates themselves will be
referred to as the indices of the rows, columns and layers.

An n× n× k latin cuboid is a 3-dimensional array containing n different
symbols positioned so that every symbol occurs exactly once in each row and
column and at most once in each stack. An n× n× n latin cuboid is a latin
cube of order n. Every layer of a latin cuboid is a latin square, and we will
present our cuboids by displaying the latin squares corresponding to each
layer. Each individual layer is composed of a set of n2 entries, each of which
is a triple (r, c, s) where s is the symbol in row r and column c. The layer in
which a given entry resides will always be made clear by the context.

We say that an n × n × k latin cuboid has order n. It is extendible if it
is contained in some n × n × (k + 1) latin cuboid and it is completable if it
is contained in some latin cube of order n. Our aim is to investigate how
“thin” (that is, how small k can be, relative to n) non-extendible and non-
completable latin cuboids can be. We will refer to an n× n× k latin cuboid
as being less than half-full, half-full or more than half-full if k < 1

2
n, k = 1

2
n

or k > 1
2
n, respectively. Although we find some non-extendible examples

that are less than half-full, many questions will remain open.
In the 1980s, several authors [5, 7, 8] considered the problem of con-

structing non-completable n × n × (n − 2) latin cuboids. Subsequently Ko-
chol [9] proved that for any k and n satisfying 1

2
n < k 6 n − 2 there is a

non-completable n × n × k latin cuboid. Although he did not say so, it is
simple to use such examples to create non-completable n × n × · · · × n × k
latin hypercuboids in higher dimensions. Kochol conjectured that all non-
completable latin cuboids are more than half-full, but examples of non-
completable 5 × 5 × 2, 6 × 6 × 2, 7 × 7 × 3 and 8 × 8 × 4 latin cuboids
were subsequently given in [10]. Our results will show that Kochol’s conjec-
ture fails for all orders except possibly those that are 1 mod 4.

Cutler and Öhman [2] showed for all m that every 2mk× 2mk×m latin
cuboid is extendible, provided k is sufficiently large. Little else is known
about extendibility aside from the elementary observations that all n×n× 1
and n × n × (n − 1) latin cuboids are extendible (in fact completable). Of
course, by extending any non-completable latin cuboid as far as possible we
will obtain at least one non-extendible latin cuboid, but often only one of
dimensions n× n× (n− 2).

2



2 Half full non-completable latin cuboids

In this section we build non-completable latin cuboids of even order that are
exactly half full. To do this we show that the sets of symbols that are missing
from the stacks of the latin cuboid have a particular configuration. For an
n×n×k latin cuboid where k 6 n, the set of available symbols in each stack
consists of those symbols that do not occur in that stack.

For each integerm > 1, let U = U(m) = {1, 2, . . . ,m} and U∗ = U∗(m) =
{1∗, 2∗, . . . ,m∗}. Let R(m) be a 2m×2m×m latin cuboid with rows, columns
and symbols indexed by U ∪ U∗ and layers indexed by U .

Consider the m×m×m sub-array of R(m) with rows, columns and layers
indexed by U . Suppose that the sets of available symbols in this sub-array’s
stacks are as follows:

X X · · · X
Y U∗ U∗ U∗

... U∗ . . .
...

Y U∗ · · · U∗

(1)

where X = (U∗ \ {1∗}) ∪ {1} and Y = (U∗ \ {2∗}) ∪ {1}. Then we say that
R(m) is awkward. Note that an awkward latin cuboid has even order.

Lemma 1. For m > 2, no 2m×2m×m awkward latin cuboid is completable.

Proof. To complete R(m), we restrict our attention to the problem of choos-
ing entries for the sub-array T with rows and columns indexed by U and
layers indexed by U∗. Thus the stacks of T must use the available symbols
described in (1). To prove our lemma, it suffices to show that a completion
of T is impossible.

Now, some layer of T must include symbol 1 in row and column 1. This
will be the only occurrence of 1 in this layer of T . Symbols 1∗ and 2∗ can each
occur at most (m − 1) times in this layer of T while symbols 3∗ to m∗ can
each occur m times. But this allows at most 2(m−1)+(m−2)m+1 = m2−1
cells to be filled in this layer of T , a contradiction.

By computer search, we found that awkward latin cuboids of orders less
than 8 do not exist. We did find examples of orders 8, 10, 12 and 14 (that is,
for m = 4, 5, 6 and 7) and these are given in the Appendix. Hence we have
the following lemma.

Lemma 2. For each m ∈ {4, 5, 6, 7}, there exists a 2m × 2m ×m awkward
latin cuboid.
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To construct awkward latin cuboids of orders greater than 14 we apply an
embedding construction. We first construct awkward latin cuboids of orders
0 mod 4.

Theorem 3. If there exists a 2m×2m×m awkward latin cuboid R(m), then
there exists a 4m× 4m× 2m awkward latin cuboid R′(2m).

Proof. Let m > 4 and let R(m) be a 2m × 2m × m awkward latin cuboid.
Define U1 = U(m), U2 = U(2m) \ U(m), U∗

1 = U∗(m) and U∗
2 = U∗(2m) \

U∗(m).
We build R′(2m) from R(m) and some latin cubes of order m. Let the

rows and columns of R′(2m) be indexed by U1 ∪U2 ∪U∗
1 ∪U∗

2 and the layers
be indexed by U1∪U2. In the sub-array indexed by rows and columns U1∪U∗

1

and layers U1, we embed a copy of R(m).
Let A1, A2, A

∗
1 and A∗

2 be latin cubes of order m on symbol sets U1, U2,
U∗
1 and U∗

2 , respectively. Furthermore, let B, C∗, D and E∗ be latin cubes of
order m on symbol sets U1, U

∗
1 , U1 and U∗

1 , respectively, with the following
properties. Latin cubes B and C∗ contain symbols 1 and 1∗, respectively, in
the first row and ith column of layer i, for each i, while latin cubes D and
E∗ contain symbols 1 and 2∗, respectively, in the ith row and first column of
layer i. It is trivial to construct such cubes by starting with any latin cube of
the correct size and symbol set, and then permuting the layers appropriately.

We construct a 4m×4m×2m latin cuboid from these smaller latin cubes
as indicated in the following diagrams, with empty cells taken up by the
embedding of R(m). (It is understood that the “ith” element of sets U2, U

∗
1

or U∗
2 refers to m+ i, i∗ or (m+ i)∗, respectively.)

U1 U2 U∗
1 U∗

2

U1 A2 A∗
2

U2 A2 A1 A∗
2 A∗

1

U∗
1 A∗

2 A2

U∗
2 A∗

2 A∗
1 A2 A1

Layers U1

U1 U2 U∗
1 U∗

2

U1 A2 B A∗
2 C∗

U2 D A2 E∗ A∗
2

U∗
1 A∗

2 C∗ A2 B
U∗
2 E∗ A∗

2 D A2

Layers U2

Next, for each u ∈ U2, we exchange the symbols within two latin sub-
squares of order 2 from layer u of the 4m× 4m× 2m latin cuboid described
above. To be precise, we replace the following entries of layer u

(1, u, 1), (1, u∗, 1∗), (u, 1, 1), (u, 1∗, 2∗),
(1∗, u, 1∗), (1∗, u∗, 1), (u∗, 1, 2∗), (u∗, 1∗, 1),

(2)
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with the entries

(1, u, 1∗), (1, u∗, 1), (u, 1, 2∗), (u, 1∗, 1),
(1∗, u, 1), (1∗, u∗, 1∗), (u∗, 1, 1), (u∗, 1∗, 2∗).

(3)

It is routine to check that the resulting latin cuboid R′(2m) is awkward.

Next, using a similar approach of embedding the awkward cuboid R(m)
and swapping symbols in order 2 subsquares, we construct awkward latin
cuboids of orders 2 mod 4.

Theorem 4. If there exists a 2m × 2m × m awkward latin cuboid R(m),
then there exists a (4m + 2) × (4m + 2) × (2m + 1) awkward latin cuboid
R′′(2m+ 1).

Proof. Let m > 4 and let R(m) be a 2m × 2m × m awkward latin cuboid.
Define U1 = U(m), U2 = U(2m+1)\U(m), U∗

1 = U∗(m) and U∗
2 = U∗(2m+

1) \ U∗(m). Note that when performing modular arithmetic in this proof,
we always take the answer to be the least positive residue in the congruence
class.

We introduce a new operation, ⊕, defined as follows. For integers x, y
and m, let

x⊕ y =

{
x+ y if x+ y 6 2m+ 1,
x+ y −m− 1 otherwise.

So, for instance, (2m+ 1)⊕ 1 = m+ 1. We now define a quasigroup (Q, ◦),
where Q = U1 ∪ U2, as follows.

i ◦ j = i+ j mod m if i, j ∈ U1;
i ◦ j = i⊕ j if i = U1, j ∈ U2 or i ∈ U2, j ∈ U1;
i ◦ i = i if i ∈ U2;
i ◦ j = i− j mod (m+ 1) if i, j ∈ U2, i ̸= j.

We use Q, in turn, to define a latin cube S of order 2m + 1 with rows,
columns and layers indexed by U1 ∪U2, where the cell in row i and column j
of layer l contains symbol (i ◦ j) ◦ l for each i, j, l ∈ U1 ∪U2. Next, we extend
S to a (4m+2)× (4m+2)× (2m+1) latin cuboid R†(2m+1) as follows. Let
S∗ be a copy of S in which every symbol has been starred. Form R†(2m+1)
by placing copies of S and S∗ in the following arrangement

S S∗

S∗ S
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where rows and columns are indexed in the obvious way by U1∪U2∪U∗
1 ∪U∗

2 .
Note that the layer indices remain unstarred.

A number of adjustments are needed to turn R†(2m+1) into an awkward
latin cuboid R′′(2m + 1). Firstly, observe that R†(2m + 1) contains a 2m×
2m × m subcuboid with row and column indices from U1 ∪ U∗

1 and layer
indices from U1, based on the symbols U1 ∪ U∗

1 . We replace this subcuboid
with the awkward latin cuboid R(m).

Next, for each row i ∈ U2 and layer l ∈ U1 ∪ U2, we swap the symbols in
columns 1∗ and 2∗. Similarly, for each row i ∈ U∗

2 and layer l ∈ U1 ∪ U2, we
swap the symbols in columns 1 and 2. Observe that overall each row, column
and stack remains latin.

Finally, for each u ∈ U2, we exchange the symbols within two latin sub-
squares of order 2 from layer u of the (4m+ 2)× (4m+ 2)× (2m+ 1) latin
cuboid described above. To be precise, we replace the entries of layer u listed
in (2) with the entries listed in (3). It is routine to check that the resulting
latin cuboid R′′(2m+ 1) is awkward.

Combining the results in this section, we have the following:

Theorem 5. For all m > 4, there exists a non-completable 2m × 2m × m
latin cuboid.

We next show that the latin cuboids constructed in this section, while
not completable, are extendible by at least one layer.

Corollary 6. For all m > 8, there exists a non-completable 2m × 2m ×m
latin cuboid which is extendible to a 2m× 2m× (m+ 1) latin cuboid.

Proof. For each latin cuboid constructed in Theorems 3 and 4, we describe
a latin square that can be added as an extra layer without causing repeated
entries in a stack. The rows and columns of our latin square will be indexed
by U1∪U2∪U∗

1 ∪U∗
2 as in the proofs above. For the sake of economy we give

our construction below in terms of U1, U2, U
∗
1 , U

∗
2 ; note however that these

have distinct definitions in Theorems 3 and 4.
Fix an element u ∈ U2. In the intersection of rows U1 ∪ U2 with columns

U1 ∪ U2 (respectively, rows U∗
1 ∪ U∗

2 with columns U∗
1 ∪ U∗

2 ), we place a
latin square on the symbol set U∗

1 ∪ U∗
2 containing the entries (1, u, 1∗) and

(u, 1, 2∗) (respectively, (1∗, u∗, 1∗) and (u∗, 1∗, 2∗)). We also specify that cells
from rows U1 and columns U1 (respectively, rows U

∗
1 and columns U∗

1 ) contain
only symbols from U∗

2 .
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Next, in the intersection of rows U1 ∪ U2 with columns U∗
1 ∪ U∗

2 (respec-
tively, rows U∗

1 ∪ U∗
2 with columns U1 ∪ U2), we place a latin square on the

symbol set U1∪U2 containing the entries (1, u∗, 1) and (u, 1∗, 1) (respectively,
(1∗, u, 1) and (u∗, 1, 1)). We also specify that cells from rows U1 and columns
U∗
1 (respectively, rows U∗

1 and columns U1) contain only symbols from U2.
Finally, we exchange the entries

(1, u, 1∗), (1, u∗, 1), (u, 1, 2∗), (u, 1∗, 1),

(1∗, u, 1), (1∗, u∗, 1∗), (u∗, 1, 1), (u∗, 1∗, 2∗),

with the entries

(1, u, 1), (1, u∗, 1∗), (u, 1, 1), (u, 1∗, 2∗),

(1∗, u, 1∗), (1∗, u∗, 1), (u∗, 1, 2∗), (u∗, 1∗, 1).

Given a latin cuboid constructed in Theorems 3 or 4, the above construc-
tion yields a latin square that can serve as an additional layer.

The obstruction used to prove Theorem 5 is similar to that used by Ko-
chol [9]. In the next section we will use a very different argument to con-
struct non-extendible latin cuboids; an argument which is reminiscent of the
∆-lemma arguments in [1], [3], [4] and [11].

3 Thin non-extendible cuboids

We now turn our attention to the problem of finding thin non-extendible
latin cuboids. A species (also known as a main class) is an equivalence class
of latin squares or rectangles. We shall use the term “species” for the natural
generalisation of this well-known notion to latin cubes and cuboids (also see
[10]).

For k < n 6 4, all n × n × k latin cuboids are completable, and hence
all are extendible. Of the 31 species of 5× 5× 2 latin cuboids, there is only
one that is non-extendible; it is the non-completable example given in [10].
To find the thinnest example of a non-extendible latin cuboid of order 6, we
compiled a catalogue of all 601 115 species of 6 × 6 × 2 latin cuboids. We
then counted the number of extensions that each had to a 6 × 6 × 3 latin
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cuboid. The fewest number of extensions was 3932, which was achieved by
the following example.

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 1 2 3
5 3 6 2 1 4
6 4 2 5 3 1

3 5 1 6 2 4
6 2 5 1 4 3
1 4 3 2 5 6
5 1 4 3 6 2
4 6 2 5 3 1
2 3 6 4 1 5

The most number of extensions was 41984, which was achieved by two species;
the one shown below, and the one that can be obtained from this one by
interchanging the shaded symbols.

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3

2 1 4 3 6 5
1 2 3 4 5 6
4 3 6 5 2 1
3 4 5 6 1 2
6 5 2 1 4 3
5 6 1 2 3 4

Thus, the thinnest non-extendible latin cuboid of order 6 is a 6× 6× 3 latin
cuboid. An example of such a latin cuboid is given below; it is an extension
of the non-completable 6× 6× 2 latin cuboid given in [10].

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3

2 1 4 3 6 5
1 2 5 6 4 3
4 5 6 2 3 1
3 6 2 1 5 4
6 4 3 5 1 2
5 3 1 4 2 6

3 4 5 6 1 2
4 3 2 1 5 6
6 1 3 5 2 4
5 2 1 4 6 3
2 5 6 3 4 1
1 6 4 2 3 5

Hence, order 6 is the smallest order for which there exists a non-completable
latin cuboid that has strictly fewer layers than any non-extendible latin
cuboid. For order 7, the construction below gives a non-extendible 7× 7× 3
latin cuboid, but we do not know if there is one with fewer layers.

We now give a construction that produces a family of non-extendible
latin cuboids that are slightly less than half-full. This represents significant
progress given that all previous general constructions produced examples that
were at least half-full and that only satisfied the weaker condition of being
non-completable.
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Theorem 7. For all even m /∈ {2, 6}, there exists a (2m− 1)× (2m− 1)×
(m− 1) non-extendible latin cuboid.

Proof. The 2m−1 symbols used in our construction will consist of unstarred
symbols U = {1, 2, . . . ,m} and starred symbols S = {1∗, 2∗, . . . , (m − 1)∗}.
We may add and subtract symbols within and between symbol sets so long as
we indicate whether the result is a starred or unstarred symbol and compute
modulo m−1 or m, respectively. We will place starred or unstarred brackets
around calculations to indicate the intended meaning. For example, ifm = 8,
then [5 + 6∗]∗ = 4∗ while [5 + 6∗] = 3. As in the previous section, when
performing modular arithmetic we always take the answer to be the least
positive residue in the congruence class.

Since m /∈ {2, 6}, there exists a pair of m×m orthogonal latin squares L
and M whose rows, columns and symbols are indexed by U . By permuting
rows and symbols if necessary, we can insist that m appears in every cell
on the main diagonal of M while the main diagonal of L lists the unstarred
symbols in order. For each u ∈ U there is a transversal Tu of L that corre-
sponds to the positions of the symbol u in M . For example, Tm is the main
diagonal of L.

We will construct a (2m − 1) × (2m − 1) × (m − 1) latin cuboid in four
blocks A,B,C, and D arranged as follows.

A B
C D

The rows of A and B and the columns of A and C will be indexed by S
while the rows of C and D and the columns of B and D will be indexed by
U . The layers of the cuboid will be indexed by U \{m}. Block A is any latin
cube of order m − 1 on the starred symbols S. The structure of layer u of
blocks B, C and D depends entirely upon the transversal Tu of L. Suppose
this transversal contains the entries {(i, ci, si) : i ∈ U}. Then in layer u, for
all i ∈ U and k∗ ∈ S:

• Block B contains the entry (k∗, ci, [si + k∗]);

• Block C contains the entry (i, k∗, [si + k∗]);

• Block D contains the entries (i, ci, si) and (i, [ci + k∗], k∗).

In other words, layer u of B and C consists of unstarred symbols developed
cyclically in each column and row, respectively. Meanwhile, layer u of D
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consists of a copy of Tu with the subsequent entries in each row listing the
starred symbols in order.

First we show that this construction yields a latin cuboid, that is, no line
contains a repeated symbol. It is straightforward to see that each layer is a
latin square on the symbols U ∪ S, so no row or column contains a repeated
symbol.

We now show that no stack contains a repeated symbol. Since A is
a latin cube, none of its stacks contain a repeated symbol. Suppose the
entry (x∗, y, s) occurs in both layers u and v of block B. By construction,
[s−x∗] is the symbol contained in column y of both Tu and Tv. Since disjoint
transversals of L must contain different symbols in any particular column,
we have u = v. Up to row-column symmetry, the same reasoning applies to
block C. For block D, suppose entry (x, y, s) occurs in layers u and v where
s is an unstarred symbol. It follows that (x, y, s) ∈ Tu and (x, y, s) ∈ Tv

and thus u = v. Now suppose entry (x, y, s∗) occurs in layers u and v of
block D. It then follows that there is an unstarred symbol in row x and
column [y − s∗]. Thus, by the same reasoning as above, we have that Tu

and Tv must intersect, and so u = v. Hence our construction does give a
(2m− 1)× (2m− 1)× (m− 1) latin cuboid.

Now suppose the constructed latin cuboid can be extended by a single
layer. Let RX , CX and SX be the sum, modulo m, of the row indices, column
indices, and symbols, respectively, for the occurrences of unstarred symbols
in this new layer in block X, for X = B,C. Since the new layer in block
A must contain only unstarred symbols, exactly one additional unstarred
symbol will be needed in each row of B and in each column of C (the unique
unstarred symbol not used in the corresponding row or column of A). Thus
RB = CC = [1∗ + 2∗ + · · · + (m− 1)∗] ≡

(
m
2

)
mod m. Since each unstarred

symbol occurs the same number of times in B as it does in C (namely m− 1
minus the number of times it occurs in A), we have SB = SC .

The main diagonal of L is not only a transversal but lists the unstarred
symbols in order so that they align with the column indexing. Therefore,
the only unstarred symbol available in row x∗ and column y of B is [x∗ + y],
and hence SB = RB + CB. Similarly SC = RC + CC . Given the previous
identities, we have RC = CB.

Let RD, CD, and SD be the sum, modulo m, of the row indices, column
indices, and symbols, respectively, for the occurrences of starred symbols in
the new layer in D. As already noted, exactly one unstarred symbol must
occur in each row of B and in each row of C in the new layer. Thus when the
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remaining (m− 1)2 entries of B (or C) are filled with starred symbols, each
starred symbol is missing from precisely one column of B (and from precisely
one row of C). Therefore, each starred symbol must be used in the new layer
in D precisely once and these occurrences must fall in the same columns used
by unstarred symbols in B and the same rows used by unstarred symbols in
C. Hence RD = RC , CD = CB and SD = [1∗+ · · ·+(m−1)∗] ≡

(
m
2

)
mod m.

Finally, consider which starred symbols are available for the new layer
in block D. Suppose s∗ is available in row x and column y in the new
layer. Thus, no earlier layer has an unstarred symbol in row x and column
[y − s∗]. Note that since the transversal Tm of L is the main diagonal, we
have that x ̸= y. Since, for every position off the main diagonal, there is
a layer that contains an unstarred symbol in that position, we have that
x = [y − s∗]. Thus x ≡ y − s∗ mod m and s∗ = (y − x mod m)∗ where
(y − x) mod m ∈ {1, 2, . . . ,m− 1} as required. Therefore SD = CD −RD.

Putting it all together, we have

1
2
m(m− 1) ≡ SD ≡ CD −RD = CB −RC ≡ 0 mod m.

This is a contradiction since m is assumed to be even.

We illustrate Theorem 7 by giving an example of the construction for
m = 4. Suppose that we choose the orthogonal latin squares

L =


1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

 and M =


4 2 3 1
2 4 1 3
3 1 4 2
1 3 2 4

 .

Then layers 1, 2 and 3 of our latin cuboid could be as shown below.

1∗ 2∗ 3∗ 4 1 2 3
2∗ 3∗ 1∗ 1 2 3 4
3∗ 1∗ 2∗ 2 3 4 1
3 4 1 1∗ 2∗ 3∗ 2
2 3 4 2∗ 3∗ 1 1∗

1 2 3 3∗ 4 1∗ 2∗

4 1 2 3 1∗ 2∗ 3∗

2∗ 3∗ 1∗ 1 4 3 2
3∗ 1∗ 2∗ 2 1 4 3
1∗ 2∗ 3∗ 3 2 1 4
4 1 2 3∗ 3 1∗ 2∗

1 2 3 4 1∗ 2∗ 3∗

2 3 4 1∗ 2∗ 3∗ 1
3 4 1 2∗ 3∗ 2 1∗

3∗ 1∗ 2∗ 3 2 1 4
1∗ 2∗ 3∗ 4 3 2 1
2∗ 3∗ 1∗ 1 4 3 2
1 2 3 2∗ 3∗ 4 1∗

4 1 2 1∗ 2∗ 3∗ 3
3 4 1 2 1∗ 2∗ 3∗

2 3 4 3∗ 1 1∗ 2∗

Together these layers form a non-extendible 7× 7× 3 latin cuboid.
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4 Concluding remarks

The case m = 2 is a genuine exception in Theorem 7, in the sense that there
are certainly no 3 × 3 × 1 non-extendible latin cuboids. We do not know
whether m = 6 is a genuine exception, or just an artifact of our construction.
It would also be interesting to know whether an analogue of Theorem 7
holds for odd m. The same construction cannot be used since, at least when
m ∈ {3, 5}, the cuboid is not just extendible, it is completable.

The existence of an at most half-full non-extendible latin cuboid of an
order n > 6 with n ̸≡ 3 mod 4 remains open. It does not seem feasible to
use a random search to answer such questions even for quite small orders.
We searched for random examples of non-extendible latin cuboids of orders
8, 9, 10, 11 but did not find any that are at most half-full.

If one is interested in non-extendible latin cuboids that are more than
half-full, such things can be obtained by varying the construction in Theo-
rem 7 slightly. Suppose we had a latin cuboid that agreed with the one from
Theorem 7 in all but c cells. Then it could be extended by at most c layers
since each additional layer must make use of one of the changes, otherwise it
could have been added to the original. By this method it will often be possi-
ble to create thicker non-extendible examples given any thin non-extendible
specimen.
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Appendix

In this appendix we give the examples that prove Lemma 2. To save space,
we write x̄ instead of x∗ for x = 1, 2, . . . , 7. We begin with an awkward
8× 8× 4 latin cuboid:

21̄34 12̄3̄4̄
2̄243 1̄14̄3̄
3412 3̄4̄1̄2̄
4321 4̄3̄2̄1̄

12̄3̄4̄ 21̄34
1̄3̄4̄2̄ 3241
3̄4̄2̄1̄ 4312
4̄11̄3̄ 2̄423

1̄243 3̄4̄12̄
2134 4̄3̄2̄1̄
4321 1̄2̄3̄4̄
3412 2̄1̄4̄3̄

2̄1̄4̄3̄ 1243
12̄3̄4̄ 231̄4
4̄3̄1̄2̄ 3421
3̄4̄2̄1̄ 4132

3421̄ 4̄12̄3̄
4312 2̄1̄3̄4̄
2̄234 13̄4̄1̄
2143 3̄4̄1̄2̄

4̄3̄1̄2̄ 4321
3̄4̄2̄1 1̄432
11̄4̄3̄ 22̄43
1̄2̄3̄4̄ 3214

431̄2 2̄3̄4̄1
3421 3̄4̄1̄2̄
2143 4̄1̄2̄3̄
2̄234 1̄13̄4̄

3̄4̄2̄1̄ 3412
4̄1̄13̄ 42̄23
1̄2̄3̄4̄ 1234
13̄4̄2̄ 2341̄
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Here is an awkward 10× 10× 5 latin cuboid:

1̄2345 12̄3̄4̄5̄
23451 5̄1̄2̄3̄4̄
34512 4̄5̄1̄2̄3̄
45123 3̄4̄5̄1̄2̄
51234 2̄3̄4̄5̄1̄

12̄3̄4̄5̄ 1̄2543
5̄1̄2̄3̄4̄ 23451
4̄5̄1̄2̄3̄ 35214
3̄4̄5̄1̄2̄ 41325
2̄3̄4̄5̄1̄ 54132

51̄234 2̄3̄4̄5̄1
2̄2345 1̄13̄4̄5̄
23451 5̄1̄2̄3̄4̄
34512 4̄5̄1̄2̄3̄
45123 3̄4̄5̄1̄2̄

1̄14̄5̄3̄ 52̄432
3̄2̄1̄4̄5̄ 12345
5̄3̄2̄1̄4̄ 24153
4̄5̄3̄2̄1̄ 35214
14̄5̄3̄2̄ 43521̄

451̄23 5̄4̄12̄3̄
51234 3̄5̄4̄1̄2̄
2̄2345 13̄5̄4̄1̄
23451 1̄2̄3̄5̄4̄
34512 4̄1̄2̄3̄5̄

3̄4̄5̄2̄1̄ 45321
1̄3̄4̄5̄2̄ 51234
11̄3̄4̄5̄ 2̄3542
5̄2̄13̄4̄ 241̄53
4̄5̄2̄1̄3̄ 32415

3451̄2 3̄5̄2̄14̄
45123 4̄3̄5̄2̄1̄
51234 1̄4̄3̄5̄2̄
2̄2345 11̄4̄3̄5̄
23451 5̄2̄1̄4̄3̄

5̄3̄2̄14̄ 3421̄5
4̄5̄3̄2̄1̄ 45123
1̄4̄5̄3̄2̄ 52431
11̄4̄5̄3̄ 2̄3542
3̄2̄1̄4̄5̄ 21354

23451̄ 4̄15̄3̄2̄
34512 2̄4̄1̄5̄3̄
45123 3̄2̄4̄1̄5̄
51234 5̄3̄2̄4̄1̄
2̄2345 1̄5̄3̄14̄

4̄5̄1̄3̄2̄ 23154
14̄5̄1̄3̄ 3452̄2
3̄2̄4̄5̄1 41̄325
1̄3̄2̄4̄5̄ 52431
5̄1̄3̄2̄4̄ 15243

Next we give an awkward 12× 12× 6 latin cuboid:

21̄3456 14̄3̄6̄5̄2̄
2̄34562 1̄14̄3̄6̄5̄
345621 3̄2̄5̄4̄1̄6̄
456213 4̄3̄6̄5̄2̄1̄
562134 5̄6̄1̄2̄3̄4̄
621345 6̄5̄2̄1̄4̄3̄

12̄4̄3̄5̄6̄ 21̄4356
1̄3̄5̄2̄6̄4̄ 342561
3̄4̄6̄1̄2̄5̄ 435612
5̄11̄6̄4̄3̄ 2̄56423
4̄6̄2̄5̄3̄1̄ 561234
6̄5̄3̄4̄1̄2̄ 623145

1̄62345 5̄2̄14̄3̄6̄
623451 6̄5̄2̄1̄4̄3̄
234516 1̄6̄3̄2̄5̄4̄
345162 2̄1̄4̄3̄6̄5̄
451623 3̄4̄5̄6̄1̄2̄
516234 4̄3̄6̄5̄2̄1̄

2̄1̄5̄4̄6̄3̄ 163245
15̄6̄3̄4̄2̄ 231̄456
4̄3̄2̄6̄5̄1̄ 324561
3̄2̄4̄5̄1̄6̄ 645312
6̄4̄3̄1̄2̄5̄ 456123
5̄6̄1̄2̄3̄4̄ 512634

651̄234 4̄16̄3̄2̄5̄
512346 2̄1̄3̄4̄5̄6̄
2̄23465 13̄4̄5̄6̄1̄
234651 3̄4̄5̄6̄1̄2̄
346512 6̄5̄2̄1̄4̄3̄
465123 5̄6̄1̄2̄3̄4̄

5̄6̄2̄1̄3̄4̄ 652134
6̄4̄15̄2̄3̄ 1̄26345
15̄3̄4̄1̄6̄ 22̄3456
4̄3̄6̄2̄5̄1̄ 534261
3̄1̄5̄6̄4̄2̄ 345612
1̄2̄4̄3̄6̄5̄ 461523

5461̄23 2̄5̄4̄16̄3̄
461235 5̄6̄1̄2̄3̄4̄
612354 6̄1̄2̄3̄4̄5̄
2̄23546 1̄13̄4̄5̄6̄
235461 4̄3̄6̄5̄2̄1̄
354612 3̄4̄5̄6̄1̄2̄

6̄3̄1̄2̄4̄5̄ 541623
4̄1̄3̄15̄6̄ 62̄5234
1̄6̄4̄5̄3̄2̄ 162345
15̄2̄3̄6̄4̄ 4231̄56
5̄2̄6̄4̄1̄3̄ 234561
3̄4̄5̄6̄2̄1̄ 356412

43561̄2 3̄6̄5̄2̄14̄
356124 4̄3̄6̄5̄2̄1̄
561243 5̄4̄1̄6̄3̄2̄
612435 6̄5̄2̄1̄4̄3̄
2̄24356 11̄3̄4̄5̄6̄
243561 1̄2̄4̄3̄6̄5̄

3̄4̄6̄5̄12̄ 43651̄2
5̄2̄4̄6̄3̄1̄ 564123
6̄1̄5̄2̄4̄3̄ 651234
1̄6̄3̄4̄2̄5̄ 312645
15̄1̄3̄6̄4̄ 2̄23456
4̄3̄2̄1̄5̄6̄ 245361

324561̄ 6̄3̄2̄5̄4̄1
245613 3̄4̄5̄6̄1̄2̄
456132 4̄5̄6̄1̄2̄3̄
561324 5̄6̄1̄2̄3̄4̄
613245 1̄2̄4̄3̄6̄5̄
2̄32456 11̄3̄4̄5̄6̄

4̄5̄3̄6̄2̄1 325461̄
3̄6̄2̄4̄1̄5̄ 453612
5̄2̄1̄3̄6̄4̄ 546123
6̄4̄5̄1̄3̄2̄ 261534
1̄3̄4̄2̄5̄6̄ 612345
11̄6̄5̄4̄3̄ 2̄34256
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Finally, we present an awkward 14× 14× 7 latin cuboid:

1̄234567 12̄3̄4̄5̄6̄7̄
2345671 7̄1̄2̄3̄4̄5̄6̄
3456712 6̄7̄1̄2̄3̄4̄5̄
4567123 5̄6̄7̄1̄2̄3̄4̄
5671234 4̄5̄6̄7̄1̄2̄3̄
6712345 3̄4̄5̄6̄7̄1̄2̄
7123456 2̄3̄4̄5̄6̄7̄1̄

12̄3̄4̄5̄6̄7̄ 1̄257346
7̄1̄2̄3̄4̄5̄6̄ 3126457
6̄7̄1̄2̄3̄4̄5̄ 4712563
5̄6̄7̄1̄2̄3̄4̄ 6471235
4̄5̄6̄7̄1̄2̄3̄ 5634721
3̄4̄5̄6̄7̄1̄2̄ 2365174
2̄3̄4̄5̄6̄7̄1̄ 7543612

71̄23456 2̄3̄4̄5̄6̄7̄1
2̄234567 1̄13̄4̄5̄6̄7̄
2345671 7̄1̄2̄3̄4̄5̄6̄
3456712 6̄7̄1̄2̄3̄4̄5̄
4567123 5̄6̄7̄1̄2̄3̄4̄
5671234 4̄5̄6̄7̄1̄2̄3̄
6712345 3̄4̄5̄6̄7̄1̄2̄

1̄14̄5̄6̄7̄3̄ 72̄46235
3̄2̄1̄4̄5̄6̄7̄ 2715346
7̄3̄2̄1̄4̄5̄6̄ 3671452
6̄7̄3̄2̄1̄4̄5̄ 5367124
5̄6̄7̄3̄2̄1̄4̄ 4523617
4̄5̄6̄7̄3̄2̄1̄ 1254763
14̄5̄6̄7̄3̄2̄ 6432571̄

671̄2345 3̄4̄16̄7̄2̄5̄
7123456 5̄3̄4̄1̄6̄7̄2̄
2̄234567 15̄3̄4̄1̄6̄7̄
2345671 7̄2̄5̄3̄4̄1̄6̄
3456712 6̄7̄2̄5̄3̄4̄1̄
4567123 1̄6̄7̄2̄5̄3̄4̄
5671234 4̄1̄6̄7̄2̄5̄3̄

3̄4̄5̄6̄7̄1̄2̄ 6735124
13̄4̄5̄6̄7̄1̄ 2̄674235
1̄2̄3̄4̄5̄6̄7̄ 2567341
7̄1̄2̄3̄4̄5̄6̄ 4256713
6̄7̄12̄3̄4̄5̄ 341̄2576
5̄6̄7̄1̄2̄3̄4̄ 7143652
4̄5̄6̄7̄1̄2̄3̄ 5321467

5671̄234 6̄7̄5̄12̄3̄4̄
6712345 4̄6̄7̄5̄1̄2̄3̄
7123456 3̄4̄6̄7̄5̄1̄2̄
2̄234567 13̄4̄6̄7̄5̄1̄
2345671 1̄2̄3̄4̄6̄7̄5̄
3456712 5̄1̄2̄3̄4̄6̄7̄
4567123 7̄5̄1̄2̄3̄4̄6̄

4̄5̄6̄7̄3̄2̄1̄ 5624713
1̄4̄5̄6̄7̄3̄2̄ 7563124
11̄4̄5̄6̄7̄3̄ 2̄456237
3̄2̄1̄4̄5̄6̄7̄ 3145672
7̄3̄2̄14̄5̄6̄ 2371̄465
6̄7̄3̄2̄1̄4̄5̄ 6732541
5̄6̄7̄3̄2̄1̄4̄ 4217356

45671̄23 4̄6̄7̄2̄15̄3̄
5671234 3̄4̄6̄7̄2̄1̄5̄
6712345 5̄3̄4̄6̄7̄2̄1̄
7123456 1̄5̄3̄4̄6̄7̄2̄
2̄234567 11̄5̄3̄4̄6̄7̄
2345671 7̄2̄1̄5̄3̄4̄6̄
3456712 6̄7̄2̄1̄5̄3̄4̄

5̄7̄1̄2̄4̄3̄6̄ 4513672
6̄5̄7̄1̄2̄4̄3̄ 6452713
3̄6̄5̄7̄12̄4̄ 73451̄26
4̄3̄6̄5̄7̄1̄2̄ 2734561
14̄3̄6̄5̄7̄1̄ 2̄267354
1̄2̄4̄3̄6̄5̄7̄ 5621437
7̄1̄2̄4̄3̄6̄5̄ 3176245

345671̄2 7̄5̄2̄3̄4̄16̄
4567123 6̄7̄5̄2̄3̄4̄1̄
5671234 1̄6̄7̄5̄2̄3̄4̄
6712345 4̄1̄6̄7̄5̄2̄3̄
7123456 3̄4̄1̄6̄7̄5̄2̄
2̄234567 13̄4̄1̄6̄7̄5̄
2345671 5̄2̄3̄4̄1̄6̄7̄

6̄3̄7̄1̄2̄4̄5̄ 3472561
5̄6̄3̄7̄1̄2̄4̄ 5341672
4̄5̄6̄3̄7̄12̄ 623471̄5
14̄5̄6̄3̄7̄1̄ 2̄623457
1̄2̄4̄5̄6̄3̄7̄ 7156243
7̄1̄2̄4̄5̄6̄3̄ 4517326
3̄7̄1̄2̄4̄5̄6̄ 2765134

2345671̄ 5̄16̄7̄3̄4̄2̄
3456712 2̄5̄1̄6̄7̄3̄4̄
4567123 4̄2̄5̄1̄6̄7̄3̄
5671234 3̄4̄2̄5̄1̄6̄7̄
6712345 7̄3̄4̄2̄5̄1̄6̄
7123456 6̄7̄3̄4̄2̄5̄1̄
2̄234567 1̄6̄7̄3̄4̄15̄

7̄6̄2̄3̄1̄5̄4̄ 2361457
4̄7̄6̄2̄3̄1̄5̄ 4237561
5̄4̄7̄6̄2̄3̄1 51̄23674
1̄5̄4̄7̄6̄2̄3̄ 7512346
3̄1̄5̄4̄7̄6̄2̄ 6745132
13̄1̄5̄4̄7̄6̄ 347622̄5
6̄2̄3̄1̄5̄4̄7̄ 1654723
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