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Abstract. We show that every completely regular frame has a P -frame re�ection. The
proof is straightforward in the case of a Lindelöf frame, but more complicated in the general
case. The chief obstacle to a simple proof is the important fact that a quotient of a P -frame
need not be a P -frame, and we give an example of this.
Our proof of the existence of the P -frame re�ection in the general case is iterative, freely

adding complements at each stage for the cozero elements of the stage before. The argument
hinges on the signi�cant fact that frame colimits preserve Lindelöf degree.
We also outline the relationship between the P -frame re�ection of a space X and the

topology of the P -space core�ection of X. Although the former frame is generally much
bigger than the latter, it is always the case that the P -space core�ection of X is the space
of points of the P -frame re�ection of the topology on X.
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1. Introduction

Pointfree topology broadens the extent of classical topological ideas, and clari�es the
underlying principles. We provide yet another instance of this phenomenon by proving the
existence of the P -frame re�ection of a completely regular frame, the pointfree counterpart
of the well-known P -space core�ection of a Tychonov space. This result, Theorem 7.13, is
the culmination of the article.
But pointfree results sometimes diverge from their pointed analogs in important ways,

particularly when it comes to products and subspaces, corresponding to frame coproducts
and quotients. That phenomenon rears its head in this investigation: although a subspace
of a P -space is clearly a P -space, the quotient of a P -frame need not be a P -frame, and we
provide an example in Section 6. This fact poses an obstacle to a straightforward proof of
the existence of the P -frame re�ection, and although such a proof may exist, we have not
found it.
Instead we get the P -frame re�ection by means of a trans�nite construction reminiscent

of the famous tower construction. At each step of the iteration we complement only the
cozero elements, rather than all of the elements as in the tower construction. Since the
tower construction need not terminate, it is a remarkable fact that the P -frame re�ection
construction does. The termination of this construction depends, in the end, on an important
fact of independent interest: colimits preserve Lindelöf degree, Theorem 7.6.
We mention for the record that our results generalize to higher cardinality, giving the P�-

frame re�ection for completely regular frames. This, of course, raises the issue of what the
appropriate generalization of cozero element to cardinality � might be. We defer a discussion
of this interesting topic to a forthcoming article [5].
This article is devoted to the following topics. After a preliminary Section 2, we take up

P -spaces and P -frames in Section 3, reviewing the main attributes of P -spaces in Subsection
3.1 to motivate the corresponding frame attributes in 3.2. Whereas the aforementioned
results are well known, in Subsection 3.3 we give a novel characterization of P -frames L in
terms of the epicompleteness of CL in the categoryW of archimedean lattice-ordered groups
with weak order unit. Section 4 reviews the P -space core�ection to motivate the P -frame
re�ection, and Section 5 establishes this re�ection in the deceptively simple Lindelöf case.
These �rst sections emphasize the consonance between the pointed and pointfree formu-

lations. But a direct extension of the proof of Section 5 to the general pointfree setting is
confounded by an example in Section 6, a non-P -frame quotient of a P -frame. Since a sub-
space of a P -space is obviously a P -space, this section points out one of the most important
discrepancies between the pointed and pointfree formulations.
The iterative construction of the P -frame re�ection constitutes Section 7. In this section,

the construction of the canonical extension L0 of a frame L in which each cozero of L has
a complement, one step in the iterative construction, occupies Subsection 7.1, the iteration
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problem occupies 7.2, and the iterative construction itself occupies 7.4. Finally, Section 8 is
devoted to the relationship between the P -space core�ection of a Tychonov space X and the
P -frame re�ection of its topology.
The inclusion functor from the full subcategory of P -frames into the category of completely

regular frames preserves limits, and so one would expect that the existence of an adjoint,
i.e., a P -frame re�ection, would be a routine application of the Adjoint Functor Theorem.1

Indeed, the only real issue is the other hypothesis of this famous theorem, the Solution
Set Condition. That this condition holds, however, is by no means obvious, since many
completely regular frames have a proper class of pairwise non-isomorphic monic-and-epic
embeddings into P -frames (see, e.g., [31]). In fact, one may view the essential content of this
article as the veri�cation of the Solution Set Condition for the inclusion functor of P -frames
in completely regular frames.

2. Preliminaries

For a general theory of frames we refer to [18], or, for a recent �covariant�account of this
subject, to [26]. Here we collect a few facts that will be relevant for our discussion, and �x
notation. Recall that a frame is a complete lattice L in which the distributive law

a ^
_
S =

_
s2S
(a ^ s)

holds for all a 2 L and S � L. We denote the top and bottom elements of L by > and ?,
respectively. The pseudocomplement of an element a is the element a� =

W
fb : a ^ b = ?g.

In a frame L, we say of elements a and b that a is well below b, and write a � b, provided
that a� _ b = >. A scale is a family faig indexed by the rational unit interval (0; 1)Q, such
that ai � aj whenever i < j. We say that a is completely below b, and write a �� b, if there
is a scale faig for which a � ai � b for all i. A cozero element of L is the join of a scale,
i.e., expressible in the form

W
ai for some scale faig. We refer to the set of cozero elements

of a frame L as its cozero part, and denote it by QL . A frame L is said to be (completely)
regular if each of its elements is the join of those well below it (completely below it). Frame
morphisms are those functions f between frames which preserve binary meets and arbitrary
joins, including empty meets and joins, so that frame maps preserve > and ?. We denote
the category of frames with frame morphisms by Frm, and the full subcategories of regular
frames and completely regular frames by rFrm and crFrm, respectively. As far as frames
are concerned, our analysis will be con�ned to the last-mentioned category. Unless otherwise
stipulated, all frames will be assumed to be completely regular.
When all mentioned joins are restricted to be over countable sets, the resulting con-

structs are called �-frames and regular �-frames, and the categories are designated �Frm
and r�Frm, respectively.2 Regular �-frames appear naturally in the study of frames as their

1We would like to thank to Professor Ernest Manes for raising this interesting point when we presented
these results at the BLAST conference held in Las Cruces, New Mexico, in August, 2009.

2It is an important and nontrivial fact that the notions of regularity and complete regularity coincide for
�-frames. That is because a regular �-frame is normal, the well-below relation interpolates and therefore
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cozero parts. In fact, Q : crFrm! r�Frm is functorial, which is to say that a frame mor-
phism g : L ! M takes cozero elements of L to cozero elements of M , thereby restricting
to a �-frame morphism QL ! QM , which we denote Qg. Moreover, the inclusion map
QL ! UL, where U is the forgetful functor that regards a frame L as only a �-frame, is a
core�ector. That means that any �-frame morphism A ! UL out of a regular �-frame A
factors uniquely through the inclusion QL! UL, which is to say that QL is the largest reg-
ular sub-�-frame of UL. We drop reference to the forgetful functor U in the sequel, trusting
the reader to insert it where necessary.
Q has a left adjoint H : r�Frm ! crFrm which assigns to each A 2 r�Frm the frame

HA of �-ideals, i.e., down-sets closed under countable joins, of A, and the �-frame morphism
�A : A ! QHA given by the rule a 7�! #a, a 2 A. Then (�A;HA) is a Q-universal arrow
with domain A, meaning that for any L 2 crFrm and �-frame morphism f : A! QL there
is a unique frame morphism g : HA! L such that Qg � �A = f . If f : A! B is a �-frame
morphism then the corresponding frame morphism Hf : HA! HB is given by

(Hf) (I) = [f (I)]� ; I 2 HA;

where [f (I)]� designates the �-ideal generated by f (I).
More important for our purposes is the co-unit of the adjunction: for each frame L 2

crFrm we have the frame morphism �L : HQL ! L given by the rule I 7�!
W
I, I 2

HQL. Then (�L;HQL) is an H-co-universal arrow with codomain L, meaning that for any
A 2 r�Frm and frame morphism g : HA ! L there exists a unique �-frame morphism
f : A! QL such that g = �L � Hf .
H maps r�Frm onto the full subcategory rLFrm of crFrm consisting of the regular

Lindelöf frames.3 (A frame L is Lindelöf if, for any subset S � L,
W
S = > implies

W
S0 = >

for some countable subset S0 � S. See Subsection 7.3.) In fact, the restriction of the
adjunction

rLFrm
H
�
Q
r�Frm

is a categorical isomorphism. This means that the �A�s are �-frame isomorphisms, and that
the �L�s are frame isomorphisms when L is regular Lindelöf, but it also means that rLFrm is
a core�ective subcategory of crFrm. We refer to �L : HQL! L as the Lindelöf core�ection
of L. (The existence of this core�ection, and this construction of it, are due to Madden and
Vermeer [24, p. 476].)
Frames, of course, model topologies. Explicitly, we have the functor O : Sp ! Frm,

where the Sp is the category of topological spaces with continuous functions, which assigns
to each topological space X its frame OX of open sets, and assigns to each continuous

coincides with the completely below relation, and the �-frame is consequently completely regular. See
Banaschewski [5].

3That a regular Lindelöf frame is completely regular is also important and nontrivial. This follows directly
from the preceding note, by way of the categorical equivalence between regular �-frames and regular Lindelöf
frames.
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function g : X ! Y the frame morphism Og : OY ! OX given by

Og (U) = g�1 (U) ; U 2 OY:
Conversely, to each frame L we assign its space SL of points, as follows. A point of L is a
frame morphism x : L! 2, where 2 designates the two-element frame f?;>g. The topology
on SL consists of the frame of subsets of the form

�L (a) � fx 2 SL : x (a) = >g ; a 2 L;
and the map �L : L ! OSL thus described is a frame surjection which makes (�L;SL) an
O-universal arrow with domain L. L is called spatial when this map is an isomorphism. The
other unit of this adjunction is the assignment to a given space X of the S-universal arrow
(�X ;SOX) with domain X, where �X : X ! SOX is de�ned by the rule

�X (x) (a) =

�
> if x 2 a
? if x =2 a ; a 2 OX; x 2 X:

X is called sober when �X is a homeomorphism.
The frame terminology generally comes from spaces via the O functor. Thus an ele-

ment a of a frame L is a cozero i¤ there is some frame morphism f : OR ! L such that
f (Rr f0g) = a, a space X is (completely) regular i¤ OX is (completely) regular, etc.
Therefore, consistent with our running assumption that all frames are completely regular
unless otherwise stipulated, we assume all spaces are Tychonov, i.e., Hausdor¤ and com-
pletely regular, unless otherwise stipulated. We denote by crSp the full subcategory of Sp
consisting of the Tychonov spaces.
Behind many of the considerations taken up here lies the Baire �eld of a space X, the

smallest �-�eld of subsets of X which contains QOX. It may be obtained concretely by
starting with the family of cozero sets of X and iteratively adding complements and then
countable unions. The iteration must be trans�nite, taking unions at the limit ordinal stages,
but need only be carried out through !1 steps. We use RX to denote the Baire �eld of X,
regarded as a (Boolean) �-frame.

3. P -spaces and P -frames

3.1. P -spaces. A point x in a space X is called a P -point if every continuous real-valued
function on X is constant in a neighborhood of x. The space X itself is called a P -space if all
its points are P -points. Discrete spaces are P -spaces, as are the one-point Lindelö�cations of
in�nite discrete spaces.4 There are even P -spaces without isolated points. A few examples of
P -spaces appeared sporadically in the literature, where they were regarded as aberrations,
until Gillman and Henriksen undertook a systematic study of P -spaces in [14], which intro-
duced the terms P -point and P -space. Since the appearance of this paper, P -points and
P -spaces have emerged in many mathematical contexts, often playing an important role in
the analysis. A good introduction to the topic may be found in problems 4J-N of [15], from
which Theorem 3.1 is drawn.
4The one point Lindelö�cation of an in�nite discrete space D is formed by adjoining an additional point

d1 to D. A subset U of the resulting set is declared open if d1 2 U implies D r U is at most countable.
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Theorem 3.1. The following are equivalent for a space X.
(1) X is a P -space, i.e., zero sets are open, i.e., cozero sets are clopen.
(2) Each cozero set of X is C-embedded.
(3) C (X) is a regular ring, i.e.,

8f 9 f0
�
f 2f0 = f

�
:

Proof. We o¤er a few words of explanation here for purposes of comparison with the cor-
responding pointfree arguments to come. The implication from (1) to (2) is obvious, since
every clopen subset is C-embedded. Assuming (2), we take an arbitrary f 2 C (X) and
invert it on its cozero set, extending the result to the whole space (because the latter is C-
embedded) to get f0. Assuming (3), we get (1) by observing that the zero set of f 2 C (X),
f � 0, is coz (1� ff0). �

3.2. P -frames. Theorem 3.1 has a pointfree counterpart, Theorem 3.2 below. It is inter-
esting to see how the arguments used to establish the equivalence of the conditions in the
pointfree version are ready generalizations of the pointed arguments, becoming at the same
time simpler and broader in scope. The equivalence of conditions (1) and (2) in Theorem
3.2 is due to Ball and Walters-Wayland ([4, 8.4.7]), while the equivalence of (2) and (3) is
due to Dube [13].

Theorem 3.2. The following are equivalent for a frame L.
(1) The cozero elements of L are complemented.
(2) Each open quotient of a cozero element of L is a C-quotient.
(3) C(L) is a regular ring.

Proof. The argument that the open quotient of a complemented element a 2 L is a C-
quotient, i.e., the implication from (1) to (2), is straightforward. We outline a proof of the
implication from (2) to (3) in order to point out how closely the reasoning follows the spatial
argument in the proof of Theorem 3.1. Assume (2), and consider f 2 C(L), i.e., f is a frame
map from OR into L. Let a � coz f = f (Rr f0g) 2 cozL. Now mf : OR! #a 2 C (#a)
has the feature that mf (Rr f0g) = >, so that according to Proposition 3.3.1 of [4] it may
be inverted, i.e., there is some g 2 C (#a) such that fg = 1. Since the open quotient map
m : L ! #a, given by b 7�! b ^ a, b 2 L, is a C-quotient, g may be extended over m, i.e.,
there is some f0 2 C(L) such that mf0 = g. It is then clear that f 2f0 = f . The implication
from (3) to (1) goes along the same lines as that from (3) to (1) in Theorem 3.1. That is,
one shows that

coz f _ coz (1� ff0) = coz (f _ (1� ff0)) = >;
coz f ^ coz (1� ff0) = ?:

The computational machinery developed in [4] can be used to establish these equalities. �

The striking parallelism of Theorems 3.1 and 3.2 motivates the central de�nition of this
article.
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De�nition 3.3. We say that a frame L is a P -frame if it satis�es the conditions of Theorem
3.2.

The reader should be warned that [4, 8.4.7] contains a serious misstatement of this de�ni-
tion. The condition that a 2 CozL implies a� 2 CozL is not equivalent to those of Theorem
3.2, and does not de�ne a P -frame. This is an error on our part.
The class of P -frames includes the topologies of the P -spaces, but extends far beyond

them. For example, any complete Boolean algebra A is a P -frame, and if A is atomless then
its associated space SA is empty. In the language of locales, a complete atomless Boolean
algebra is a pointless P -locale.
Dube has characterized P -frames by means of several interesting and elegant ring theoretic

properties of C(L). See [13]. We add several more characterizations of P -spaces and P -
frames in terms of C (X) or C (L) regarded as W-objects. To the best of our knowledge,
these characterizations are new.

3.3. InW. W is the category whose objects are of the form (G; u), whereG is an archimedean
lattice-ordered group with weak order unit u. (For general background, see [10], [22], and
[12].) There is an adjoint relationship

W
C
�
Y
rLFrm;

where Y is the functor which assigns to eachW-object G its regular Lindelöf frame YG of
W-kernels, and C is the functor which assigns to each regular Lindelöf frame L theW-object
CL of frame maps OR! L ([25], [2]). The functor C maps rLFrm onto the full subcategory
c3W of W consisting of those objects which are closed under countable composition, an
attribute whose de�nition we omit. The restricted adjunction

c3W
C
�
Y
rLFrm

is a categorical isomorphism.
For G 2W, we denote the positive cone fg 2 G : g � 0g of G by G+.

Theorem 3.4. The following are equivalent for a frame L.
(1) L is a P -frame.
(2) CL is epicomplete inW or in c3W, i.e., CL has no proper epimorphic extensions.
(3) CL is

(a) conditionally �-complete, i.e., every bounded countable subset of CL+ has a
supremum, and

(b) laterally �-complete, i.e., every countable pairwise disjoint subset of CL+ has a
supremum.

(4) CL is laterally �-complete.
If L is replaced by HQL in any of these conditions then the resulting condition remains
equivalent to those above.
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Proof. This theorem is about epicompleteness in three categories: r�Frm, rLFrm, and
c3W. Since all three are isomorphic, we get that a regular �-frame A is epicomplete in
r�Frm i¤HA is epicomplete in LFrm i¤ CHA is epicomplete in c3W. But the epicomplete
objects in r�Frm are well-known to be the Boolean ones ([21]), CL is isomorphic to CHQL,
either as a ring or a W-object since every frame map OR ! L extends uniquely over the
Lindelöf core�ection map HQL ! L because OR is Lindelöf, and c3W is an epire�ective
subcategory of W so that the notions of epimorphism and epicompletion in c3W coincide
with the same notions in W. Thus the �rst two conditions and their Lindelöf variations
coincide. The third condition is a known internal characterization of epicompleteW-objects
([1]). But, in the presence of divisibility and regular uniform completeness, both attributes
of CL, a laterally �-completeW object is conditionally �-complete. (See [28] and Theorem
5.4 of [16]; see also the remark following Theorem 5.2 in [3].) �

When specialized to spaces, Theorem 3.4 becomes Corollary 3.5.

Corollary 3.5. The following are equivalent for a space X.

(1) X is a P -space.
(2) C (X) is epicomplete inW or in c3W, i.e., C (X) has no proper epimorphic exten-

sions.
(3) C (X) is laterally �-complete.

Proof. In this case C (X) isW-isomorphic to COX, and X is a P -space i¤OX is a P -frame.
The equivalence of (1) and (3) is due to Buskes [11]. �

By connecting P -spaces with epicompleteness in W, Corollary 3.5 shows that, far from
being curiosities, P -spaces arise naturally and unavoidably in general topology. But what
is also interesting about Corollary 3.5 is that, while the result itself is about spaces (X and
C (X), classical stu¤), its proof reduces to a diagram chase in frames.

4. The P -space coreflection

One of the most important properties of P -spaces is that every space has a �nearest�
P -space relative. (See [29, Chapter 10].) Put another way, among all the P -space topologies
�ner than the given topology on a space X, there is a coarsest one. This topology goes
by several names, among them being the P -space topology, the G�-topology, and the Baire
topology. We denote by PX the space that results from equipping the carrier set X with
this �ner topology, and we denote by �X the identity map PX ! X, which is continuous.
It is an entertaining exercise to establish that

OPX = fV : V is a union of cozero sets of Xg
= fV : V is a union of G� sets of Xg
= fV : V is a union of sets of RXg :

An informative reference is [27].
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Theorem 4.1. P -spaces are bicore�ective in spaces. In particular, a core�ector for the space
X is �X : PX ! X, meaning that for any continuous function f : Y ! X out of a P -space
Y there is a unique continuous function bf : Y ! PX such that �X bf = f .
The purpose of this article is to extend Theorem 4.1 to the pointfree context, i.e., to prove

the existence of the P -frame re�ection. This we do in Theorem 7.13. We begin with the
special case of Lindelöf frames.

5. The P -frame reflection in the Lindelöf case

Although the proof in this case is straightforward, we will see in Section 6 that it does not
readily generalize. Let L be a Lindelöf frame with cozero part A, and let �A : A ! BA be
a Boolean re�ector for A. Now �L : HQL! L is an isomorphism because L is Lindelöf, so
that we have the map

�L � H�A � ��1L : L! HBA � PL:
(Our use of the same symbol P to designate both the P -frame re�ection and the P -space
core�ection (Section 4) is purposeful; see Section 8.) Unwinding these de�nitions gives

�L (a) = fb 2 BA : b � �A (a)g ; a 2 L:

Theorem 5.1. Every Lindelöf frame L has a P -frame re�ector, namely �L : L! PL. That
means that for any frame map k : L ! M into a P -frame M there is a unique frame mapbk : PL!M such that bk�L = k. And PL is Lindelöf.
We emphasize that the codomains M of the test maps k are not required to be Lindelöf,

but instead range over all P -frames. Lindelöf P -frames are re�ective in Lindelöf frames, and
it happens that this re�ection is also the P -frame re�ection in the category of all (completely
regular) frames.

Proof. Let L be a Lindelöf frame with cozero part A. First observe that PL is a P -frame
since its cozero part is isomorphic to the Boolean �-frame BA via �BA. Now consider a test
map k as above, and let B � QM . Then Qk : A! B factors uniquely through �A since B
is Boolean; let j : BA! B be the unique map satisfying j�A = Qk. Applying the H functor
to this factorization gives the commuting diagram.

PL HBA

L HA HB M

?
�

-

?

-

�
�
�
��>

-

�L

�L
�1

H�A

HQk �M

Hj

The desired map bk is �M �Hj; its uniqueness with respect to satisfying bk�L = k follows from
the fact that �A is epic and therefore so is H�A and so is �L. �
Theorem 5.1 permits a relatively concrete description of the P -frame re�ection of a com-

pact frame L, Corollary 5.5, for in this case we have a nice characterization of the Boolean
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re�ection of the cozero part of L. For a space X, recall that RX designates the (Boolean)
�-frame of Baire measurable subsets of X.

Proposition 5.2 ([25]; see also [7]). For a compact space X with A = QOX, the identical
insertion iX : A! RX serves as a Boolean re�ector for A.

Corollary 5.3. For a compact space X, the map OX ! HRX given by the rule

U 7�! fV 2 RX : V � Ug ; U 2 OX;
serves as a P -frame re�ector for OX.

Proof. From Theorem 5.1 we learned that �OX : OX ! HBQOX is a P -frame re�ector for
OX, and from Proposition 5.2 we �nd that we can replace BQOX by RX in this formula.
Unwinding the de�nitions leads to the mapping displayed. �
Example 5.4. Consider the frame L = O [0; 1], the topology on the closed unit interval. In
this case singletons are zero sets, so the Baire �eld R [0; 1] is 2[0;1], the entire power set of
[0; 1]. So the embedding L! H2[0;1] given by

U 7�! fV � [0; 1] : V � Ug ; U 2 O [0; 1] ;
is a P -frame re�ector for L.

Corollary 5.5. The P -frame re�ection of a compact frame L is isomorphic to

L
��1L! HQL H(iSL�Q�L)! HRSL:

Proof. �L : L! OSL is a frame isomorphism by the Axiom of Choice. �
Summary 5.6. We summarize the conclusions of this section in two formulas.
(1) For a Lindelöf frame L, PL �= HBQL.
(2) For a compact frame L, PL �= HRSL.

6. The quotient of a P -frame need not be a P -frame

In light of the straightforward proof of Theorem 5.1, one might hope to simply push out
the diagram

L

HQL HBQL

?

-

�L

�HQL

in order to get the P -frame re�ection of an arbitrary frame L. But that would require
something very close to the closure of P -frames under quotients. One would certainly expect
the class of P -frames to be closed under quotients since a subspace of a P -space is clearly
a P -space. But the example presented in the this section shows that this expectation is
unfounded.
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We construct a frame surjection whose domain is a P -frame and whose codomain is not.
Note that the search for an example of this type may be con�ned to Lindelöf frames. That is
because, if f : L!M is a frame surjection with a domain which is a P -frame and a codomain
which is not, so is the composition of f with the Lindelöf core�ection map HQL! L. After
all, L and HQL have isomorphic cozero parts, so that one is a P -frame i¤ the other is.
Moreover, since a regular Lindelöf frame is entirely determined by its cozero part, the search
for an example of this type may be understood to be the search for a Boolean �-frame having
certain properties. What are those properties?
One rather simple way in which a frame may fail to be a P -frame is if it has a countable

collection of complemented elements whose join is not complemented. For complemented
elements are cozeros, and the cozeros are closed under countable joins.

6.1. Frames having a quotient in which the complemented elements are not closed
under countable joins. Theorem 6.1 characterizes the frames with such quotients. This
theorem requires that we recall some well-known machinery for handling quotient maps.

6.1.1. Prenuclei. The �nest frame congruence identifying two members u and v of a frame L
is also the �nest congruence identifying u^ v and u_ v, so when we speak of pairs identi�ed
by a particular congruence, we will assume that the pairs are of the form (u; v) with u � v.
It is well-known and easy to verify that the �nest frame congruence � identifying such a
pair (u; v) is given by

a � b() (u ^ (a _ b) � a ^ b and v _ (a ^ b) � a _ b) :
Thus the corresponding nucleus is

j (a) =
_
fb : u ^ b � a and v _ a � bg ; a 2 L:

(For if b satis�es only the two inequalities displayed above then a_ b � a.) In particular, for
v = > this simpli�es to

j (a) =
_
fb : b ^ u � ag ; a 2 L:

This is sometimes expressed in the form

j (a) = u! a; a 2 L:
What if we have not one pair, but a set of pairs to be identi�ed by the frame congruence?

Then the same sort of considerations apply, except that we get a prenucleus rather than a
nucleus [9]. Thus for any subset S � L, the �nest frame congruence which identi�es the
members of S with > has prenucleus

j (a) =
_
S

fb : b ^ u � a for some u 2 Sg ; a 2 L:

This is sometimes expressed in the form

j (a) =
_
S

(u! a) ; a 2 L:
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Since complemented elements are cozeros, these frames have a dense quotient which is not
a P -frame.

Theorem 6.1. A frame L has a dense quotient in which the complemented elements are
not closed under countable joins i¤ it contains elements cn, n 2 N, and z with the following
properties.

(1) cn � z < > for all n 2 N.
(2) c�n ! z = z for all n 2 N.
(3) c� � z, where c =

W
N cn.

Proof. Suppose L contains elements cn, n 2 N, and z as speci�ed. Let j be the prenucleus
of the �nest frame congruence which identi�es all the cn _ c�n�s with >. That is,

j (a) =
_
fb : b ^ (cn _ c�n) � a for some n 2 Ng ; a 2 A:

Let M be the �xed point set of j, regarded as a frame in the order it inherits from L, and
let m : L!M be the frame morphism corresponding to j. Note that j (?) = ?, so that m
is dense.
We claim j (z) = z. For if not then there is some b 2 L and n 2 N such that b^(cn _ c�n) � z

but b � z. But then b ^ c�n � z would imply b � c�n ! z, contrary to (2). And since
m (c)� = m (c�) by virtue of the density of m, we have

m (c) _m (c)� = m (c) _m (c�) = m (c _ c�) = m (z) < >;
the point being that

W
Nm (cn) = m (

W
N cn) = m (c) is not complemented in M .

Now suppose m : L ! M is a dense frame surjection such that elements xn, n 2 N, are
complemented inM but x =

W
N xn is not. Let cn � m� (xn), n 2 N, and let z � m� (x _ x�).

These elements clearly satisfy (1) and (3). To see that they satisfy (2), consider a 2 L such
that a ^ c�n � z for some n. Then, since m (c�n) = m (cn)

� by the density of m, we get
m (a) ^ x�n � x _ x�. Hence

m (a) = m (a) ^ > = m (a) ^ (xn _ x�n)
= (m (a) ^ xn) _ (m (a) ^ x�n)
� x _ x�;

with the result that a � m� (x _ x�) = z. �

6.2. The Boolean �-frame A. We return now to the the discussion at the beginning of the
section. In order to �nd a frame surjection whose domain is a P -frame and whose codomain
is not, it is su¢ cient to �nd a Boolean �-frame A with the properties necessary to insure
that its frame of �-ideals satis�es the conditions of Theorem 6.1. We construct A with the
aid of two auxiliary Boolean �-frames, B and D.

6.2.1. The auxiliary Boolean �-frame B. Let E be an uncountable set, and let X designate
the set of all �nite sequences x of elements of E. For x 2 X, let jxj designate the length
of x, let � designate the empty sequence of length 0, and for x; y 2 X let xy designate the
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concatenation of x and y. Partially order X by declaring x � y i¤ x = yz for some z 2 X.
For any subset U � X we denote the set of its lower bounds by

#U � fy : 9x 2 U (y � x)g ;

and we abbreviate #fxg to #x. Note that X is a tree, meaning that the set of upper bounds
of any element is a �nite chain.

De�nition 6.2. B is the Boolean sub-�-frame of the power set 2X generated by all subsets
of the form #x, x 2 X.

The elements of B have a normal form which we now describe. We call a subset U � X
pairwise incomparable if no two di¤erent elements x and y of U have a common lower bound.
For each x 2 X and pairwise incomparable countable subset U � (#x)r fxg we let

b (x; U) � (# x)r (#U) :

Use of the notation b (x; U) is meant to imply that U is a pairwise incomparable countable
subset of #xr fxg. Figure 1 shows a typical b (x; U) visualized as a subset of the tree X.

x

u1
u2

�
�
�
�
��@

@
@
@
@@��@@ �
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Figure 1. b(x; U) shaded

Proposition 6.3. Each member of B is the union of a unique countable family of pairwise
disjoint subsets of the form b (x; U), x 2 X.

Proof. Let B0 designate the collection of subsets which can be expressed as unions of b (x; U)�s
as above. It is clear that each individual b (x; U) lies in B, so that the same is true of each
element of B0. We must show that B0 forms a Boolean sub-�-frame of 2X .
We �rst show that the complement of each b (x; U) lies in B0. For if x = � then b (x; U) =

X r (#U) and X r b (x; U) is # U , which clearly lies in B0. And if x 6= � then

X r b (x; U) = b (�; fxg) [
 [
y2U
b (y; ;)

!
;

which also lies in B0.
We next show that B0 is closed under countable intersection. For that purpose consider a

countable subset fbi : i 2 Ng � B0, where

bi =
[
n2N

b
�
xin; U

i
n

�
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for a pairwise disjoint family fb(xin; U in) : n 2 Ng. Then, by virtue of the complete distribu-
tivity of 2X , we have

(�)
\
i2N

bi =
\
i2N

[
n2N

b
�
xin; U

i
n

�
=
[
�2NN

b�;

where
b� �

\
i2N

b
�
xi�(i); U

i
�(i)

�
:

We claim that

(1) all but countably many of the b��s are empty, and
(2) the nonempty b��s are of the form b (y; U) for y ranging over a countable subset

Y � X, and
(3) the b (y; U)�s are pairwise disjoint.

We establish the claim by �rst de�ning

Y �
�
xin : 8 j 9m

�
xin 2 b

�
xjm; U

j
m

��	
:

Y is clearly countable. Furthermore, for each y = xin 2 Y and each j, the pairwise dis-
jointness of the b(xjm; U

j
m)�s, m 2 N, implies that there is, in fact, a unique mj for which

y 2 b(xjmj
; U jmj

). This allows us to de�ne �y 2 NN by setting �y (j) � mj, j 2 N. Note that,
since y 2 b(xj�y(j); U

j
�y(j)

) for all j, it follows that y � xj�y(j) and y =2 #U j�y(j) for all j. If we
let Uy be the collection of maximal elements of

S
j2N(# y \ U

j
�y(j)

), then, as the reader will
have no di¢ culty checking, b�y = b (y; Uy).
We next claim that the b (y; Uy)�s are pairwise disjoint. Clearly b (y1; Uy1) is disjoint from

b (y2; Uy2) if y1 and y2 are unrelated elements of Y , for b
�
yj; Uyj

�
� #yj. On the other hand,

if y1 and y2 are related elements of Y , say y1 < y2, then, abbreviating �yj to �j, we have

xi1n1 = y1 < y2 � x
i1
�2(i1)

;

which establishes that �2 (i1) 6= n1. But then b (y1; Uy1) and b (y2; Uy2) are contained, respec-
tively, in the disjoint sets b(xi1n1 ; U

i1
n1
) and b(xi1�2(i1); U

i1
�2(i1)

).
We complete the proof of the claim by showing that every nonempty b� is of the form

b (y; Uy) for a unique y 2 Y . For the fact that b� 6= ; implies that xi�(i) must be related to
xj�(j) for all i and j. It also implies that the chain fxi�(i) : i 2 Ng is �nite; let y � xin be its
least element. Clearly y � xj�(j) for all j, and since ; 6= b� � #y, it follows that y =2 #U j�(j)
for all j. That is, y 2 b(xj�(j); U

j
�(j)) for all j, which establishes that y 2 Y . The reader may

readily check that b� = b (y; Uy).
The claim shows that the expression on the right in (�) is of the form required for member-

ship in B0, and hence that B0 is closed under countable intersection. Combined with the �rst
paragraph, this allows us to conclude that B0 is closed under arbitrary complementation.
These two facts, in turn, imply that B0 is a Boolean sub-�-frame of 2X and complete the
proof. �
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Corollary 6.4. Each nonempty b 2 B is uncountable. Consequently, for bi 2 B, b1 = b2 i¤
their symmetric di¤erence b1�b2 is countable.

Proof. The �rst statement is a consequence of Proposition 6.3, since each b (x; U) is uncount-
able. �

6.2.2. The Boolean �-frames D and A.

De�nition 6.5. Let D be the Boolean �-frame of all subsets d � X for which there exists
some b 2 B such that d�b is countable. (By Corollary 6.4, there can be at most one such
b.) Finally, let

A �
�
(d1; d2) 2 D2 : jd1�d2j � !

	
:

Clearly D is a sub-�-frame of 2X , A is a sub-�-frame of D2, and both are Boolean. Note
that if (d1; d2) 2 A then there exists a unique b 2 B such that d1�b and d2�b are countable.
We refer to (d1; d2) as being small if b = ;, and large if b 6= ;. Note that the countable join
of small elements is small.

6.3. The example. Let L designate HA, the frame of �-ideals of A. De�ne in L
In � f(d1; d2) 2 A : d2 = ; and jxj � n for all x 2 d1g ; n 2 N;
I�n � fa 2 A : 8 b 2 In (a ^ b = 0)g ; n 2 N;
J � fa 2 A : a is smallg :

Note that the elements of In are small, whereas those of I�n need not be. For example,

(b (x; U) ; b (x; U)) 2 I�n
for all x such that jxj � n+ 1.

Lemma 6.6. For every large element a 2 A and every n 2 N there is a large a0 2 A such
that a � a0 2 I�n.

Proof. Since a is large it is of the form (d1; d2) for a unique ; 6= b 2 B such that d1�b
and d2�b are countable. In turn, b is the union of a unique countable family of pairwise
disjoint subsets of the form b (x; U). Fix any one of these b (x; U)�s, and let y be any element
of b (x; U) r (d1�b [ d2�b) of length at least n + 1. Such an element must exist because
X has uncountable branching at each point. Then (b (y; ;) ; b (y; ;)) has the properties of the
element a0 we seek. �

Our discussion of the example is completed by showing that L satis�es the hypotheses of
Theorem 6.1.

Proposition 6.7. The following hold in L.
(1) In � J  A for all n.
(2) I�n ! J = J for all n.
(3) I� � J , where I �

W
N In in L.
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Proof. We have already remarked on the truth of (1), and (2) follows from Lemma 6.6. (3)
follows from the observation that

I =
_
N

In = f(d1; d2) : jdij � !g ;

so that I� = f(;; ;)g = 0. �

7. The P -frame reflection

We construct the P -frame re�ection �L : L ! PL of a frame L iteratively, at each step
freely complementing the cozero elements. We begin with the �rst step.

7.1. One step: freely complementing the cozeros of L. It is well known that for any
frame L and subset S � L there is a frame injection f : L ! LS which is universal with
respect to complementing the elements of S ([19], see also [31], [20]). That means that f (s)
is complemented in LS for each s 2 S, and that any frame morphism g : L! M such that
g (s) is complemented in M for each s 2 S factors through f , i.e., there is a unique frame
morphism h : LS ! M such that g = hf . This property characterizes f and LS up to
isomorphism over L. Of the several known constructions of this extension, perhaps the most
accessible is Wilson�s. We record that construction here, specialized to S = QL, in order to
familiarize the reader with the extension and to make a couple of elementary remarks about
it. We then return to Joyal and Tierney�s original construction, and elaborate upon it in
order to draw the conclusions necessary for our purposes.
Recall that a frame L may be regarded as a subframe of its frame NL of nuclei by means

of the embedding c : L! NL which maps beach a 2 L to the closed nucleus c (a) de�ned by
c (a) (b) = a _ b, b 2 L ([18]). Recall also that each c (a) has a complement in NL, namely
the open nucleus u (a) de�ned by

u (a) (b) = a! b �
_
d^a�b

d; b 2 L:

In fact, the embedding c : L! NL may be characterized as the result of freely complement-
ing all of the elements of L.

Proposition 7.1 ([31, 16.2]). For a frame L, let L0 designate the subframe of NL generated
by c (L) [ u (QL), and let cL : L ! L0.designate the codomain restriction of c. Then
cL : L! L0 is universal with respect to complementing the cozeros of L.

Corollary 7.2. For a frame L, let f : L ! L0 be the result of freely complementing the
cozero elements of L, no matter how constructed. Then each element of L0 is the join of
di¤erences of cozero elements of L.

Proof. This is true of Wilson�construction in NL. �
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7.2. The iteration problem. Although each a 2 QL has a complemented image in QL0,
we have no assurance that every member of QL0 is complemented, i.e., that L0 is a P -frame.
A natural strategy is, therefore, to iterate the passage from L to L0

L! L0 ! L00 ! L000 ! � � � ;

taking colimits at limit ordinal stages. If this process terminates, or stabilizes, then this
extension is a likely candidate for the P -frame re�ection of L.
The termination issue is a serious one, since if we replace L0 with NL in the de�nition

above, that is, if we complement all of the elements of L at each step instead of just the
cozero elements, we get the famous tower construction

L! NL! NNL! NNNL! � � � ;

which does not stabilize in many cases ([18], [31]). In fact, characterizing those frames
for which the tower construction stabilizes is one of the most fundamental open problems
in pointfree topology. We resolve this issue in the sequel by showing that the tower of
extensions L ! L0 ! L00 � � � stabilizes because the Lindelöf degree does not grow. (We
review the notion of Lindelöf degree in Subsection 7.3.)
What that means, of course, is that the Lindelöf degree does grow in the tower of extensions

L ! NL ! NNL ! � � � . That is indeed the case; the Lindelöf degree of NL may strictly
exceed that of L. For it is known (from the equivalence of rLFrm with W, for instance)
that the epicomplete objects in the category of regular Lindelöf frames are the P -frames. If,
for a Lindelöf P -frame L, NL were also Lindelöf, then, as an epimorphic extension of L, it
would have to coincide with it. That is, every Lindelöf P -frame would be Boolean. Such,
however, is not the case.

7.3. Lindelöf degree. From this point on, � stands for a regular cardinal. A �-set is any
set of cardinality strictly less than �, and in any set A, a �-subset is a subset B � A such
that jBj < �; we sometimes write B �� A for emphasis. Recall that a frame L is said to
be �-Lindelöf if for every subset A � L such that

W
A = > there is �-subset B �� A such

that
W
B = >. The Lindelöf degree of L, written lindL, is the least regular cardinal �

such that L is �-Lindelöf. For instance, L is compact i¤ lindL = !. When used without
the hyphenated cardinal, the term Lindelöf means !1-Lindelöf. We record the elementary
properties of Lindelöf degree.

Proposition 7.3. (1) If L is a subframe of M then lindL � lindM .
(2) For a �nite family fLi : 1 � i � ng of frames,

lind

 Y
1�i�n

Li

!
� max flindLi : 1 � i � ng :

(3) For an element a in a frame L, the closed quotient frame " a = fa0 2 L : a0 � ag
satis�es

lind "a � lindL:
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(4) For a cozero element a in a frame L, the open quotient frame # a = fa0 : a0 � ag
satis�es

lind #a � max flindL; !1g :

Proof. Only (4) requires explanation. Suppose L is �-Lindelöf, and consider a 2 QL, say
a =

W
(0;1)Q

ai for some scale
�
ai : i 2 (0; 1)Q

	
. For i < j in (0; 1)Q let bij be a separating

element, i.e., bij ^ ai = ? and bij _ aj = >. Suppose
W
S = > in # a, which is to say thatW

S = a in L. Then for i < j we have_
S

(bij _ s) = bij _ a � bij _ aj = >:

Since L is �-Lindelöf there must be a �-subset Sij �� S such that
W
Sij
(bij _ s) = >, and since

bij^ai = ? and bij_
W
Sij =

W
Sij
(bij _ s) = >, it follows that

W
Sij � ai. Let S 0 �

S
i<j Sij,

a subset of S of cardinality strictly less than max f�; !1g. Clearly
W
S 0 = a. �

The most penetrating characterization of Lindelöf degree is by means of �-frames. Theo-
rems 7.4 and 7.5 extract the relevant facts from Section 4 of Madden�s fundamental article
[23] on �-frames; we refer the reader to that source for further explanation and for the de-
�nition of terms unde�ned here. A frame L is said to be �-free provided that there is a
universal �-frame morphism f :M ! L, i.e., such that any �-frame morphism from M into
a frame factors uniquely through f . An element a of a frame L is called �-Lindelöf if its
open quotient # a is �-Lindelöf. We denote by E� (L) the set of �-Lindelöf elements of L.
Now E� (L) is evidently closed under joins of �-subsets, but is not generally a sub-�-frame.
When E� (L) is a sub-�-frame of L and generates L, we say that L is �-coherent. That is, L
is �-coherent if E� (L)

� is closed under binary meets,
� contains >, and
� generates L as a frame.

Theorem 7.4 (Madden). Let � > !. Then the following are equivalent for a frame L.
(1) L is �-Lindelöf.
(2) L is �-free.
(3) L is �-coherent.
(4) L is isomorphic to the frame of �-ideals of E� (L).

More is true.

Theorem 7.5 (Madden). Let F � be the functor which assigns to a regular �-frame its frame
of �-ideals. Then F � and E� form a categorical equivalence between the categories of regular
�-frames and �-Lindelöf frames. Furthermore,

L �= F �E� (L) and E�F � (L) = f# a : a 2 Lg
for all �-Lindelöf frames L.

A fact which is crucial for our purposes is that frame colimits preserve Lindelöf degree.
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Theorem 7.6. Let � be a regular cardinal, and let ffij : Li ! Lj : i � j in I} be a directed
family of frame maps such that lindLi � � for all i 2 I,and let ffi : Li ! L : i 2 Ig be the
colimit of the family. Then

lindL � max f�; !1g :

Proof. Let � = max f�; !1g. By Theorem 7.4, each Li is �-free, meaning that Li is the
free frame over its sub-�-frame E�i of �-Lindelöf elements. By Lemma 4.2 of [23], each fij
restricts to f�ij : E

�
i ! E�j , so that we have the directed family

�
f�ij : E

�
i ! E�j : i � j in I

	
of morphisms in the category of regular �-frames. Let

�
f�i : E

�
i ! E

	
be its colimit in that

category, and then apply the functor F � to these maps. It is easy to check that the result
gives the colimit of the frame maps ffijg. Since the colimit object F � (E) is �-Lindelöf by
Theorem 7.4, the result is proven. �

We prove in Proposition 7.10 that lindL = lindL0 for a frame L of Lindelöf degree � > !.
The proof involves a concrete construction of L0 based on an insight of Joyal and Tierney
([19]); see also [8]. They showed that freely complementing a single element a 2 L can be
done by the embedding L! #a�"a given by the rule

x 7�! (a ^ x; a _ x) ; x 2 L:
If a is a cozero element then, since lind # a = lind " a = � by Proposition 7.3, clearly
lind (#a� "a) = � as well. So we may freely complement a single cozero element of L
without raising the Lindelöf degree. By an elaboration of this argument, we �rst show that
we may freely complement �nitely many cozero elements of L all at once without raising the
Lindelöf degree. This gives a directed system of �-Lindelöf extensions of L whose colimit is
also �-Lindelöf by Theorem 7.6. The proof of Proposition 7.10 then consists of observing
that this colimit coincides with L0.
Fix a completely regular frame L and a �nite subset R � QL. De�ne

aR �
_
R and bR �

^
R:

For disjoint �nite subsets R;S � QL, de�ne the interval
I (R;S) � [aS ^ bR; bR] = fx 2 L : aS ^ bR � x � bRg :

Fix a �nite subset W � QL, and set

LW �
Y

R
U
S=W

IR;S;

with projection map p (R;S) : LW ! I (R;S). Here the notation R
U
S = W means that R

and S partition W , i.e., R [ S = W and R \ S = ;.

Lemma 7.7. Assuming the foregoing notation, if lindL = � > ! then lindLW = �.

Proof. LW is a �nite product of intervals of the form I (R;S), R
U
S = Q, and each such

interval is bounded by cozero elements aS ^ bR and bR. By 7.3 each of these intervals is
�-Lindelöf, and therefore so is LW . �
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Now we construct bonding maps fWV : LV ! LW for �nite V � W � QL. For
that purpose consider a partition R

U
S = W , with corresponding restriction partition

(R \ V )
U
(S \ V ) = V . Let fV (R;S) : I (R \ V; S \ V )! I (R;S) be the map

x 7�! (x _ aS) ^ bR; x 2 I (R \ V; S \ V ) :
The maps

fV (R;S) p (R \ V; S \ V ) : LV ! I (R;S) ; R
]
S = W;

induce a map fWV : LV ! LW such that

p (R;S) fWV = fV (R;S) p (R \ V; S \ V ) ; R
]
S = W:

Note that if V = W then fWV is the identity map on LV = LW .
To show these maps consistent, consider �nite subsets U � V � W � QL. Since, for any

partition R
U
S = W ,

bR � bR\V � bR\U and aS � aS\V � aS\U ;
it follows that for any x 2 I (R \ U; S \ U)

fV (R;S) fU (R \ V; S \ V ) (x) = (fU (R \ V; S \ V ) (x) _ aS) ^ bR
= (((x _ aS\V ) ^ bR\V ) _ aS) ^ bR
= (x _ aS\V _ aS) ^ (bR\V _ aS) ^ bR
= (x _ aS) ^ bR
= fU (R;S) (x) :

Therefore for all partitions R
U
S = W we have

p (R;S) fWV f
V
U = fV (R;S) p (R \ V; S \ V ) fVU
= fV (R;S) fU (R \ V; S \ V ) p (R \ U; S \ U)
= fU (R;S) p (R \ U; S \ U) :

From this it follows that fWV f
V
U = fWU , which is to say that the bonding maps form a

consistent directed family.
Since L; = I (;; ;) is isomorphic to L, we drop the subscript ; and write L; as L, f; (R;S)

as f (R;S), and fW; as fW .

Lemma 7.8. fW : L! LW is universal with respect to complementing the elements of W .

Proof. Let us �rst investigate the structure of LW . For a 2 W ,

p (R;S) fW (a) = f (R;S) (a) =

�
bR = > (R;S) if a 2 R
aS ^ bR = ? (R;S) if a 2 S ; R

]
S = W:

Each fW (a) is complemented in LW ; if we denote this complement by ca, then it satis�es

p (R;S) (ca) =

�
aS ^ bR = ? (R;S) if a 2 R
bR = > (R;S) if a 2 S ; R

]
S = W:
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Furthermore, the ca�s, together with fW (L), generate all of LW . To see this, consider a
particular partition R

U
S = W and a particular x 2 L such that aS ^ bR � x � bR. Put

y (R;S; x) �
^
a2R

fW (a) ^ fW (x) ^
^
a2S
ca 2 LW :

Then for any other partition T
U
U = W we get

p (T; U) (y (R; S; x)) =
^
a2R

p (T; U) fW (a) ^ p (T; U) fW (x) ^
^
a2S
p (T; U) (ca)

=
^
a2R

f (T; U) (a) ^ f (T; U) (x) ^
^
a2S
p (T; U) (ca)

=

�
x if T = S
aU ^ bT = ? (T; U) if T 6= S :

Thus any y 2 LW can be uniquely expressed in the form

y =
_

R
U
S=W

y (R;S; p (R;S) (y)) =
_

R
U
S=W

 ^
a2R

fW (a) ^ fWp (R;S) (y) ^
^
a2S
ca

!
:

Consider a frame morphism g : L! K such that each g (a), a 2 W , has a complement da
in K. Then de�ne bg : LW ! K by the rule

bg (y) � _
R
U
S=W

 ^
a2R

g (a) ^ gp (R;S) (y) ^
^
a2S
da

!
for

y =
_

R
U
S=W

 ^
a2R

fW (a) ^ fWp (R;S) (y) ^
^
a2S
ca

!
in LW :

The reader may readily check that bg is the unique frame morphism such that bgfW = g. �
Let

fW : LW ! L�; �nite W � QL;
be the colimit of the directed family

�
fWV : LV ! LW : �nite V � W � cozL

	
. As usual,

we abbreviate f; to f .

Lemma 7.9. L� and L0 are isomorphic over L. That is, there is a frame isomorphism
h : L� ! L0 such that hf = cL.

Proof. It is su¢ cient to observe that f is universal with respect to complementing the cozero
elements of L. For if g : L ! K is a frame map such that g (a) is complemented in K for
each a 2 QL then g factors through each fW for each �nite W � QL by Lemma 7.8, so g
must also factor through f . �
Proposition 7.10. If lindL > ! then lindL0 = lindL.

Proof. Let lindL = � > !, so that lindLW = � for each �nite subset W � QL by Lemma
7.7, hence lindL� = � by Theorem 7.6. �
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7.4. Iteration. Armed with Proposition 7.10, we can now show that the iteration of Sub-
section 7.2 stabilizes. This requires a technical result, Proposition 7.11, which requires some
terminology with which the reader may not already be familiar. Let � be a regular cardinal.
In a frame L, a �-directed family of subframes is a family of subframes of L such that every
�-subset of the family has an upper bound (in the inclusion order on subframes) in the
family. For a subset A � CozL and element b 2 L, we denote fa 2 A : a � bg by #A b.

Proposition 7.11. Let � be an uncountable regular cardinal, and let L be a �-Lindelöf frame
having a �-directed family F of subframes such that A �

S
F QM generates L as a frame,

i.e., b =
W
#A b for all b 2 L. Then A = QL.

Proof. For each M 2 F let AM � QM . Consider a cozero element b in L, say b =
W
I bi for

a scale fbig in L. For i < j in I, �x cij 2 L such that bi ^ cij = ? and bj _ cij = >. Then
the fact that bj _ cij = > implies that_

( #A bj [ #A cij) = >;

and, since L is �-Lindelöf, there is some Sij �� ( #A bj [ #A cij) with
W
Sij = >. Conse-

quently Sij � QL�(i;j) for some � (i; j) 2 �. Let �0 2 � be such that �0 � � (i; j) for all
i < j in I, and let S �

S
i<j Sij. Note that S �� QL�0 .

For each i < j in I let
b0i �

_
#S bi; and c0ij �

_
#S cij:

Then bi � b0i 2 L�0 and cij � c0ij 2 L�0, and

b0j _ c0ij =
_
( #S bi [ #S cij) �

_
Sij = >:

Thus the c0ij�s witness the fact that fb0ig is a scale in L�0 ; let b0 designate the cozero elementW
b0i in L�0. We claim that b0 = b. For it is quite clear that b0 � b since b0i � bi for all i 2 I.

But for i < j in I, the facts that

c0ij ^ bi � cij ^ bi = ? and c0ij _ b0j = >
imply that bi � b0j. The claim follows, and the proof is complete. �
We de�ne an ordinal sequence of extensions of a frame L as follows.

L0 � L;
L�+1 � (L�)0 ; g�;�+1L � cL� : L� ! L�+1;

L� � colim
�

L�; g�;�L : L� ! L� � the colimit map, � < �, � a limit ordinal.

Morphisms g�;�L : L� ! L� are de�ned to be the identity map for all �, and morphisms
g�;�L , � � �, not already de�ned are de�ned by composition. A straightforward induction
establishes that g�;
L g�;�L = g�;
L for � � � � 
.
Let us address functoriality. The passage from L to L0 is certainly functorial: a frame

morphism f : L ! M has a unique extension f 0 : L0 ! M 0 such that f 0cL = cMf , simply
by applying the universality of cL with respect to complementing the cozero elements of L
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to the test map cMf . And a straightforward induction yields, for each ordinal �, a unique
frame map f� : L� !M� satisfying f�g�;�L = g�;�M f� for all � � �.

De�nition 7.12. Let P be the functor which takes each frame L to L�, where � = max flindL; !1g,
and which takes each frame morphism f : L!M to f�, where � = max (lindL; lindM;!1).
Designate by �L : L! PL the unit g0;� : L! L�.

Theorem 7.13. P -frames are bire�ective in frames, and, in particular, �L : L! PL serves
as a re�ector for the frame L. Moreover,

lindPL � max flindL; !1g :

Proof. Let L be a frame with max flindL; !1g = �. Let us �rst show that L� is a P -frame.
A simple induction, based on Proposition 7.10 and Theorem 7.6, establishes that all L��s,
0 < � � �, are �-Lindelöf. Furthermore, if we let K� � g�;�L (L�), � < �, then L� has
fK� : � < �g as a �-directed family of subframes. Therefore A �

S
�QK� generates L and

A = QL by Proposition 7.11. But every member of each QK� is complemented in K�+1 by
construction, hence A is a Boolean algebra and L is a P -frame.
Now consider an arbitrary frame homomorphism f from L into a P -frame M . Then a

simple induction, based only on Proposition 7.1 and the de�nition of colimit, establishes
that, for all �, f extends uniquely to a morphism f� : L� ! M such that f�g�;�L = f� for
all � � � � �. �

8. The relationship between the P -space coreflection and the P -frame
reflection

The existence of the P -frame re�ection raises a number of questions which are beyond the
scope of this article. But we close by addressing three unavoidable queries.
(1) For a space X, is the P -frame re�ection of the topology on X just the topology on

the P -space core�ection of X? In other words, is

POX �= OPX?
(2) Is iteration really necessary? Is it possible, for example, that

PL = L� = L1 = L0?
(3) For a space X, is the P -space core�ection of X just the space of points of the P -frame

re�ection of the topology on X? In other words, is

PX �= SPOX?
Let us take up the �rst question. There is a unique frame morphism g : POX ! OPX

such that g�OX = O�X because OPX is a P -frame. This morphism is necessarily surjective,
and a weaker form of question 1 is to ask whether it is also injective. This question is
answered in the negative by Example 5.4. In this instance X is the unit interval [0; 1] in its
standard topology and PX is [0; 1]d, the unit interval with discrete topology, and the P -space
core�ection map �[0;1] is the identity [0; 1]d ! [0; 1]. This gives O�[0;1] : O [0; 1]! O [0; 1]d as
the embedding of the frame of open subsets of [0; 1] into the full power set 2[0;1]. If, following
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Corollary 5.3, we take POX to be HRX then g is just the map which sends a �-ideal on
RX to its union in 2[0;1]. This map is far from injective; for instance, there are many �-ideals
of Baire measurable subsets of [0; 1] whose union is all of [0; 1]. This answers the weaker
form of question 1. But question 1 itself is settled in the negative by the observation that
PO [0; 1] must be Lindelöf by Theorem 7.13, whereas OPX = 2[0;1] is not Lindelöf.
Reasoning along the same lines as in the foregoing paragraph leads to the following con-

clusion. We omit the details.

Proposition 8.1. For a compact space X, the unique frame map g : POX ! OPX such
that g�OX = O�X is an isomorphism i¤ PX is Lindelöf.

Let us now take up the second question. Again, Example 5.4 is instructive. Let R�

designate the �-th stage in the formation of the Baire �eld R [0; 1]. Explicitly, set
R0 � Q [0; 1] = O [0; 1] ;

R�+1 �
([

N

(Un r Vn) : Un; Vn 2 R�

)
;

R� �
[
�<�

R�; � a limit ordinal.

The Baire �eld R [0; 1] is R!1. By Corollary 5.3, HR [0; 1] may be taken to be the P -frame
re�ection of O [0; 1], with re�ector map

U 7�! fV 2 R [0; 1] : V � Ug ; U 2 O [0; 1] :
A simple induction, based on the fact that each element of L0 is the join of di¤erences of
(images of) elements of QL (Corollary 7.2), shows that this map lifts to a unique map from
O [0; 1]� onto the subframe of HR [0; 1] generated by

fV 2 R [0; 1] : V � Ug ; U 2 R�; � < !1:

Since R� is properly contained in R�+1 for � < !1, we see that the full iteration called for
in the proof of our main Theorem 7.13 is necessary in this example.
In contrast to the �rst two, the answer to the third question is positive.

Proposition 8.2. For a space X, ��1X �S�OX : SPOX ! X is a P -space core�ector for X.

Proof. Consider a continuous function f : Y ! X for some P -space Y . Since Of is a frame
map from OX into the P -frame OY , there is a unique frame map g : POX ! OY such
that g�OX = Of . Then

f = ��1X � SOf � �Y =
�
��1X � S�OX

�
(Sg � �Y )

is the desired factorization. �
More is true. The P -frame re�ection POX of OX is (OX)�, the result of freely comple-

menting the cozero elements through � iterations, where � = max flindL; !1g. If we carry
out the iteration just once, say f : OX ! (OX)0, then one may show that already

��1X � Sf : S (OX)0 ! X
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is a P -space core�ection for X. We omit the details.

References

[1] R. N. Ball and A. W. Hager, Epicomplete archimedean `-groups and vector lattices, Trans. Am. Math.
Soc. 322 (1990), 459�478.

[2] R. N. Ball and A. W. Hager, On the localic Yosida representation of an archimedean lattice ordered
group with weak order unit, J. Pure and Appl. Alg 70 (1990), 17�43.

[3] R. N. Ball, A. W. Hager, D. G. Johnson, and A. Kizanis, A theorem and a question about epicomplete
archimedean lattice-ordered groups, Algebra Univ. 62 (2009), 165�184

[4] R. N. Ball and J. Walters-Wayland, C- and C�-quotients in pointfree topology, Dissertationes Mathe-
maticae 412, Warszawa, 2002.

[5] R. N. Ball and J. Walters-Wayland, The �-regular core�ection of a frame, in preparation.
[6] B. Banaschewski, �-frames, Manuscript (1980).
[7] B. Banaschewski, On the Boolean re�ection of regular �-frames, private communication.
[8] B. Banaschewski, Singly generated frame extensions, J. Pure Appl. Alg. 83 (1992), 1�21.
[9] B. Banaschewski, Another look at the localic Tychono¤ Theorem, Comm. Math. Univ. Carolinae 29

(1988), 647�656.
[10] A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux Réticulés, Lecture Notes in Mathematics

608, Springer-Verlag, Berlin, 1977.
[11] G. Buskes, Disjoint sequences and completeness properties, Indag. Math. 47 (1985), 11�19.
[12] M. Darnel, Theory of Lattice-Ordered Groups, Marcel Dekker, New York, 1995.
[13] T. Dube, Concerning P-frames, essential P-frames and strongly zero-dimensional frames, Algebra Univ.

61(2009), 115�138.
[14] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Am. Math. Soc. 77

(1954), 340�362.
[15] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
[16] A. W. Hager and J. Martinez, �-projectible and laterally �-complete archimedean lattice-ordered groups,

Ethiopian J. Sci. 19 (Supplement) (1996), 73�84.
[17] J. R. Isbell, Direct limits of meet continuous lattices, J. Pure Appl. Alg. 23 (1982), 33�35.
[18] P. T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University

Press, 1982.
[19] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Memiors of the A.M.S.

308.
[20] A. Kock and G. Reyes, A note on frame distributions, Cahiers de Top. et Geom. Di¤. Cat. 40 (1999),

127-140.
[21] R. LaGrange, Amalgamation and epimorphism in m-complete boolean algebras, Algebra Univ. 4 (1974),

277�279.
[22] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland, Amsterdam, 1971.
[23] J. Madden, �-frames, J. Pure and Appl. Alg. 70 (1990), 107�127.
[24] J. Madden and H. Vermeer, Lindelöf locales and realcompactness, Math. Proc. Cambridge Philos. Soc.

99 (1986), no. 3, 473�480.
[25] J. Madden and H. Vermeer, Epicomplete archimedean `-groups.via a localic Yosida representation,.J.

Pure and Appl. Alg. 68 (1990),243�252.
[26] P. Picado and A. Pultr, Locales treated mostly in a covariant way, Textos de Matematica. Serie B [Texts

in Mathematics. Series B] 41, Universidade de Coimbra, Departamento de Matematica, Coimbra, 2008.
[27] R. Levy and M. Rice, Normal P -spaces and the G�-topology, Coll. Math. 44 (1981), 227�240.
[28] A. Veksler and V. Geiler, Order and disjoint completness of linear partially ordered spaces, Siber. Math.

J. 13 (1972), 30�35.
[29] R. C. Walker, The Stone-µCech compacti�cation, Springer-Verlag, 1974.



26 RICHARD N. BALL, JOANNE WALTERS-WAYLAND, AND ERIC ZENK

[30] D. Wigner, Two notes on frames, J. Aust. Math. Soc. (Series A), 28 (1979), 257�268.
[31] J. T. Wilson, The assembly tower and some categorical and algebraic aspects of frame theory, Ph.D.

thesis, Carnegie Mellon University, 1994.

(Ball) Department of Mathematics, University of Denver, Denver, Colorado 80208, U.S.A.
E-mail address, Ball: rball@du.edu
URL: http://www.math.du.edu/~rball

(Walters-Wayland) OCCTAL,Orange, California 92630, U.S.A.
E-mail address, Walters-Wayland: joanne@waylands.com

Spatial Corporation, Broomfield, Colorado 80021, U.S.A.
E-mail address, Zenk: eric.zenk@3ds.com


	1. Introduction
	2. Preliminaries
	3. P-spaces and P-frames
	3.1. P-spaces
	3.2. P-frames
	3.3. In W

	4. The P-space coreflection
	5. The P-frame reflection in the Lindelöf case
	6. The quotient of a P-frame need not be a P-frame
	6.1. Frames having a quotient in which the complemented elements are not closed under countable joins
	6.2. The Boolean -frame A
	6.3. The example

	7. The P-frame reflection
	7.1. One step: freely complementing the cozeros of L
	7.2. The iteration problem
	7.3. Lindelöf degree
	7.4. Iteration

	8. The relationship between the P-space coreflection and the P-frame reflection
	References

