
An Interactive Framework for Spatial Joins:

A Statistical Approach to Data Analysis in GIS

Shayma Alkobaisi

Faculty of Information Technology

United Arab Emirates University

shayma.alkobaisi@uaeu.ac.ae

Wan D. Bae

Mathematics, Statistics and Computer Science

University of Wisconsin-Stout

baew@uwstout.edu

Petr Vojtěchovský

Department of Mathematics

University of Denver

petr@math.du.edu

Sada Narayanappa

Advanced Computing Technology

Jeppesen, Inc

sada.narayanappa@jeppesen.com

June 16, 2011

Abstract

Many Geographic Information Systems (GIS) handle a large volume of geospatial data.

Spatial joins over two or more geospatial datasets are very common operations in GIS for data

analysis and decision support. However, evaluating spatial joins can be very time intensive due

to the size of datasets. In this paper, we propose an interactive framework that provides faster

approximate answers of spatial joins. The proposed framework utilizes two statistical methods:

probabilistic join and sampling based join. The probabilistic join method provides speedup

of two orders of magnitude with no correctness guarantee, while the sampling based method

provides an order of magnitude improvement over the full indexing tree joins of datasets and

also provides running confidence intervals. The framework allows users to trade-off speed versus

1

bounded accuracy, hence it provides truly interactive data exploration. The two methods are

evaluated empirically with real and synthetic datasets.

Index Terms

interactive queries, spatial join, join probability, probabilistic joins, incremental sampling, quad-

tree, R-tree, GIS

1 Introduction

Geographic Information Systems (GIS) have been widely used in many applications for storage,

manipulation and retrieval of large geospatial datasets. Each dataset is usually called a layer in

GIS. Examples of layers may be roads, rivers, land elevation, etc. Layers are related if they have

the same geographic coordinates. Spatial joins between two or more datasets are one of the most

common GIS queries for data analysis. An example might be finding all roads within 100 feet of

rivers. The result of such a query can be useful in determining roads that might be affected by

floods.

GIS are often used to visualize results for the end user to assist in decision making processes.

In many applications, obtaining an approximate join result in a reasonably short time is far more

important than evaluating an exact join over a long time period. Fast response time is especially

important for user-driven data exploration in GIS. Therefore GIS users should be given the chance

to identify the interesting pairs of datasets for joins without having to wait to compute the actual

full joins.

Interactive spatial joins provide the user with a “big picture” (visualized intermediate results)

that allows the user to estimate the final result as well as stop or refine the query if the result

does not seem to be interesting. Unfortunately, the large dataset size makes interactive spatial

joins difficult. Also current query processing techniques deal with spatial queries in a blocking

manner; users have no control over the query processing and they have to wait until the final result

2

is returned. Our goal is to achieve fast query response times by estimating results of spatial data

joins, and to provide visualization tools that allow the user to see the intermediate results, adjust

the query parameters as appropriate and drill down to more interesting data (regions).

In this paper we develop a novel spatial join method based on the join probability for raster

datasets. We then expand this method to support spatial joins over vector datasets. The proposed

probabilistic join allows users to get approximate answers in near instantaneous time. Our proposed

framework works as follows: users specify queries and get near instantaneous visualizations of the

answer using our proposed probabilistic join method. These result visualizations are approximations

with no guaranteed bound of correctness. For queries with interesting results, users can either use

our proposed sampling method to get a confidence bounded answer estimate, or compute the full

join.

Our probabilistic join method is based on a simple observation of joining two raster datasets;

Figure 1 shows examples of two raster datasets; R and S represented by 4 × 4 raster grid cells

having the same geographic boundaries. In this example, R has 8 non-zero data cells (density:

8/16) while S has 9 non-zero data cells (density: 9/16). Then R and S must intersect regardless

of the shapes and locations of their data cells. The main idea is to calculate the join probability of

the given datasets that have the same geographic coordinates using the density of each dataset.

Dataset R (8:16) Dataset S (9:16)Dataset R (8:16) Dataset S (9:16)

Figure 1: Raster cells of datasets R and S

When the data is stored in vector representation, one may be interested in either the number

3

of the joined objects or the area size of the joined objects. This paper focuses on the latter case

and provides a solution to a faster estimation of the size of the joined area. Figure 2 illustrates an

example of two vector datasets. Let A be the minimum bounding rectangle (MBR) that contains

all polygonal objects in dataset 1 and let B be the MBR that contains all the polygonal objects in

dataset 2. When A and B intersect, we are interested in knowing the probability that the actual

polygons in A join with the polygons in B. Let the dotted rectangle C be the intersecting region

of A and B where intersections of the datasets can occur. Assuming that the data polygons are

uniformly distributed in A and B, the density of dataset 1 in C is the same as the density of dataset

1 in A. Similarly, the density of dataset 2 in C is the same as the density of dataset 2 in B. Given

the two datasets’ densities (density in A and density in B) and their overlapping area size (the size

of rectangle C), we can calculate the join probability of the two datasets and estimate the size of

their joined area.

A

B

C

Figure 2: Dataset1 intersecting dataset2 in region C

Our sampling join method is based on stratified random sampling [Bae et al.(2009)] and per-

forms joins using incremental samples to calculate estimates of the final answer of spatial joins.

This method provides bounded confidence intervals with a given probability.

Our interactive framework combines the two statistical methods to speed up the process of ob-

taining estimates of spatial join results. This paper expands upon our previous work [Bae et al.(2010)]

4

which provided an interactive framework for raster joins. In this paper, we present the join proba-

bility for both raster and vector spatial joins and provide the equations and their proofs. We also

provide an architectural design of the proposed framework and discuss challenges of implementing

the framework in existing databases. Experimental results for both synthetic and real datasets

demonstrate the efficiency of the proposed methods.

The remainder of this paper is organized as follows: In Section 2, we discuss related work.

Section 3 presents a new interactive framework for spatial joins and proposes an architecture for

this framework. In Section 4, we introduce the join probability and provide formulae and their

proofs. We then present two statistical methods: probabilistic join and sampling-based join. The

proposed methods are experimentally evaluated in Section 5. Finally, Section 6 concludes the

paper.

2 Related Work

GIS are used to store, manipulate and retrieve large spatial data that are used to describe the

geometry and location of various types of geographic phenomena [Medeiros and Pires(1994)]. Spa-

tial indexes are used to efficiently support geographic or spatial queries that depend on spatial

relationships between data items [Larson(1996)]. Such spatial relationships include intersection,

containment, and adjacency. In this paper we focus on proposing a framework for estimating in-

tersections between two datasets, the number of intersected cells of raster datasets and the size of

intersected area of vector datasets. This work can be further extended to support multiway joins

where more than two datasets are joined.

The quad-tree is a very popular hierarchical data structure for the representation of binary im-

ages and maps, and it is commonly used in spatial databases [Samet(1990), Vassilakopoulos and Manolopoulos(1997)],

i.e., indexing for query processing, and optimizing decomposition. Our work assumes raster datasets

are indexed by quad-trees. Quad-tree based sampling has been proposed in [Olken(1993), Vassilakopoulos and Manolopoulos(1997)].

In [Vassilakopoulos and Manolopoulos(1997)], the authors presented the analysis of four different

5

sampling methods proposed by [Olken(1993)]. They applied sampling algorithms to specific quad-

tree implementations to obtain approximate aggregate query results. They proposed two models

for analyzing the sampling cost while our incremental sampling approach provides a faster approx-

imation of the join result with a bounded confidence interval.

Vector datasets are usually indexed using R-trees [Guttman(1984)]. An R-tree is a height

balanced tree structure adapted from the B-tree to support spatial data. An R-tree stores the

minimum bounding rectangles (MBRs) of objects. When performing a window query on an R-tree

indexed dataset, all rectangles that intersect the query region are retrieved. This is done in a

recursive way starting from the root and following the paths down to the leaf level. A spatial join

computes the pairwise intersection of all data objects in two spatial datasets. Many blocking spatial

join algorithms based on R-trees have been proposed with perhaps two of the most common being

found in [Brinkhoff et al.(1993a), Papadias et al.(1999)]. When performing spatial join on two R-

tree indexed datasets using traditional algorithms such as these found in [Brinkhoff et al.(1993a),

Papadias et al.(1999)], all data level MBRs in the R-tree of the outer dataset which intersect the

data MBRs in the R-tree of the inner dataset are retrieved as pairs into a candidate set (filtering

step). Then the pairs are pruned if their actual data (polygons) do not overlap (refinement step).

This is done in a blocking recursive way, starting from the root and following the paths down to the

leaf level. In this paper, we calculate the join probability of the two datasets and estimate the size

of the joined (overlapped) area by joining the MBRs positioned at the same level in the R-trees of

the two datasets while the granularity increases by time or by a user input.

Spatial joins are more complex than relational joins because spatial datasets tend to be much

larger than relational datasets and because the spatial joins are specified by intersections and not

equality. One common raster data spatial join technique is map overlay [Tveite(1997)]. Map overlay

is straightforward when the input rasters have the same cell boundaries. The resulting raster can

be obtained cell by cell from the originals using the relevant operations on the cell values. Since

GIS can reach gigabytes and possibly terabytes in size, full layer overlays could take hours and even

6

days to complete. This necessitates the need for approximation techniques. The significant body of

work on relational database join approximations can not be directly applied to spatial databases.

In [Zimbrão and de Souza(1998), Azevedo et al.(2006)] the authors presented an approximation

technique of vector spatial joins. First they converted vector data to raster format and filtered

the possible joined pairs using the Four Color Raster Signature in [Zimbrão and de Souza(1998)]

and the Three Color Raster Signature in [Azevedo et al.(2006)]. They combined progressive and

conservative approximations [Brinkhoff et al.(1993b)] in a single approximation to speed up the

filtering step in identifying intersecting polygons. Their problem is to estimate selectivity of vector

spatial joins using raster-based techniques. Their proposed techniques motivated us to obtain the

join probability of raster datasets and to extend the solution of raster data to the join probability

of vector datasets.

A non-blocking parallel spatial join algorithm was proposed in [Luo et al.(2002)]. Their pro-

posed algorithm runs in phases; in the first phase the authors used a duplicates avoiding algorithm

to partition the spatial objects of the datasets that are approximated by their MBRs. Then par-

titions are distributed and indexed using R-trees among several nodes to be joined. In the second

phase, bucket pairs of partitions of both datasets are joined. However, to provide approximate

answers to users, buckets are joined randomly and non-repeatedly.

Histogram-based methods to calculate special join estimates was proposed in [An et al.(2001)].

Such methods result in fast query estimates, however, these methods do not provide any bounds

on the error of the estimations. The error bound they provide was determined through a series of

experiments. Also the histogram methods provide an estimate of the number of joins, but they do

not provide actual join results. They estimated the number of the joined objects for vector data

while our proposed framework estimates the area size of joined objects.

Online query processing was first presented by [Hellerstein et al.(1997), Haas and Hellerstein(1999),

Hellerstein et al.(2000)]. The authors proposed the “ripple join”, a non-blocking join method, for

relational databases. The “ripple join” was used to calculate running aggregates to provide the

7

user with estimates that are bounded by confidence intervals. They also showed how the user can

control the query execution process through an interface. The main objective was to minimize the

time needed to obtain an approximate query answer instead of computing the exact answer.

The idea of incremental sampling techniques on vector data was proposed in [Bae et al.(2006),

Bae et al.(2009)] to provide interactive spatial join processing. The authors proposed two R-tree

based sampling methods that were used to incrementally refine the estimated join result while

providing a bounded confidence interval. In addition to providing the estimated results, they

also displayed the actual intermediate intersections of the jointed datasets. Their approach was

applied for vector-based data. In this paper, the proposed sampling method in our framework for

raster data follows the same framework but using quad-trees instead of R-trees and with a more

sophisticated sampling method. Both sampling methods [Bae et al.(2009)] and histogram methods

[An et al.(2001)] provide an estimate on the number of joins while our proposed framework for

vector data estimates the size of the joined area between two datasets.

[Cheng et al.(2003)] studied probabilistic query evaluations for uncertain continuously changing

data in relational databases. In [Cheng et al.(2006)], the authors propose probabilistic join over

uncertain data. They provided techniques to answer queries that return results that have prob-

ability exceeding a given threshold. To the best of our knowledge, our probabilistic join method

is the first attempt to apply probabilistic approaches to estimate raster-based spatial joins and to

estimate the joined area for vector spatial joins.

3 An Interactive Framework for Spatial Joins

In this section, we present a query processing framework for spatial joins on raster and vector

datasets. We also present an architectural design for the proposed framework and discuss its

design and implementation challenges.

8

3.1 Framework Overview

Our design of the spatial join framework is based on the following two statistical methods:

• Probabilistic Join (PJ): PJ is based on the augmented tree data structures, quad-trees for

raster data and R-trees for vector data. The join probability is calculated using data density

of the joined tree nodes. The data density is defined as the ratio of number of non-zero data

cells to the total number of data cells in each node of the quad-tree for raster data and defined

as the ratio of the total area of data objects to the area of the MBR in each node of the R-tree

for vector data.

• Incremental Stratified Sampling Join (ISSJ): Using quad-trees for raster data and R-trees

for vector data, overlapping regions are used to filter candidate pairs in order to speed up the

joining process. ISSJ is based on stratified random sampling from indexing trees and spatial

joins of the incremental samples are conducted to estimate the final answers of spatial joins.

The proposed framework consists of three main processes: Probabilistic Join (PJ), result vi-

sualization and Incremental Stratified Sampling Join (ISSJ). The main idea is to use PJ and a

visualization technique to allow users to discover interesting pairs of datasets and areas for fur-

ther data exploration. Once users identify interesting pairs of datasets, they can have the system

perform ISSJ in order to produce tighter running estimates of join results, or users can have the

system complete the full tree join (full quad-tree join for raster data and full R-tree join for vector

data) to obtain the exact answer. Figure 3 shows the overview of the framework for raster data.

1) Probabilistic Join (PJ): Given the user’s input datasets, all higher level nodes (from level 0 to

level 3 in our experiments) of the two datasets’ quad-trees are loaded in memory. Then the join

probability of each pair of the corresponding nodes is obtained from a look-up table (step 2).

2) Visualization and user interface in PJ : Based on a visualized result of probabilistic joins, the

user can identify interesting pairs of datasets (step 3 and step 4).

3) Incremental Stratified Sampling Join (ISSJ): ISSJ starts the incremental sampling process

9

User START

Probabilistic Joins

•Bring higher level nodes

in indexing trees of

interesting datasets

• Join indexing trees

w/probability join

Visualization

Result

Sampling Joins

• Sampling from outer relation

• Spatial join on inner relation

• Intermediate result

• Estimated final result

Data 1, Data 2, Data 3, … .. , Data 10, … .. , Data k

Sampling
Spatial

Joins

Interesting

Datasets

Stop END
Yes

No
Interesting

Join Pairs

1

2

3

4

5

6

7

Figure 3: Interactive spatial join framework

with the interesting pairs. Samples (non-zero cells) are randomly chosen from the outer relation R

using stratified random sampling, then spatial joins on the corresponding cells of the inner relation

S are performed. The number of joined cells in each step is used to calculate a running estimate and

a confidence interval for the final result. The calculated running estimate and confidence interval

are combined with the intermediate result into a query result through a visualization process (step

5).

4) Visualization and user interface in ISSJ : The query result is reported to the user. The user

can stop the query process if the given confidence interval is sufficient or if the user sees satisfying

trends from the visualized actual join locations (intermediate result); otherwise, each step of the

process is repeated in an incremental manner to calculate new estimates until a desired confidence

interval is achieved. Thus, the time to get join estimates needs to be compared to the time required

for the full quad-tree join (step 6 and step 7).

10

The framework of vector spatial joins is similar to that of raster joins and the details are

discussed in Section 4.1.3. Figure 4 shows an example of spatial query processing interface for

vector datasets using the proposed framework.

Feedback

Figure 4: Spatial query processing of vector datasets

3.2 Architecture Design and Challenges

Existing database (DB) engines execute long running spatial queries in blocking manner that has

many disadvantages such as long turnaround time for final results, inability to view intermediate

results, and inability to alter the submitted query to explore more interesting data. One solution

is to stop the running query and resubmit a new query based on the current result; this results

in discarding already computed results and multiple iterations of resubmitting new queries until

the user obtains the desired result. On the other hand, database engines could be designed to

11

accept users’ inputs (feedback) while the queries are running in order to allow the users to explore

more interesting data. The goals of our proposed architecture are: 1) enable existing DB engines to

support interactive queries, 2) enable the DB users to alter query plans by providing feedback to the

running query instances on the interesting regions or to cancel the ongoing query, 3) by combining

the above two items, the user can observe the pattern or trend of the results and interactively

redirect the query to interesting regions.

The proposed architecture is shown in Figure 5. The query interface continues to accept the

users’ input even after the initial query is submitted and while it is being processed. This can

be accomplished using the same channel (connection) used for submitting the initial query. An

alternative is to let the DB server issue a query identifier (QID) which notifies the query plan

evaluator about the changes that are passed through parameters. The intermediate results can

be returned by the existing channel or by other means (such as User Datagram Protocol (UDP)

messages), which can be an optional parameter to the query. The application environment in

Figure 5 shows the query initiation, the query alterations, and the query’s intermediate results

as independent components for clarity. The query initiators show the various user environments

(which may consist of different applications). The results returned to the user can be segmented so

that it takes into account the network packet size, thus the network utilization is neither degraded

nor is it burdened. In fact, it may be a better utilization of the bandwidth since the data is returned

as it is processed.

There exist design and implementation challenges to implement the proposed architecture in

both existing and new DB engines. Traditional DB engines use request-response protocols; i.e.

once a query is submitted by a client to a server, no further communication occurs other than

notifications, a response is computed by the server and sent back to the client. During query

processing, the connection to the DB engine is maintained until the result set is returned to the

user. Some DB engines (e.g., Postgres) provide mechanisms to connect back to the server in case

of a connection failure.

12

Figure 5: Architecture of interactive spatial query processing

13

4 Spatial Join Algorithms using Statistical Methods

Statistical approaches can be used to calculate estimations of certain characteristics of datasets in

spatial databases and GIS. Our approach uses information associated with data density, samples

drawn from the population and distribution of the samples. Sampling methods are used to estimate

the final result from a subset (samples) of the data, providing a bounded confidence interval. On

the other hand, probabilistic methods are used to show a faster result that is not bounded.

In this section, we first define the join probability and present the equations and their proofs. We

then present two proposed methods, Probabilistic Join (PJ) and Incremental Stratified Sampling

Join (ISSJ). Augmented quad-trees with non-zero data cells are used in our algorithms for raster

datasets. For vector datasets, augmented R-trees with the total area of data objects are used.

4.1 Probabilistic Joins (PJ)

4.1.1 Join Probability

The fundamental question that we address here is: Given two subsets A, B of a set X, what is the

probability p = P (A ∩B ̸= ∅) that A intersects B?

When X is a finite set, |X| = n, |A| = a, |B| = b, the answer is

p = 1−
(n−a

b

)(n
b

) , (1)

because A∩B = ∅ precisely when the b-element subset B is contained in the (n−a)-element subset

X \A.

When X is infinite, we run into well-known probability paradoxes, and the answer depends on

the way the experiment is conducted and on the way we measure the size of sets. Nevertheless we

can give an exact answer if we restrict the shapes of A, B, X to (d-dimensional) intervals.

Theorem 4.1 (Join probability for 1-dimensional intervals)

Let X = [0, 1], and let A, B, be randomly chosen intervals in X of length a, b, respectively. Then

14

the probability that A ∩B ̸= ∅ depends only on a, b, and can be calculated by

p(a, b)1 =
1

(1− a)(1− b)

∫ 1−b

0
(min{x+ b, 1− a} −max{0, x− a}) dx. (2)

Proof: Let A = [al, ah], B = [bl, bh] be randomly chosen subsets of X such that |A| = a, |B| = b.

Equivalently, let al be chosen at random in [0, 1 − a] and let bl be chosen at random in [0, 1 − b]

(with ah = a+ al, bh = b+ bl). Then A∩B ̸= ∅ if and only if ah = a+ al ≥ bl and al ≤ bh = b+ bl,

which happens if and only if max{bl − a, 0} ≤ al ≤ min{bl + b, 1− a}. Thus, for a fixed randomly

chosen bl ∈ [0, 1−b], the two intervals intersect if and only if al ∈ [min{bl+b, 1−a},max{bl−a, 0}].

The formula (2) follows.

Before we proceed to generalize Theorem 4.1 to 2-dimensional intervals, note that the probabil-

ities obtained from the discrete and continuous formulae (1), (2) differ in general, even if we assume

that the sets A, B form 1-dimensional “intervals” in the discrete case. For instance, suppose that

|X| = 6, |A| = 3 and |B| = 2. Then the formula (1) yields

p = 1−
(3
2

)(6
2

) =
4

5
.

If we assume that X is discrete 1-dimensional and A, B are intervals in X, then it is easy to

check that p = 7
10 . Finally, if we assume that X is a continuous 1-dimensional interval, we can

normalize (in order to apply Theorem 4.1) to |X| = 1, |A| = 1
2 , |B| =

1
3 , and then Theorem 4.1

yields

p =
1(

1− 1
2

) (
1− 1

3

) ∫ 1− 1
3

0
min

{
x+

1

3
, 1− 1

2

}
−max

{
0, x− 1

2

}
dx

= 3

(∫ 1
6

0

(
x+

1

3

)
dx+

∫ 1
2

1
6

1

2
dx+

∫ 2
3

1
2

(1− x) dx

)

= 3 · 11
36

=
11

12
.

15

Theorem 4.2 (Join probability for 2-dimensional intervals)

Let X = [0, 1]×[0, 1], and let A, B be two randomly chosen rectangles in X of area a, b, respectively.

Then the probability that A ∩B ̸= ∅ depends only on a, b, and can be calculated by

p(a, b)2 =
1

(1− a)(1− b)

∫ 1

a

∫ 1

b
p(a1, b1)1 · p

(
a

a1
,
b

b1

)
1
da1db1. (3)

Proof: To choose an a1 × a2 rectangle A of area a in X at random, we must first randomly

choose a1 ∈ [a, 1] and let a2 = a/a1. Similarly for the b1 × b2 rectangle B of area b in X. Since

A∩B ̸= ∅ if and only if the 1-dimensional projections of A and B (onto the x-axis and the y-axis)

intersect, formula (3) follows.

Theorem 4.2 can be easily generalized to d > 2 dimensions, but we do not pursue this general-

ization here.

We now turn our attention to the expected size of the intersection of two randomly chosen

subsets of prescribed sizes. Let X = {1, . . . , n}, and let A, B ⊆ X be two randomly chosen subsets

of X with |A| = a, |B| = b. For 1 ≤ i ≤ n, let xi be the random variable satisfying xi = 1 if

i ∈ A∩B, and xi = 0 otherwise. Let x =
∑n

i=1 xi. The expected size of A∩B is then the expected

value of x, which can be calculated as E[x] = E[
∑n

i=1 xi] =
∑n

i=1E[xi]. Out of the
(n
a

)
subsets of

X of size a precisely
(n−1
a−1

)
contain a fixed element i. We therefore have

E[x] =
n∑

i=1

E[xi] =
n∑

i=1

(n−1
a−1

)(n−1
b−1

)(n
a

)(n
b

) =
n∑

i=1

ab

n2
=

ab

n
.

We conclude that the expected size of A ∩B is

ab

n
. (4)

When X is a subset of the Euclidean plane of area n (not necessarily an integer), and A, B are

randomly chosen subsets of X of areas a, b, respectively, then the expected area of A ∩ B is also

16

obtained by (4), which can be justified by a probabilistic argument.

4.1.2 Raster Spatial Joins using Join Probability

Augmented quad-tree data structure is used in PJ and ISSJ for raster spatial joins. Specifically, we

augment nodes to include the total number of non-zero data cells of the subtree below. The proposed

statistical approaches use these augmented quad-trees for obtaining information associated with the

population. Figure 6 (a) and (b) show augmented quad-trees of the raster data set examples in

Figure 1. The nodes of the quad-trees are displayed in counter clock-wise order starting from the

north-west quadrant. In the framework, all datasets are indexed by augmented quad-trees.

R

NW SW SE NE

[1,0,1,0]:4 [1,0,1,1]:4 [0,1,1,1]:4

[2,3,0,3]:16

R

NW SW SE NE

[[[

[

NULL

(a) Augmented quad-tree for dataset R

S

NW SW SE NE

[1,0,1,0]:4 [0,1,1,1]:4 [1,0,1,1]:4 [1,0,0,0]:4

[2,3,3,1]:16

S

NW SW SE NE

[[[[1,

[

(b) Augmented quad-tree for dataset S

Figure 6: Examples of augmented quad-trees of datasets R and S

In PJ , the augmented value (number of non-zero data cells) of each node of two given datasets

is used to calculate the join probability and the expected number of joined data cells for each pair of

subregions in the two joined datasets. PJ accesses nodes from the top to the bottom; hence, PJ is a

top-down approach. PJ does not need to access all levels of a quad-tree to calculate an estimate. It

is sufficient to access only a small number of top levels as demonstrated by the experimental results.

Thus, it can greatly reduce the time-consuming disk I/O operations in practice. The number of

levels to be accessed can be set as a parameter. The greater the number of levels accessed, the

more accurate the estimation can be. However, this results in a larger number of I/Os. In our

experiments (Section 5), we set the number of levels to 4 resulting in only 64 nodes needed in

memory. Thus, it is practical to store required top level nodes of quad-trees for all joined datasets

17

in memory. Also our experimental results of PJ on synthetic and real datasets show the error

bound is reasonably tight, e.g., a 9% error for 4th level join (Section 5).

4.1.3 Vector Spatial Joins using Join Probability

We expand the join probability formulae in Section 4.1.1 for estimation of vector spatial joins.

Unlike raster data join where the corresponding nodes of quad-trees have the same geographic

coordinates, MBRs of the nodes at the same level in R-trees may have different geographic coordi-

nates resulting in an overlapping rectangular region defining the MBRs of the two joined datasets.

Based on the data density information of the current nodes to be joined (a pair of MBRs) and

their intersecting area, information about their spatial join can be calculated. First we augment

each node of the R-trees with the total area of the actual data of the subtree having that node as

its root. When the data object is added to the database, we calculate its MBR. We also augment

each node with the area of the object it encloses. Then the augmented information (density) can

be used for calculating the join probability of pairs of nodes and the expected joined area size. We

use the formula (3) for the join probability of pairs of nodes and the formula (4) for the expected

value.

PJ accesses the R-trees’ nodes of the given datasets from the top to the bottom starting with

the root nodes. An example of two R-trees indexed datasets to be joined is shown in Figure 7.

Each node of the R-trees is augmented by its data density. Initially, the overlapping area of the

two MBRs of the roots of the R-trees with the calculated join probability is displayed to the user

(1st level join). Similarly pairwise join results of the MBRs at the 2nd level of the R-trees with the

corresponding join probability are returned to the user. Figure 8 illustrates the spatial joins of the

two example datasets: (a) 1st level (root node level) join and (b) 2nd level join. The bold-lined

rectangular regions represent the possible joined area at each level. All possible joined regions with

their join probabilities as well as the estimation of the size of the joined area will be displayed to

the user.

18

L: Lakes S: Ci�es

L
1

L
2

S
1

S
2

l
1

l
2

l
4

l
3

l
5

s
1

s
2

s
3

s
4

L
2

l
1

L
1

l
2

l
3

l
4

l
5

s
1

s
2

s
3

s
4

S
1

S
2

Figure 7: Lakes and cities datasets and their R-trees

L2

L1

S1

S2

L1

(a) 1st level join

L2

L1

S1

S2

(b) 2nd level join

Figure 8: An example of vector spatial join

19

Based on the visualized result of the probabilistic joins, the user can specify interesting region

by drawing a rectangle (window query) around the interesting area, or by picking intersecting

rectangles of the MBRs as the interesting area. Our algorithm would accordingly eliminate other

regions and process only the user’s input of interesting region(s). This enhances the overall query

processing, resulting in a faster user driven interface. The user can also decide to continue the

probabilistic join on R-trees or change the method either to sampling or to full R-tree join if the

interesting region is small enough. For the former case, the algorithm drills down to the next level

(3rd level) nodes’ join and provides a new visualized result. The result should include a better

estimation of the second level’s joined area (7% - 10% error in our experiments) and an even better

estimation of the root level joined area (about 3% - 6% error).

4.2 Incremental Stratified Sampling Join (ISSJ)

We study the stratified random sampling for spatial joins without replacement by adopting the

framework for vector data proposed in [Bae et al.(2009)]. Each sampling is conducted in an in-

cremental manner and the performance is evaluated with varying datasets and buffer sizes. A

weighted random sampling method, Acceptance/Rejection [Olken(1993)], is used in our proposed

framework. [Bae et al.(2009)] proposed incremental sampling methods for vector data spatial joins.

Any of these methods can be utilized in our framework for vector data spatial joins, hence we omit

the discussion of the sampling method for vector data. In this section, we present the Incremental

Stratified Sampling Join (ISSJ) method for raster data spatial joins.

In ISSJ , stratified random sampling is used to estimate the final answer of spatial joins. An

accuracy guarantee is provided in the form of error bound confidence intervals. In contrast to

PJ , ISSJ is performed on sampled leaf level data cells. Although fewer I/Os are required in

ISSJ compared to a full quad-tree join, obtaining a reasonable confidence interval requires a

significantly greater number of I/Os compared to PJ .

20

4.2.1 Stratified Random Sampling on Raster Data

Stratified random sampling is chosen for raster spatial joins because its property matches the

property of quad-trees that provides systematic decomposition of a space with no overlaps between

subregions. In stratified random sampling, the given region (population of all data cells) is divided

into a number of non-overlapping subregions called strata. Then each stratum contains a set of

raster data cells. Stratified random sampling can result in smaller error bounds on an estimation

and can reduce the sampling cost [Serfling(2002), Bae et al.(2009)].

In our algorithm for raster data, stratification is based on non-overlapping geometric forms such

as rectangles (nodes at each level). We define the internal nodes of the quad-tree for a given level

as strata, i.e., the second level nodes of quad-tree are used as strata in our experiments. We assume

that the strata is pre-defined in our experiments. Algorithm 1 describes the ISSJ algorithm for

raster data and the notation used in the algorithm is summarized in Table 1.

Notation Description

N the size of population (the total number of data cells in R)

k the total number of strata

STi stratum i, where i = 1, .., k

Ni the total number of data cells in stratum i (STi), where i = 1, .., k

ninit the initial incremental sample size for a sampling step

ns the sample size for a sampling step

S the incremental sample size for the current sampling step

ni the sample size of stratum i for a sampling step, where i = 1, .., k

si the incremental sample size of strata i for a sampling step, where i = 1, .., k

I the current total number of joined cells in a sampling step

Ii the current total number of joined cells in a sampling step for stratum i, where i = 1, .., k

CI a confidence interval

EV an estimate of the total number of joined cells

Table 1: Notation used in ISSJ

Samples (non-zero cells) are then randomly chosen from each stratum by conducting simple

random sampling. The incremental sample size of each stratum si, i=1, .., k, is calculated using

ninit for every sampling step, and it is proportional to the total number of non-zero cells within

that stratum. The sum of the incremental sample sizes of all strata is the value of the incremental

21

sample size denoted by S for the current step of the sampling. The total sample size ns and the

sample size of each stratum ni, i=1, .., k, are then updated. If the value of the chosen data cell is

1, searching the corresponding joined cell of the inner data set is performed in the quad-tree of the

inner data set (line 15 of Algorithm 1). If the value of the corresponding cell is 1, then the two

data cells join. For each stratum, we obtain the number of joined cells, and this number is used

to calculate the estimate and confidence interval for the corresponding stratum. The sum of the

joined cells of each stratum is the current intermediate result, and the estimates and confidence

intervals of all strata are combined for an estimate and a confidence interval of the final answer.

The user can stop the query process if the given confidence interval is sufficient, otherwise the

process repeats.

4.2.2 Estimates for Stratified Random Sampling on Raster Data

To provide bounds on the accuracy of ISSJ , we incrementally calculate the current estimate with

a confidence interval. The estimates and confidence intervals of ISSJ are based on population

proportion and the Central Limit Theorem (CLT) [Haas(1997), Serfling(2002)]. We use the binomial

probability distribution [Serfling(2002)] for statistics of ISSJ . In ISSJ , the population is the

number of non-zero cells of the outer relation R and p̂ is the fraction of the elements in the sample

that possess the characteristic of interest (“join” in our algorithm). Hence p̂ is the fraction of cells

in the sample that joins with the corresponding cell of the inner relation S. Confidence intervals

depend on the size of samples and the distribution of the sample space (i.e., Student t-distribution).

Let N be the size of population (total number of non-zero cells of the outer datasets) and ns

be the sample size for a sampling step. If Ni is the number of non-zero cells in stratum i, and ni

is the sample size for stratum i, then N =
∑k

i=1Ni, and ns =
∑k

i=1 ni, where k is the number of

strata. Let Ii be the total number of cells that join the corresponding cells of S in stratum i. The

following equations are used for a sampling step for ISSJ :

22

Algorithm 1 ISSJ(R,S, ST)

1: ST = {ST1, . . , STk} // ST is a set of strata
2: I1, . . , Ik ← 0 // current number of joined cells for stratum i
3: ns ← 0; ninit ← 30 // sample size; initial incremental sample size for a sampling
4: n1, . , nk ← 0; s1, . , sk ← 0 // sample size; incremental sample size for stratum i
5: repeat
6: compute s1, s2, . . , sk for ST1, ST2, .., STk // incremental sample size for each stratum
7: S ←

∑k
i=0 si // the incremental sample size for the current sampling step

8: ns ← ns + S // update the sample size
9: for i = 1 to k do

10: ni ← ni + si
11: for j = 1 to si do
12: L← choose a leaf from STi at random
13: cr ← choose a cell from L at random
14: if cell cr’s value is 1 then
15: Pr ← the center point of the chosen cell cr
16: cs ← findJoinedCell(S, Pr)
17: if cell cs’s value is 1 then
18: Ii ← add 1
19: end if
20: end if
21: remove cr from L
22: end for
23: remove L from STi if L is empty
24: end for
25: I ←

∑k
i=0 Ii

26: CI ← Compute a confidence interval w/all Ii and ni

27: EV ← Compute an estimate w/all Ii and ni

28: report EV , CI , and I
29: until CI is sufficient to the user or all STi are empty

23

Estimator of the population proportion, where p̂i =
Ii
ni

and q̂i = 1− p̂i:

p̂ =
1

N
(N1p̂1 +N2p̂2 + ...+Nkp̂k) =

1

N

k∑
i=1

Nip̂i. (5)

Estimate variance of p̂:

V̂ (p̂) =
1

N2

k∑
i=1

N2
i

(
Ni − ni

Ni

)(
p̂iq̂i

ni − 1

)
(6)

Confidence interval:

E = tc

√
V̂ (p̂), (7)

where tc is the critical value for confidence level c taken from a Student t-distribution. Equations

(5), (6) and (7) are valid for the incremental stratified sampling process. The proof of incremental

equations can be found in [Bae et al.(2009)].

5 Experiments

In this section, we present experimental results of the Probabilistic Join (PJ) and Incremental

Stratified Sampling Join (ISSJ) with synthetic and real GIS datasets in both raster and vector

formats. The performance of PJ and ISSJ are compared with each other as well as with the full

tree join. In this paper, we present only the most illustrative subset of our experimental results

due to space consideration. Similar qualitative and quantitative trends were observed in all other

experiments.

24

5.1 Experimental Evaluation of Raster Spatial Joins

5.1.1 Datasets and Experimental Methodology

In our experiments, we consider both synthetic and real raster datasets shown in Table 2 and Table

3. We generated four sets of uniformly distributed data and four sets of exponentially distributed

data (a mean of 0.3 and a standard deviation of 0.3). Our real datasets are from the 2001 and 2005

U.S. Geological Survey [USGS(2001, 2005)]: six datasets (datasets of minerals, stream sediments,

water sediments, rocks, pluto geochemical sediments and unconsolidated sediments) from Arizona,

Colorado, Oregon and Wyoming in the US. Each dataset was converted into raster format. In Table

2, the total number of data cells (pixels) is presented along with the total number of non-zero data

cells and the data density for the synthetic datasets. Table 3 presents the information about water

sediments datasets of the four states.

synthetic datasets
uni1 uni2 uni3 uni4 exp1 exp2 exp3 exp4

total cells 65536 65536 262144 262144 65536 65536 262144 262144

N.E. cells 17325 28365 39120 48298 14256 24736 36290 45231
density 0.26 0.43 0.15 0.18 0.22 0.38 0.14 0.17

description uniformly distributed data exponentially distributed data

Table 2: Synthetic raster datasets: N.E. = non empty data cells

real datasets
AZ CO OR WY

total cells 65536 65536 65536 65536

N.E. cells 10202 23030 23821 42321

density 0.26 0.43 0.15 0.18

description water sediment datasets from USGS

Table 3: Real datasets (water sediment): N.E. = non empty data cells

It is necessary that all datasets are indexed by augmented quad-trees and that they have the

same number of data cells as well as the same size of cells. Our experiments were conducted

using the following parameters: Augmented quad-trees are implemented for PJ and ISSJ while

25

nonaugmented quad-trees are used for the full tree join. The page size of the quad-tree was set

to 4 Kbytes, resulting in 100 nodes and 64 nodes for the non-augmented tree and augmented tree,

respectively. We performed comparisons assuming an LRU replacement policy with buffer sizes of

5%, 10% and 20% of the size of one of the joined datasets. For all presented results, the estimates

and the corresponding confidence intervals are shown with a 95% confidence level.

5.1.2 Results of Raster Spatial Joins

First, we present the accuracy of the expected number of joined cells for raster datasets using

the formula (4) discussed in Section 4.1.1. The expected numbers of joined cells were compared

with the total numbers of actual joins. We randomly selected two corresponding nodes from the

quad-trees of two real datasets. We checked the occupancy rates (non-zero data cells/total data

cells) in the two chosen nodes and obtained the expected numbers of join cells. We repeated this

process for varying sizes of sample pairs: 5%, 10%, 20% and 50% of the total quad-tree nodes. We

ran the experiment 10,000 times with each of the sample sizes and calculated the average. In Table

4, we show the results of joining unconsolidated sediments dataset with minerals dataset in CO.

The table entries are actual number of the joined cells error values, thus, for example, an error of

0.1060 is a 10.60% error.

sample size actual join expected number of joined cells (error)

5 % 54 48 (0.1060)

10 % 109 99 (0.0917)

20 % 218 197 (0.0963)

50 % 545 494 (0.0936)

Table 4: Accuracy of the expected number of joined cells w/ different sample sizes

To evaluate the quality of the “big picture” visualization obtained by PJ , we calculated the

expected number of joins using the 4th level tree nodes. When using the 4th levels of two quad-trees,

only 64 subregions are joined. As a result, users can obtain the approximate result visualization in

near instantaneous time with a truly interactive manner. For the real datasets we compared PJ and

26

joined datasets real datasets synthetic datasets
AZ CO OR WY group1 group2

average diff. 0.0060 0.0087 0.0049 0.0058 0.0032 0.0024

minimum of max. diff. 0.0047 0.0038 0.0045 0.0014 0.0018 0.0015

maximum of max. diff. 0.1208 0.0973 0.0849 0.1143 0.0410 0.0312

average max. diff. 0.0329 0.0237 0.0214 0.0199 0.0201 0.0182

average error of estimates 0.1105 0.0729 0.0629 0.0904 0.0324 0.0229

Table 5: Accuracy of the expected number of joined cells for raster datasets

ISSJ for all fifteen possible pairwise joins of the six datasets from each state. We grouped the

synthetic datasets into two: group 1 (uni1, uni2, exp1, exp2) and group 2 (uni3, uni4, exp3, exp4).

We computed all possible six pairwise joins of each of the two groups. In Table 5, we present the

average differences in the join density. The maximum difference illustrates how far the estimation

is from the actual answer for each test indicating an upper error bound. In order to provide the

performance of our methods, we present both the minimum of maximum difference (the smallest

value of the upper bound error) and the maximum of maximum difference (the largest value of the

upper bound error) as well as the average maximum difference (average of the upper bound error).

Finally, we calculated the average error in the expected number of joins of all the pairwise joins. As

can be seen, PJ is reasonably accurate in all the cases of both real and synthetic datasets. With

real datasets, PJ resulted in less accuracy due to the scattered clusters found in the datasets. As

shown in Figure 11, for the data we explored, these modest inaccuracies have little effect on the

overall visual join-result appearance.

Next, we present the performance of ISSJ compared to the augmented full quad-tree join.

Figure 9 shows the result using the synthetic and real datasets (minerals ◃▹ unconsolidated sediments

from Colorado). The estimates and confidence intervals are plotted versus the number of samples

(non-zero data cells) processed as well as the exact answer. Figure 9 (a) and (b) show the estimated

values of the final joins calculated by ISSJ for the synthetic and real datasets, respectively. Figure

9 (c) and (d) present the confidence intervals for 95% confidence level. The results show how fast

the confidence intervals converge. By showing the deviations from the actual joins, we demonstrate

27

0

1500

3000

4500

6000

7500

9000

0 2000 4000 6000 8000 10000 12000 14000

processed cells .

e
s

ti
m

a
te

d
 v

a
lu

e
s

 .

estimated value

exact joined cells

(a) Estimates (synthetic)

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000

processed cells .

e
s

ti
m

a
te

d
 v

a
lu

e
s

 .

estimated value

exact joined cells

(b) Estimates (real)

0%

2%

4%

6%

8%

10%

0 2000 4000 6000 8000 10000 12000 14000

processed cells .

c
o

n
fi

d
e

n
c

e
 i

n
te

rv
a

ls

 . 95% confidence

actual deviation

(c) Confidence interval (synthetic)

0%

2%

4%

6%

8%

10%

0 1000 2000 3000 4000 5000 6000

processed cells .

c
o

n
fi

d
e

n
c

e
 i

n
te

rv
a

ls

 . 95% confidence

actual deviation

(d) Confidence (real)

0%

2%

4%

6%

8%

10%

0 3000 6000 9000 12000 15000 18000

I/Os

c
o

n
fi
d

e
n

c
e

 i
n

te
rv

a
ls

 .

random sampling

quad-tree join

(e) I/Os (synthetic)

0%

2%

4%

6%

8%

10%

0 2000 4000 6000 8000 10000

I/Os

c
o

n
fi

d
e

n
c

e
 i

n
te

rv
a

l

.

random sampling

quad-tree join

(f) I/Os (real)

Figure 9: Estimates, confidence intervals for 95% confidence level and I/Os of ISSJ : synthetic
(uni1 ◃▹ exp1) and real datasets (unconsolidated sediment ◃▹ mineral in CO)

28

that ISSJ provides good estimates of the final answer. In Figure 9 (e) and (f), we show how fast

an accurate estimation could be calculated compared to the time required for the full quad-tree

join. For example, it took about 1900 I/Os to reach an estimate with a 5% confidence interval

while 8,000 I/Os were required for the exact answer by using the full quad-tree join.

We next show how accurately the proposed approaches provide a “big picture” of the actual

join. Figure 10 (a), (b) and (c) show three datasets for the state of Colorado: chemical sediments

(P), minerals (Q) and water sediments (S). We compared the results of PJ with those of ISSJ and

the actual joins. For discrete values of join probability, we created a lookup table (20×20). Table

6 illustrates a portion of 2-d join probabilities such as entries from 2-d lookup table used in the

experiments.

P 0.2 0.4 0.6 0.8 1.0

0.2 0.7683 0.9277 0.9903 1.0 1.0

0.4 0.9277 0.9937 1.0 1.0 1.0

0.6 0.9903 1.0 1.0 1.0 1.0

0.8 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

Table 6: Example of a lookup table for 2-d join probability

The results of PJ and ISSJ for P ◃▹ Q and Q ◃▹ S are presented as well as that of the

actual join in Figure 11. The result from the top to the bottom corresponds to: ISSJ with a 10%

confidence interval (a), ISSJ with a 5% confidence interval (b), actual joins (c) and finally PJ of

the 4th level nodes (d). PJ and ISSJ with a 5% confidence interval provide a reasonably accurate

approximation of the actual join. The results illustrate the accuracy of PJ using the formula (2)

discussed in Section 4.1.1.

In Figure 12, we present I/O comparisons between PJ and ISSJ varying the confidence inter-

vals, as well as with the full nonaugmented quad-tree join (QT). All possible pairwise joins of the

six datasets from Arizona were calculated and the number of I/Os were plotted for buffer sizes of

5%, 10% and 20% of the size of one dataset quad-tree. We also conducted the same experiment on

all possible pairwise joins of the six datasets from Colorado. We plot the average total number of

29

x

y

0.0 256.000
0.0

192.000

(a) Chemical sediments (P)

x

y

0.0 256.000
0.0

192.000

(b) Minerals (Q)

x

y

0.0 256.000
0.0

192.000

(c) Water sediments (S)

Figure 10: Real datasets: Mineral resources in Colorado in the U.S.

I/Os of each method averaged over all 15 pairwise joins. The results for PJ are on the left, then

ISSJ for confidence interval bounds of 10, 7, 5, 3, 2 and 1%, and finally the results for the full

quad-tree join on the right. Note that the performance difference varying buffer sizes is very small

since there is few re-visiting of the leaf nodes, and thus little opportunity to benefit from buffer

caching exits.

The PJ algorithm resulted in up to two orders of magnitude fewer I/Os than QT for both

datasets. The ISSJ algorithm obtained a very reasonable confidence interval (e.g. 5%) with far

fewer I/Os compared to QT . PJ is significantly faster than ISSJ but does not provide correctness

bounds. However, PJ does provide a good overall picture for the data explored.

5.2 Experimental Evaluation of Vector Spatial Joins

5.2.1 Datasets and Experimental Methodology

In this section, we evaluate PJ and ISSJ for vector data using both synthetic and real datasets.

Our synthetic datasets were generated using random function and hyper-exponential function for

uniform and skewed datasets, respectively. For the uniform datasets, data is distributed uniformly

and independently between 0 and 1. The data in the skewed datasets is independently drawn from

a hyper-exponential distribution with the mean 0.3 and the standard deviation 0.5. The number

of data polygons in each dataset varies from 50 K to 600 K increasing by 50 K. The notation u

30

x

y

0.0 256.000
0.0

192.000

P Q
x

y

0.0 256.000
0.0

192.000

Q S

(a) ISSJ w/10% CI

x

y

0.0 256.000
0.0

192.000

P Q
x

y

0.0 256.000
0.0

192.000

Q S

(b) ISSJ w/5% CI

x

y

0.0 256.000
0.0

192.000

P Q
x

y

0.0 256.000
0.0

192.000

Q S

(c) Actual joins

x

y

0.0 256.000
0.0

192.000

P Q
x

y

0.0 256.000
0.0

192.000

Q S

(d) PJ

Figure 11: ISSJ vs. actual joins vs. PJ for real datasets in CO

31

0

10000

20000

30000

40000

50000

60000

P J 10% 7% 5% 3% 2% 1% QT

I/
O

s

5% buffer

10% buffer

20% buffer

(a) Colorado

0

10000

20000

30000

40000

P J 10% 7% 5% 3% 2% 1% QT

I/
O

s

5% buffer

10% buffer

20% buffer

(b) Arizona

Figure 12: Number of I/Os of PJ , ISSJ and the full quad-tree join

and h are used to denote uniform and skewed datasets, respectively. The real datasets are from the

2001 and 2005 U.S. Geological Survey [USGS(2001, 2005)]: four datasets are chosen from Colorado

and Wyoming, data1 (minerals), data2 (stream sediments) , data3 (unconsolidated sediments), and

data4 (water sediments). The data density of our synthetic and real datasets varies from 11% to

32%. In our experiments, all possible join combinations of the datasets were conducted. Table 7

shows some of our datasets’ R-tree structure information.

nodes synthetic datasets real datasets
u200K h200K u500K h500K u600K h600K data1 data2 data3 data4

Tree levels 3 3 4 4 4 4 3 3 3 3
Index nodes 52 53 104 112 130 136 6 9 5 7
Leaf nodes 3615 3621 7241 7291 8675 8689 341 599 260 450

Table 7: Synthetic and real datasets

All the datasets are indexed by augmented R-trees. However, it is not necessary that datasets

have the same size nor that their R-trees have the same height. When ISSJ reaches the leaf level

of the lower R-trees, this leaf level is used for joining with the lower levels of the other tree. The

page size of the R-tree was set to 4 Kbytes with fan-out size of 100 and minimum capacity of 40.

We used an LRU replacement policy and our experiments were conducted with the buffer size of

5% and 10% of the two R-tree total nodes.

32

5.2.2 Results of Vector Spatial Joins

In this section, we first show the accuracy of probabilistic joins on R-trees. Next, we evaluate the

performance of PJ compared with an incremental sampling method presented in [Bae et al.(2006)]

as well as with the full R-tree join algorithm [Guttman(1984)].

The formula (4) in Section 4.1.1 was used to calculate the expected joined area size of the two

corresponding R-tree nodes. The joined area sizes of actual joins were compared with the estimated

values of the joined areas. First we randomly selected two corresponding nodes (at the same level)

from the two R-trees of the datasets. We then calculated their intersecting area, either 0 or a

rectangle that defines the joined area. Finally, we obtained the joined area sizes using the data

density (polygon data area/node MBR area) in the two chosen nodes. We repeated this process

for varying sizes of samples: 5%, 20% and 50% of the total R-tree nodes. We ran the experiment

10,000 times with each of the sample sizes with different combinations of datasets joins: uniform

◃▹ uniform, skewed ◃▹ skewed, uniform ◃▹ skewed, and all combinations of real datasets joins.

Table 8 presents the averages of each group comparing the errors in the expected number of

joined cells for quad-trees shown in Table 4. The errors of the expected joined area sizes for R-trees

are lower than the errors on quad-trees. Note that each node of R-trees has about 70 children

nodes on average while each quad-tree node only contains 4 children nodes. Hence many of the leaf

level nodes can have more accurate information, which contribute to the sampling step, resulting

in more accurate results.

sample size errors on R-trees errors on quad-trees
uni ◃▹ uni skew ◃▹ skew uni ◃▹ skew real datasets

5 % 0.0689 0.0691 0.0739 0.0806 0.1060

20 % 0.0520 0.0515 0.0723 0.0633 0.0917

50 % 0.0495 0.0449 0.0604 0.0631 0.0936

Table 8: Accuracy of the expected joined area size w/different sample sizes

Next we evaluate the “big picture” visualization with different granularity levels provided by

PJ . We calculated the expected joined area of the current level and that (those) of its parent(s)’s

33

level(s). We then compared these areas with the actual joined areas in Table 9. We present the

average errors of all the pairwise joins among the synthetic datasets (from 50 K and 400 K) and

the real datasets. PJ provides reasonably accurate estimation for the 2nd level and 3rd level joins

in all the results of both synthetic and real datasets. The results show that the estimates of the

second level’s joined area result in 7% - 10% error and the estimates of the root level joined area

which is the estimation of total joined region result in 3% - 6% error for both the synthetic and real

datasets. With the real datasets, PJ resulted in less accuracy due to mainly the scattered clusters

in the datasets and the size of the datasets. However, the “big picture” visualization of spatial join

result may not be affected much by these modest inaccuracies. The granularity of the join result

is based on the number of levels accessed. The higher the number of levels accessed, the better the

estimations get but this would result in more I/Os. However, assuming that our buffer sizes are

10% of the total number of the two R-trees, the number of nodes accessed for the index nodes fit

in the main memory while we provide join estimates with a reasonably tight error.

Join level Level for estimates uni ◃▹ uni skew ◃▹ skew uni ◃▹ skew real datasets

1st level join level 1 0.0667 0.1103 0.0770 0.1713

2nd level join level 1 0.0637 0.0910 0.0561 0.1025
level 2 0.1168 0.1020 0.1394 0.1858

3rd level join level 1 0.0347 0.0512 0.0457 0.0619
(leaf level join) level 2 0.0748 0.0952 0.0735 0.1018

level 3 0.0027 0.0031 0.0020 0.0034

Table 9: Accuracy of the expected joined area size for vector datasets

We now present the number of I/Os required for PJ compared with the incremental random

sampling method proposed in [Bae et al.(2006)] as well as with the full R-tree join. We conducted

all possible pairwise joins from our synthetic datasets (u500K, u600K, h500K, h600K) and real

datasets. We calculated the number of I/Os to join index nodes, up to the 2nd level joins and 3rd

level joins for the synthetic datasets and real datasets, respectively.

In Figure 13 the number of I/Os was plotted for buffer sizes of 5% and 10%. We calculated

the average total number of I/Os resulted by each method over all pairwise joins. The results of

34

PJ with the index nodes are on the left, then the incremental sampling for confidence interval

bounds of 10%, 7%, 5%, 3%, and 2%, and finally the results for the full R-tree join on the right

most. The PJ algorithm resulted in up to two orders of magnitude less I/Os than the full R-

tree join for both synthetic and real datasets. Also, PJ is significantly faster than the sampling

algorithm. Although PJ provides no bounded interval for the error, all our experimental results on

synthetic and real datasets show the error is reasonably tight, e.g., a 7-9% error for the estimation

of 1-upper level joined area and a 3-5% error for that of 2-upper level joined area.

0

5000

10000

15000

20000

25000

30000

35000

40000

PJ 10% 7% 5% 3% 2% R-tree full
join

I/
O
s

5% buf fer

10% buf fer

(a) Synthetic datasets

0

300

600

900

1200

1500

1800

2100

PJ 10% 7% 5% 3% 2% R-tree full
join

I/
O
s

5% buf fer

10% buf fer

(b) Real datasets

Figure 13: Number of I/Os of PJ , ISSJ and the full R-tree join

Considering PJ with the leaf nodes joins that require 50% of the number of I/Os for the full

R-tree, the number of I/Os for PJ is more than the number of I/Os for the incremental sampling

with a 3% confidence interval. Yet, this is a lot less than the number of I/Os for the sampling

method with a 2% confidence interval. PJ with the leaf node joins provide very low error values,

0.3 % error for the estimates of the current level and 3-6 % error for the estimates of the entire

region (see Table 5). Hence the PJ algorithm provides a fast “big picture” of the join result with

reasonably accurate estimations.

35

6 Conclusions

Due to the large dataset size, spatial joins of GIS data may take unreasonably long time to complete.

The traditional map overlay joining method does not provide any idea of how the final result will

look like until the join is completed. Hence, to enable an interactive data exploration, it is essential

to allow a user to get a fast estimation, ideally a “big picture” visualization, of the join result.

Users can be more comfortable in using approximations by a method that also provides a confidence

interval bound on the estimate.

In this paper, we proposed two statistical methods for estimating spatial joins on both quad-

tree indexed raster data and R-tree indexed vector data, namely, Probabilistic Joins (PJ) and

Incremental Stratified Sampling Joins (ISSJ). We proposed a framework that combines the two

statistical methods to allow fast interactive data explorations. Our framework provides tools to

report query result estimates while simultaneously providing the user with the ability to modify

the input parameters to the database. The user’s inputs are allowed for identifying interesting

areas to further drill down into, resulting in a faster and more informative data exploration. These

two methods are independent, hence GIS applications can implement these methods separately by

taking advantages of each method.

Experimental evaluations on real and synthetic datasets in raster format showed that our pro-

posed PJ method resulted in reasonably accurate results with near zero response time. Our

ISSJ method, while not as fast as PJ , provided results with bounded confidence intervals up

to an order of magnitude faster than full quad-tree join. Experiments on real and synthetic data

in vector format showed two orders of magnitude response time improvement relative to the exact

answer obtained when using the full R-tree join. Although the PJ method provides no bounded

interval for the error, all our experimental results on different synthetic and real datasets showed

a reasonably tight error, e.g., a 7-10% error for the estimation of 1-upper level joined area and a

3-6% error for that of 2-upper level joined area. Hence our framework can be used to build an

end-user query visualization tool that allows true interactive exploration of large GIS databases.

36

References

[An et al.(2001)] N. An, Z. Yang, and A. Sivasubramaniam. Selectivity estimation for spatial joins.

In Proceedings of International Conf. on Data Engineering (ICDE), pages 368–375, 2001.

[Azevedo et al.(2006)] L. G. Azevedo, R. H. Güting, R. B. Rodrigues, G. Zimbrão, and J. M.

de Souza. Filtering with raster signatures. In Proceedings of ACM GIS, pages 187–194, 2006.

[Bae et al.(2006)] W. D. Bae, S. Alkobaisi, and S. T. Leutenegger. An incremental refinining spatial

join algorithm for estimating query results in GIS. In Proceedings of International Conf. on

Database and Expert Systems Applications (DEXA), pages 935–944, 2006.

[Bae et al.(2009)] W. D. Bae, S. Alkobaisi, and S. T. Leutenegger. IRSJ : Incremental refining

spatial joins for interactive queries in GIS. GeoInformatica, Vol. 14(4): 507–543, 2010

[Bae et al.(2010)] W. D. Bae, P. Vojtěchovský, S. Alkobaisi, S. T. Leutenegger, and S. H. Kim. An

Interactive Framework for Raster Data Spatial Joins. In Proceedings of ACM International

Symposium on Advances in Geographic Information Systems, pages 19–26, 2007

[Brinkhoff et al.(1993a)] T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient processing of spatial

joins using r-trees. In Proceedings of ACM SIGMOD, pages 127–246, 1993a.

[Brinkhoff et al.(1993b)] T. Brinkhoff, H. P. Kriegel, and R. Schneider. Comparison of approxima-

tions of complex objects used for approximation-based query processing in spatial database

systems. In Proceedings of International Conf. on Data Engineering (ICDE), pages 40–49,

1993b.

[Cheng et al.(2003)] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries

over imprecise data. In Proceedings of ACM SIGMOD, pages 551–562, 2003.

[Cheng et al.(2006)] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter. Efficient join pro-

cessing over uncertain data. In Proceedings of ACM CIKM, pages 738–747, 2006.

37

[Guttman(1984)] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Pro-

ceedings of ACM SIGMOD, pages 45–57, 1984.

[Haas(1997)] P. J. Haas. Large-sample and deterministic confidence intervals for online aggrega-

tion. In Proceedings of International Conf. Scientific and Statistical Databases Management

(SSDBM), pages 51–63, 1997.

[Haas and Hellerstein(1999)] P. J. Haas and J. M. Hellerstein. Ripple joins for online aggregation.

In Proceedings of ACM SIGMOD, pages 287–298, 1999.

[Hellerstein et al.(1997)] J. M. Hellerstein, P. J. Hass, and H. J. Wang. Online aggregation. In

Proceedings of ACM SIGMOD, pages 171–182, 1997.

[Hellerstein et al.(2000)] J. M. Hellerstein, R. Avnur, and V. Raman. Informix under control:

Online query processing. Data Mining and Knowledge Discovery, Vol. 12:281–314, 2000.

[Larson(1996)] R. R. Larson. Geographic Information Retrieval and Spatial Browsing. GIS and

Libraries, University of Illinois, 1996.

[Luo et al.(2002)] G. Luo, J.F. Naughton, and C.J. Ellmann. A non-blocking parallel spatial join

algorithm. In Proceedings of Internation conference on Data Engineering, pages 697–705, 2002.

[Mamoulis and Papadias(1999)] N. Mamoulis and D. Papadias. Integration of spatial join algo-

rithms for processing multiple inputs. In Proceedings of ACM SIGMOD, pages 1–12, 1999.

[Medeiros and Pires(1994)] C. B. Medeiros and F. Pires. Databases for GIS. ACM SIDMOD

Record, Vol. 23(1):107–115, 1994.

[Olken(1993)] F. Olken. Random Sampling from Databases. PhD thesis, University of California

at Berkeley, 1993.

[Papadias et al.(1999)] D. Papadias, N. Mamoulis, and Y. Theodoridis. Processing and optimiza-

tion of multiway spatial joins using r-trees. In Proceedings of ACM PODS, pages 44–55, 1999.

38

[Samet(1990)] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

MA, 1990.

[Serfling(2002)] R. J. Serfling. Basic Statistics for Business and Economics. McGraw-Hill, 2002.

[Tveite(1997)] H. Tveite. Data Modeling and Database Requirements for Geographical Data. PhD

thesis, Norwegian University of Science and Technology, Norway, 1997.

[USGS(2001, 2005)] U.S. Geological Survey. USGS: Mineral resources on-line spatial data. URL

http://tin.er.usgs.gov/.

[Vassilakopoulos and Manolopoulos(1997)] M. Vassilakopoulos and Y. Manolopoulos. On sampling

regional data. Data and Knowledge Engineering, Vol. 22:309–318, 1997.

[Zimbrão and de Souza(1998)] G. Zimbrão and J. M. de Souza. A raster approximation for the

processing of spatial joins. In Proceedings of VLDB, pages 558–569, 1998.

39

