
COMMUTATOR THEORY FOR LOOPS

DAVID STANOVSKÝ AND PETR VOJTĚCHOVSKÝ

Abstract. Using the Freese-McKenzie commutator theory for congruence modular vari-
eties as the starting point, we develop commutator theory for the variety of loops. The
fundamental theorem of congruence commutators for loops relates generators of the con-
gruence commutator to generators of the total inner mapping group. We specialize the
fundamental theorem into several varieties of loops, and also discuss the commutator of two
normal subloops.

Consequently, we argue that some standard definitions of loop theory, such as elementwise
commutators and associators, should be revised and linked more closely to inner mappings.
Using the new definitions, we prove several natural properties of loops that could not be so
elegantly stated with the standard definitions of loop theory. For instance, we show that
the subloop generated by the new associators defined here is automatically normal. We
conclude with a preliminary discussion of abelianess and solvability in loops.

1. Introduction

The two primary influences on modern loop theory come from group theory and universal
algebra, a fact that is reflected already in the definition of a loop. Using the group-theoretical
approach, a loop is a nonempty set Q with identity element 1 and with binary operation
· such that for every a, b ∈ Q the equations a · x = b, y · a = b have unique solutions
x, y ∈ Q. The implied presence of divisions is made explicit in the equivalent universal
algebraic definition due to Evans [11]: a loop is a universal algebra (Q, 1, ·, \, /) satisfying
the identities

x · 1 = x = 1 · x, x\(x · y) = y, x · (x\y) = y, (y · x)/x = y, (y/x) · x = y.

It is not difficult to see that associative loops are precisely groups, where we write x−1y and
xy−1 in place of x\y and x/y, respectively.

The most influential text on loop theory in the English-speaking world is the book of
Bruck [5]. Although its title “A survey of binary systems” and its opening chapters are
rather encompassing, it focuses on and culminates in the study of Moufang loops, a variety
of loops with properties close to groups. It is therefore natural that Bruck’s definitions are
rooted mostly in group theory. For instance, a subloop N of a loop Q is said to be normal
in Q if

xN = Nx, x(yN) = (xy)N, N(xy) = (Nx)y

for every x, y ∈ Q, the center Z(Q) of Q is defined as

Z(Q) = {a ∈ Q; ax=xa, a(xy)=(ax)y, x(ay)=(xa)y, x(ya)=(xy)a for every x, y ∈ Q},
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1



and the elementwise commutator [x, y] and associator [x, y, z] are defined as the unique
solutions to the equations

xy = (yx)[x, y], (xy)z = (x(yz))[x, y, z],

respectively. The associator subloop A(Q) of Q is the smallest normal subloop of Q such
that Q/A(Q) is a group, or, equivalently, the smallest normal subloop of Q containing all
associators [x, y, z] of Q. The derived subloop Q′ of Q is the smallest normal subloop of Q such
that Q/Q′ is an abelian group, or, equivalently, the smallest normal subloop of Q containing
all commutators [x, y] and all associators [x, y, z] of Q. With Q[0] = Q, Q[i+1] = (Q[i])′, a
loop is called solvable if Q[n] = 1 for some n.

It is easy to see that in groups the above concepts specialize to the usual group-theoretical
notions (the associator and the associator subloop being void). Bruck’s deep results [5]
showed that the group-theoretical definitions are sensible in Moufang loops, as did Glauber-
man’s extension of the Feit-Thompson Odd Order Theorem to Moufang loops [17].

As it turns out, the normality, the center and the derived notion of central nilpotency
are the correct concepts for loops even from the universal algebraic point of view. (For
normality this was known already to Bruck. For the center and central nilpotency this is
probably folklore, but since we were not able to find a proof in the literature, we present it
at the end of this paper for the convenience of the reader.) It is therefore not surprising that
central nilpotency played a prominent role in the development of loop theory, as witnessed
by the 42 papers listed in MathSciNet under primary classification 20N05 and with one of
the words “nilpotent”, “nilpotency” or “nilpotence” in the title. We mention [8, 9, 17, 18,
21, 25, 29, 30, 32, 33, 37] as a representative sample.

But the commutators and associators did not fare as well, and neither did the concept of
solvability. The inadequacies of the elementwise associators were first pointed out by Leong
[24]; see below for more details. There is no established notion of commutator of two normal
subloops and, in contrast to nilpotency, there are only 9 papers on MathSciNet under 20N05
and with one of the words “solvable”, “solvability”, “soluble” or “solubility” in the title.

We maintain that this is not a coincidence, but rather a consequence of the fact that the
elementwise associators, the commutator theory and solvability were not well conceived in
loop theory. This is somewhat surprising, since loops are known to be congruence modular
(they possess a Mal’tsev term), the general commutator theory for congruence modular
varieties [12] has been developed more than 25 years ago, and, furthermore, the original
impetus for the commutator theory came from an important work of Smith [36], who set
out to understand abelianess (or, centrality, in his terms) in quasigroups, a variety closely
related to loops. For more historical details concerning commutator theory, see [12].

The Freese-McKenzie commutator theory has proved useful in so many applications (see
[28] for a survey) that we have little doubt it is the correct setting for loops, too. In this
paper we derive the commutator theory for loops, with the congruence commutators at its
core. The results are summarized in Section 2.

Standard references to loop theory include [2, 5, 34]. See [4, 6] for an introduction to
universal algebra and [28] for an introduction to congruence commutators.
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2. Summary of results

Inner mappings. Let Q be a loop with identity element 1. For every x ∈ Q let Lx, Rx,
Mx : Q→ Q be the bijections defined by

Lx(y) = xy, Rx(y) = yx, Mx(y) = y\x.
The mappings Lx, Rx are traditionally called left and right translations. The mappings
y 7→ x\y and y 7→ y/x are the respective inverses of Lx and Rx. The mapping y 7→ x/y is
the inverse of Mx, because z = y\x iff yz = x iff y = x/z.

Following the conventional definitions of loop theory, the left and right translations gen-
erate the multiplication group Mlt(Q) of Q, i.e.,

Mlt(Q) = 〈Lx, Rx; x ∈ Q〉.
The inner mapping group Inn(Q) of Q is the stabilizer of 1 in Mlt(Q).

To bring the mappings Mx into play, we introduce the total multiplication group TMlt(Q)
of Q as

TMlt(Q) = 〈Lx, Rx,Mx; x ∈ Q〉.
The total inner mapping group TInn(Q) of Q is the stabilizer of 1 in TMlt(Q). (Belousov [3]
was probably the first to ever consider total multiplication groups and total inner mapping
groups.)

Although we will carefully distinguish between Inn(Q) and TInn(Q), we will call elements
of both Inn(Q) and TInn(Q) inner mappings. Note that, unlike in groups, Inn(Q) is not nec-
essarily a subgroup of the automorphism group Aut(Q). (Loops where TInn(Q) ≤ Aut(Q)
were investigated in [3].)

In Section 3.2, we calculate two small sets of generators for TInn(Q), namely

TInn(Q) = 〈Lx,y, Rx,y, Mx,y, Tx, Ux; x, y ∈ Q〉 = 〈A·x,y, B·x,y, A\x,y; x, y ∈ Q〉,
where

Lx,y = L−1
xyLxLy, Rx,y = R−1

yxRxRy, Mx,y = M−1
y\xMxMy, Tx = R−1

x Lx, Ux = R−1
x Mx,

and
(z · x) ◦ y = A◦x,y(z) · (x ◦ y), y ◦ (z · x) = B◦x,y(z) · (y ◦ x).

for ◦ ∈ {·, \, /}. Each of these generating sets is an example of a set of words that generates
total inner mapping groups in all loops, a concept that is formally defined in Section 3.3.
Informally, the above mappings, applied to an argument z, can be seen as loop terms in
variables x, y, z which yield a generating set of TInn(Q) for any loop Q upon substituting
all elements of Q for x and y.

The commutator. Let A be a universal algebra. The congruences of A form a lattice with
largest element 1A = A×A and smallest element 0A = {(a, a); a ∈ A}.

Let α, β, δ be congruences of A. We say that α centralizes β over δ, and write C(α, β; δ),
if for every (n + 1)-ary term operation t, every pair aα b and every u1 β v1, . . . , un β vn we
have

t(a, u1, . . . , un) δ t(a, v1, . . . , vn) implies t(b, u1, . . . , un) δ t(b, v1, . . . , vn).

This implication is referred to as the term condition for t, or TC(t, α, β, δ).1

1From now on, we will use the word “term” for both term operations and terms.
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The commutator of α, β, denoted by [α, β], is the smallest congruence δ such that
C(α, β; δ). The Freese-McKenzie monograph [12] developed the theory and applications
of this congruence operation in congruence modular varieties.

It is not easy to work with C(α, β; δ) because the term condition must be tested for every
term. It is therefore by no means straightforward to specialize the theory of [12] into a
particular variety. The fundamental result of our paper is a description of the commutator
[α, β] in loops, involving only a few special terms, namely the terms resulting from any set of
words that generates total inner mapping groups. We will write Cg(X) for the congruence
generated by X, and we will denote by ū the n-tuple u1, . . . , un, where we intentionally omit
the usual enclosing parentheses. We also write ū β v̄ instead of u1 β v1, . . . , un β vn.

Theorem 2.1 (Fundamental Theorem of Commutator Theory in Loops). Let V be a variety
of loops and W a set of words that generates total inner mapping groups in V . Then

[α, β] = Cg( (Wū(a),Wv̄(a)); W ∈ W , 1α a, ū β v̄ )

for any congruences α, β of any Q ∈ V .

A particular generating set for [α, β] is obtained anytime a suitable generating set W is
given, for instance the above-mentioned set W = {Lx,y, Rx,y, Tx, Mx,y, Ux} for the variety
V of all loops. See Example 3.12 for other options.

Notice that the definition of the commutator is asymmetric, and so is the generating set
from Theorem 2.1. Nevertheless, [α, β] = [β, α] for any congruences α, β in any algebra in a
congruence modular variety [12]. This is an important property, although we do not need it
in the present paper.

The proof of Theorem 2.1 is presented in Section 4, and it is based on the words A◦x,y, B
◦
x,y.

Note that the words A◦x,y resemble associators and the words B◦x,y look like a combination of
commutators and associators, except that the element z is absorbed into both A◦x,y(z) and
B◦x,y(z).

The machinery of Theorem 2.1 can be used to obtain numerous descriptions of the commu-
tator [α, β]. Theorem 4.4 strengthens Theorem 2.1 in loops satisfying a finiteness condition.
More efficient generating sets W for Theorem 2.1 are investigated in Section 5, with the re-
sults summarized in Corollary 5.2. Generating sets in terms of elementwise associators and
commutators, a traditional approach of group theory and loop theory, are given in Corol-
lary 6.3. The normal subloop corresponding to the congruence commutator is studied in
Section 7.

Further simplifications are possible in specific classes of loops—throughout the paper we
focus on inverse property loops, commutative loops and groups. In Section 9 we illustrate
how Theorem 2.1 and its corollaries can be used to calculate the commutator in concrete
loops. We also provide examples that witness that our results are optimal in certain ways.

Elementwise associators and commutators. Leong [24] noticed that, indeed, the asso-
ciator [x, y, z] corrects for the lack of associativity in the equation (xy)z = x(yz), but so do
many other associators, for instance the associator aL(x, y, z) defined by

(xy)z = (aL(x, y, z)x)(yz),

or the associator bL(x, y, z) defined by

x(yz) = ((bL(x, y, z)x)y)z.
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The advantage of these new associators is that they relate to inner mappings, namely,
aL(x, y, z) = Rz,y(x)/x, and bL(x, y, z) = R−1

z,y(x)/x. Leong proved that in every loop Q

the subloop 〈aL(x, y, z), bL(x, y, z); x, y, z ∈ Q〉 is normal, and hence equal to A(Q). He
also showed that if Q is a Moufang loop then A(Q) = 〈[x, y, z]; x, y, z ∈ Q〉. Covalschi and
Sandu [7] recently introduced similar associators that can be used to generate Q′.

The difficulty lies in deciding which associators should be used. Our approach is system-
atic and is based on the idea that elementwise associators and commutators should follow
naturally from the commutator theory for congruences. Upon separating the roles of com-
mutators and associators, we present a systematic definition of all possible associators and
commutators in any loop, the result being summarized in Table 1. Importantly, all these
associators and commutators are associated with certain inner mappings (they evaluate to 1
when x = 1 is substituted), and thus can be used to obtain a generating set of the congruence
commutator; see Corollary 6.3.

In Section 8, we make a case for our commutators and associators. First, we show that
Q′ is the subloop generated by a choice of associators and commutators whenever the cor-
responding inner mappings generate Inn(Q); see Theorem 8.2. Then, imitating the proof of
Leong, we show that certain associators generate A(Q); see Theorem 8.4.

The commutator of normal subloops. It is well known that a subloop of a loop Q is
normal iff it is a kernel of some homomorphism from Q to another loop. Equivalently, normal
subloops are precisely the blocks of congruences on Q containing the identity element 1, or
subloops closed under all inner mappings from Inn(Q). In Proposition 3.7, we show that
normal subloops are closed under all inner mappings from TInn(Q), too.

There exists an order-preserving correspondence between the lattice of normal subloops
of Q and the lattice of congruences of Q. If N is a normal subloop of Q, let γN be the
congruence on Q defined by

a γN b iff a/b ∈ N,
or, equivalently, iff b\a ∈ N , b/a ∈ N , or a\b ∈ N . If α is a congruence of Q, let Nα be the
normal subloop of Q defined by

Nα = {a ∈ Q; aα 1}.
For two normal subloops A, B of Q, define the commutator of A and B in Q by

[A,B]Q = N[γA,γB ].

The above correspondence allows us to immediately translate Theorem 2.1 from the language
of congruences to the language of normal subloops. We will write Ng(X) for the smallest
normal subloop containing the set X, and ū/v̄ ∈ B as a shorthand for u1/v1 ∈ B, . . . ,
un/vn ∈ B.

Theorem 2.2. Let V be a variety of loops and W a set of words that generates total inner
mapping groups in V . Then

[A,B]Q = Ng( Wū(a)/Wv̄(a); W ∈ W , a ∈ A, ū/v̄ ∈ B )

for any normal subloops A, B of any Q ∈ V .

Using the ideas of Section 6, we can choose W so that we can interpret the generating set
of [A,B]Q as quotients of associators and commutators.
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In Section 7, we explore simplifications of the generating set. It so happens that in groups
the normal closure is not needed and the quotients can be reduced, i.e.,

[A,B]Q = 〈[a, u]/[a, v]; a ∈ A, u/v ∈ B〉 = 〈[a, b]; a ∈ A, b ∈ B〉.
Neither of these properties holds in general loops, as illustrated by examples in Section 9.
The normal closure can be avoided in all automorphic loops, that is, loops Q with Inn(Q) ≤
Aut(Q); see Proposition 7.3. Some types of quotients can be reduced in all loops; see
Corollary 7.5.

Center and nilpotency, abelianess and solvability. The general commutator theory
for universal algebras offers more than just the commutator of two congruences. An algebra
A is called nilpotent, if γ(n) = 0A for some n, where

γ(0) = 1A, γ(i+1) = [γ(i), 1A].

An algebra A is called solvable, if γ(n) = 0A for some n, where

γ(0) = 1A, γ(i+1) = [γ(i), γ(i)].

Notice that both definitions use a special type of commutators: nilpotency requires only
commutators [α, 1A], while solvability requires only commutators [α, α]. Both of these types
of commutators can be defined using specialized concepts: center and abelianess.

Let A be an algebra. The center of A, denoted by ζ(A), is the largest congruence of A
such that C(ζ(A), 1A; 0A). It is easy to show that [α, 1A] is the smallest congruence δ such
that α/δ ≤ ζ(A/δ).

A congruence α of an algebra A is called abelian if C(α, α; 0A). It is easy to show that
[α, α] is the smallest congruence δ such that α/δ is an abelian congruence of A/δ. An algebra
A is called abelian if ζ(A) = 1A, or, equivalently, if the congruence 1A is abelian.

An argument similar to the one in group theory shows that A is nilpotent (resp. solvable)
if and only if there is a chain of congruences

1A = α0 ≥ α1 ≥ . . . ≥ αn = 0A

such that αi/αi+1 ≤ ζ(A/αi+1) (resp. such that αi/αi+1 is an abelian congruence of A/αi+1)
for all i ∈ {0, 1, . . . , n− 1}.

Now, let Q be a loop. One can quickly show (and it follows from Theorem 10.1) that a
loop is abelian if and only if it is a commutative group. With respect to nilpotency and
solvability, there are good news and bad news.

Fortunately, the center ζ(Q) as defined in universal algebra, and the center Z(Q) as defined
in loop theory agree, i.e., Nζ(Q) = Z(Q); see Theorem 10.1. Consequently, nilpotency based
on the commutator theory is the same concept as central nilpotency traditionally used in loop
theory. In our opinion, this explains why central nilpotency has been playing a prominent
role in loop theory.

Unfortunately, Bruck’s concept of solvability derived from group theory does not agree
with the universal algebraic solvability. The commutator theory suggests there is a difference
between abelianess of an algebra and abelianess in an algebra. This is inherent in the
congruence approach, since congruences carry over the universe of the original algebra, so
the congruence commutator [α, α] automatically takes place in the underlying algebra A. In
loops, we have to be careful. Upon translating the concept of abelianess from congruences to
normal subloops, we note that a normal subloop N of Q is abelian if [1N , 1N ] = 0N . However,
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N is abelian in Q if [γN , γN ] = 0Q, a stronger property in general. Examples of an abelian
loop N E Q that is not abelian in Q were known already to Freese and McKenzie; see [12,
Chapter 5, Exercise 10] or our Example 9.3.

In our opinion, this explains why there are relatively few results on solvable loops, and
why most existing results deal with varieties of loops that are close to groups. For instance,
the Feit-Thompson Odd Order Theorem [14] has been extended from groups to Moufang
loops in [17], and to automorphic loops in [22], Hall’s theorem for Moufang loops can be
found in [17] and in [15]. A notable exception is the general result of Vesanen [38]: if the
group Mlt(Q) is solvable then Q itself is solvable in the group-theoretical sense. But hardly
anything is known in the other direction, starting with the assumption that Q is solvable.
Could this be so because the traditional definition of solvability in loops is too weak?

We propose to call a loop Q congruence solvable if there is a chain 1 = Q0 ≤ Q1 ≤ · · · ≤
Qn = Q of normal subloops Qi of Q such that every factor Qi+1/Qi is abelian in Q/Qi. Does
congruence solvability of Q relate to the structure of the total multiplication group TMlt(Q)?
Is group-theoretical solvability equivalent to congruence solvability in classes of loops close
to groups? These questions and related problems are subject of an ongoing investigation
of the authors. Here we at least show that while every congruence solvable loop is indeed
solvable, the converse is not true; see Example 9.3.

Section 10 explains in more detail how the center, central nilpotency, abelianess and
solvability specialize from universal algebras to loops, and from loops to groups. We also
provide references to other alternative approaches to nilpotency and solvability in loops and
other classes of algebras.

Auxiliary definitions. Let Q be a loop with two-sided inverses, that is, a loop in which
for every x ∈ Q there is x−1 ∈ Q such that xx−1 = x−1x = 1. We then define the inversion
mapping

J : Q→ Q, J(x) = x−1.

Note that (x−1)−1 = x, and hence J is involutory.
We say that Q has the anti-automorphic inverse property (AAIP) if (xy)−1 = y−1x−1 for

every x, y ∈ Q, or, equivalently, if the mapping J is an anti-automorphism. We say that Q
has the inverse property if x−1(xy) = y = (yx)x−1 holds for every x, y ∈ Q. Then x\y can
be replaced by x−1y and x/y by xy−1, as in groups. Note that inverse property loops have
the AAIP: (xy) · (xy)−1x = x = (xy)y−1, so (xy)−1x = y−1, and using the inverse property
again, (xy)−1 = y−1x−1. Many highly structured varieties of loops have the inverse property,
most notably groups and Moufang loops.

3. Inner mappings

3.1. Inner mapping groups. Let Q be a loop. Recall that Mlt(Q) = 〈Lx, Rx; x ∈ Q〉 and
Inn(Q) = Mlt(Q)1 = {f ∈ Mlt(Q); f(1) = 1}. One possible generating set of Inn(Q) is
described in the well known Proposition 3.2, which is in turn based on a variation of a result
of O. Schreier about generators of stabilizers.

Lemma 3.1 (O. Schreier). Let G be a transitive permutation group on a set X and let
c ∈ X. For y ∈ X let gy ∈ G be such that gy(c) = y, where we choose gc = 1. If G = 〈H〉
then Gc = 〈g−1

h(y)hgy; h ∈ H, y ∈ X〉.
7



Proof. Let g ∈ Gc. Since G = 〈H〉, there are h1, . . . , hn ∈ H ∪H−1 such that g = h1 · · ·hn.
We thus have

g = gh1···hn(c)(g
−1
h1···hn(c)h1gh2···hn(c)) · · · (g−1

hn−1hn(c)hn−1ghn(c))(g
−1
hn(c)hngc)g

−1
c .

Note that gh1···hn(c) = gg(c) = gc = 1, so g is a product of elements of the form g−1
h(y)hgy, where

h ∈ H ∪H−1. The identity

(g−1
h(y)hgy)

−1 = g−1
y h−1gh(y) = g−1

h−1h(y)h
−1gh(y)

shows that generators of the form g−1
h(y)hgy with h ∈ H suffice. �

Recall the mappings A·x,y = R−1
xyRyRx and B·x,y = R−1

yxLyRx introduced in Section 2.

Proposition 3.2. Let Q be a loop. Then

Inn(Q) = 〈Lx,y, Rx,y, Tx; x, y ∈ Q〉 = 〈A·x,y, B·x,y; x, y ∈ Q〉.

Proof. The multiplication group G = Mlt(Q) acts transitively on X = Q. Upon applying
Lemma 3.1 with c = 1, gy = Ry and H = {Lx, Rx; x ∈ Q}, we conclude that G1 = Inn(Q)
is generated by {R−1

Lx(y)LxRy, R
−1
Rx(y)RxRy; x, y ∈ Q} = {B·y,x, A·y,x; x, y ∈ Q}. Now note

that A·y,x = Rx,y and B·y,x = R−1
Lx(y)LxRy = (R−1

xy Lxy)(L
−1
xyLxLy)(L

−1
y Ry) = TxyLx,yT

−1
y . �

An immediate corollary of Proposition 3.2 is the observation that Inn(Q) = 1 if and only
if Q is an abelian group. We will need this fact in Section 8.

The significance of Inn(Q) is that it can be used to characterize normal subloops, just as
in the case of groups.

Proposition 3.3. Let N be a subloop of Q. Then the following conditions are equivalent:

(i) N is normal in Q, that is, xN = Nx, x(yN) = (xy)N , N(xy) = (Nx)y holds for
every x, y ∈ Q.

(ii) f(N) = N for every f ∈ Inn(Q).
(iii) N is the kernel of some loop homomorphism.
(iv) N is the block containing 1 of some congruence on Q.

Proof. This is folklore. See [34, Section I.7] for the equivalence of (i)–(iii), or [10]. �

3.2. Total inner mapping groups. In this subsection, we partly follow Belousov and
Shcherbakov [3, 35]. Recall that TMlt(Q) = 〈Lx, Rx,Mx; x ∈ Q〉, where Mx(y) = y\x, and
TInn(Q) = TMlt(Q)1. Also recall the mappings

Mx,y = M−1
y\xMxMy and Ux = R−1

x Mx

and note that Mx,y, Ux ∈ TInn(Q) thanks to Mx,y(1) = (y\x)/((1\y)\x) = 1 and Ux(1) =
(1\x)/x = 1. Finally, the mappings A◦x,y, B

◦
x,y can be written as

A·x,y = R−1
xyRyRx, B·x,y = R−1

yxLyRx,

A\x,y = R−1
x\yMyRx, B\x,y = R−1

y\xL
−1
y Rx,

A/x,y = R−1
x/yR

−1
y Rx, B/

x,y = R−1
y/xM

−1
y Rx,

and we note that A
/
x,y = (A·x/y,y)

−1, B
\
x,y = (B·y\x,y)

−1 and B
/
x,y = (A

\
y/x,y)

−1. All these

mappings fix the identity element 1 and hence are inner mappings.
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Proposition 3.4. Let Q be a loop. Then

TInn(Q) = 〈Lx,y, Rx,y, Mx,y, Tx, Ux; x, y ∈ Q〉 = 〈A·x,y, B·x,y, A\x,y; x, y ∈ Q〉.

Proof. Let us apply Lemma 3.1 to the transitive group G = TMlt(Q) with X = Q,
c = 1, gy = Ry and H = {Lx, Rx, Mx; x ∈ Q}. We conclude that G1 = TInn(Q) =

〈R−1
Lx(y)LxRy, R

−1
Rx(y)RxRy, R

−1
Mx(y)MxRy; x, y ∈ Q〉 = 〈B·y,x, A·y,x, A

\
y,x; x, y ∈ Q〉. By

Proposition 3.2, Inn(Q) = 〈A·x,y, B·x,y; x, y ∈ Q〉 = 〈Lx,y, Rx,y, Tx; x, y ∈ Q〉. We finish

with A
\
y,x = R−1

y\xMxRy = (R−1
y\xMy\x)(M

−1
y\xMxMy)(M

−1
y Ry) = Uy\xMx,yU

−1
y . �

Problem 3.5. Are the generating sets from Proposition 3.4 minimal, in the sense that none
of the five (respectively three) types of mappings can be removed? Is there a generating set
for TMlt(Q) with only two types of inner mappings?

Example 3.6. Consider the loops Q1, Q2, Q3, Q4 with multiplication tables

Q1 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 4 5 6 2 1
4 4 6 2 5 1 3
5 5 3 6 1 4 2
6 6 5 1 2 3 4

Q3 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 5 6 3
3 3 4 5 6 1 2
4 4 5 6 3 2 1
5 5 6 1 2 3 4
6 6 3 2 1 4 5

Q2 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 7 8 5 6
3 3 4 1 2 6 5 8 7
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 8 5 7 3 1 4 2
7 7 5 8 6 2 4 1 3
8 8 7 6 5 4 3 2 1

Q4 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 4 3
6 6 5 8 7 2 1 3 4
7 7 8 5 6 4 3 1 2
8 8 7 6 5 3 4 2 1

In the GAP package LOOPS, these are the loops with catalog numbers Q1 = SmallLoop(6,8),
Q2 = LeftBolLoop(8,1), Q3 = SmallLoop(6,47) andQ4 = AutomorphicLoop(8,1). Then
it can be verified in GAP that

〈Lx,y, Rx,y, Mx,y, Ux; x, y ∈ Q〉 6= TMlt(Q)

for Q = Q1, Q2, and

〈Lx,y, Rx,y, Mx,y, Tx; x, y ∈ Q〉 6= TMlt(Q) 6= 〈A·x,y, B·x,y; x, y ∈ Q〉

for Q = Q3, Q4. Hence neither of the mappings Tx, Ux, A
\
x,y can be removed in general from

the generating sets of TInn(Q) (cf. Proposition 3.4), even in some highly structured varieties
of loops.

We now observe that TInn(Q) can also be used to characterize normal subloops, hence
adding another equivalent condition to Proposition 3.3.

Proposition 3.7 ([3]). Let N be a subloop of Q. Then N is normal in Q if and only if
f(N) = N for every f ∈ TInn(Q).
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Proof. In view of Propositions 3.3 and 3.4, it only remains to show that if N E Q, then
Ux(a) = (a\x)/x ∈ N and Mx,y(a) = (y\x)/((a\y)\x) ∈ N for every x, y ∈ Q and a ∈
N . Let ϕ be a homomorphism from Q to another loop such that N = ker(ϕ). Then
ϕ(Ux(a)) = (ϕ(a)\ϕ(x))/ϕ(x) = Uϕ(x)(ϕ(a)) = Uϕ(x)(1) = 1, and, similarly, ϕ(Mx,y(a)) =
Mϕ(x),ϕ(y)(ϕ(a)) = Mϕ(x),ϕ(y)(1) = 1. �

We now focus on an important special case, the class of inverse property loops (see also
[35]).

Proposition 3.8. Let Q be an inverse property loop. Then

(i) TMlt(Q) = 〈Lx, J ; x ∈ Q〉 = 〈Mx; x ∈ Q〉.
(ii) TInn(Q) = 〈Lx,y, Tx, J ; x, y ∈ Q〉 = 〈Mx,y; x, y ∈ Q〉.

Proof. (i) Clearly, J ∈ TMlt(Q), since J = M1. To show that Lx, J generate TMlt(Q),
observe that Rx = JL−1

x J and Mx = JL−1
x . To show that Mx generate TMlt(Q), observe

again that J = M1 and Lx = M−1
x J .

(ii) For the first assertion, apply Lemma 3.1 to the transitive group G = TMlt(Q) with
X = Q, c = 1, gy = Ly and H = {Lx, J ; x ∈ Q}. We conclude that G1 = TInn(Q) =
〈LyJLy, L−1

xyLxLy; x, y ∈ Q〉 = 〈JTy, Lx,y; x, y ∈ Q〉 = 〈Lx,y, Tx, J ; x, y ∈ Q〉, because
J = JT1.

For the second assertion, apply Lemma 3.1 to the transitive group G = TMlt(Q) with
X = Q, c = 1, gy = Ry and H = {Mx, ; x ∈ Q}. We conclude that G1 = TInn(Q) =
〈R−1

y\xMxRy; x, y ∈ Q〉 = 〈JMx,yJ ; x, y ∈ Q〉 = 〈Mx,y; x, y ∈ Q〉, because J = M1,1 and

JM1,1J = J3 = J . �

We finish this subsection with a side remark. It is well known that the multiplication group
Mlt(G) of a group G is isomorphic to (G × G)/{(a, a); a ∈ Z(G)}. Here is an analogous
description of TMlt(G):

Proposition 3.9. Let G be a group.

(i) If G is not an elementary abelian 2-group then TMlt(G) is isomorphic to

((G×G) o Z2)/{(a, a, 0); a ∈ Z(G)},

where Z2 acts on G×G by transposing the two coordinates in the direct product.
(ii) If G is an elementary abelian 2-group then TMlt(G) = Mlt(G) is isomorphic to G.

Proof. Note that TMlt(G) = 〈Lx, Rx, J ; x ∈ G〉. If G is an elementary abelian 2-group then
J is the identity mapping, Lx = Rx for every x ∈ G, and hence TMlt(G) = {Lx; x ∈ G} is
isomorphic to G according to Cayley’s left regular representation. For the rest of the proof
assume that G is not an elementary abelian 2-group.

With the action from the statement of the proposition, the multiplication in (G×G)oZ2

is given by

(a, b, u)(c, d, v) =

{
(ac, bd, v), if u = 0,
(ad, bc, 1 + v), if u = 1.

Define ϕ : (G × G) o Z2 → TMlt(G) by ϕ(a, b, u) = LaR
−1
b Ju. To check that ϕ is a ho-

momorphism, take ϕ(a, b, u)ϕ(c, d, v)(x) = LaR
−1
b JuLcR

−1
d Jv(x) and consider two cases. If

u = 0, the above element is equal to acJv(x)d−1b−1 = LacR
−1
bd J

v(x) = ϕ(ac, bd, v)(x) =
10



ϕ((a, b, 0)(c, d, v))(x). If u = 1, we calculate a(cJv(x)d−1)−1b−1 = adJ1+v(x)c−1b−1 =
LadR

−1
bc J

1+v(x) = ϕ(ad, bc, 1 + v)(x) = ϕ((a, b, 1)(c, d, v))(x).
Since the image of ϕ contains all generators of TMlt(G), we see that ϕ is onto TMlt(G).

The kernel of ϕ consists of all (a, b, u) such that LaR
−1
b Ju is the identity mapping, which

means aJu(x)b−1 = x for every x ∈ G. If x = 1, we obtain a = b, hence the kernel
only contains triples (a, a, u) such that aJu(x)a−1 = x for every x ∈ G, or, equivalently,
a−1xa = Ju(x) for every x ∈ G. If u = 0, this is equivalent to a ∈ Z(G). If u = 1, the left
hand side defines an automorphism of G, but J is an automorphism only if G is abelian.
When G is abelian, the condition x = a−1xa = J(x) = x−1 says that G is an elementary
abelian 2-group, a contradiction. Hence ker(ϕ) = {(a, a, 0); a ∈ Z(G)}. �

3.3. Generating inner mappings uniformly. Propositions 3.2, 3.4 and 3.8 establish small
sets of inner mappings generating Inn(Q) and TInn(Q) for a loop Q in certain varieties (of all
loops, and all IP loops). Interestingly, these sets generate the respective groups uniformly,
independently of Q within a given variety. In the rest of the section, we will formalize this
idea, to be used in the proof of Theorem 2.1.

Formally, a word W = Wx̄ is an element of the free group generated by letters Kt, where
K ∈ {L,R,M} and t is a term over x̄. Equivalently, it is a formal expression of the form
K1
t1(x̄) . . . K

k
tk(x̄) where K1, . . . , Kk are letters from {L,R,M,L−1, R−1,M−1} and t1, . . . , tk

are arbitrary loop terms. Every word induces a mapping

Wx̄ : Qn → TMlt(Q), ā 7→ Wā,

where Wā is the mapping obtained by replacing every Ki
ti(ā) with the actual translation on

Q by ti(ā). We can thus write Wā(b) ∈ Q for the result of the mapping Wā on b ∈ Q. Every
word W also induces a term: given another variable y, we can consider Wx̄(y) as a term,
resulting by evaluating the mapping Wx̄ in the free loop of terms over x1, . . . , xn, y. The
following examples should make this clear.

Example 3.10. The expression Lx,y defined by L−1
xyLxLy is a word. Then Lx,y(z) denotes

the term (xy)\(x(yz)), and for every loop Q and every a, b ∈ Q, La,b denotes the inner
mapping L−1

ab LaLb. Note that J is also a word, with no parameters, defined by J = M1,
where 1 is a term with no parameters.

Let V be a variety of loops. We say that a word W is inner for V , if Wā ∈ TInn(Q) for
every Q ∈ V and every a1, . . . , an ∈ Q. Note that this is equivalent to saying that Wx̄(1) = 1
is a valid identity in the variety V . Again, let us clarify the idea with an example.

Example 3.11. The word Lx,y is inner for the variety of all loops. The word J is inner for
the variety of all inverse property loops. The word W = LxLx is inner for the variety of
all loops satisfying the identity x2 = 1, since LaLa(1) = a2 = 1, but it is not inner for the
variety of all loops.

Let V be a variety of loops, and let W be a set of inner words for V . We say that W
generates inner mapping groups in V if for every Q ∈ V we have

Inn(Q) = 〈Wā; W ∈ W , a1, . . . , an ∈ Q〉,
and it generates total inner mapping groups in V if for every Q ∈ V we have

TInn(Q) = 〈Wā; W ∈ W , a1, . . . , an ∈ Q〉.
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Example 3.12. Using Propositions 3.2, 3.4, 3.8, and some trivial observations, we have:

• Let V be a variety of loops. Then {Lx,y, Rx,y, Tx} generates inner mapping groups in
V , {Lx,y, Rx,y, Tx, Mx,y, Ux} generates total inner mapping groups in V , {A·x,y, B·x,y}
generates inner mapping groups in V , and {A·x,y, B·x,y, A

\
x,y} generates total inner

mapping groups in V .
• Let V be a variety of commutative loops. Then {Lx,y} generates inner mapping

groups in V , {Lx,y, Mx,y, Ux} generates total inner mapping groups in V , and

{A·x,y, A
\
x,y} generates total inner mapping groups in V .

• Let V be a variety of inverse property loops. Then {Lx,y, Tx, J} generates total inner
mapping groups in V .
• Let V be a variety of groups. Then {Tx} generates inner mapping groups in V , and
{Tx, J} generates total inner mapping groups in V .

The following lemma explains how (total) inner mapping groups can be generated uni-
formly. We will write W±1 for {W, W−1; W ∈ W}, where W−1 is the word obtained by
formally inverting W .

Lemma 3.13. Let V be a variety of loops, W a set generating (total) inner mapping groups
in V and V an inner word for V . Then there exist W i ∈ W±1 and terms tij such that

Vā = W 1
t11(ā),...,t1r1 (ā) . . .W

k
tk1(ā),...,tkrk

(ā)

for every Q ∈ V and every a1, . . . , an ∈ Q.

Proof. We will write down the case of inner mapping groups. For total inner mapping groups,
replace every reference to Inn(Q) by TInn(Q).

Let F be the free loop in V on n generators x1, . . . , xn. We know that Vx̄ ∈ Inn(F ) (as
it does for any Q ∈ V and every choice of parameters from Q). Since Inn(F ) is generated
by all Wt̄ such that W ∈ W and t1, . . . , tn ∈ F (as so does Inn(Q) for every Q ∈ V ), there
exist words W 1, . . . ,W k ∈ W±1 and parameters tij ∈ F such that

Vx̄ = W 1
t11,...,t

1
r1
. . .W k

tk1 ,...,t
k
rk

.

Notice that elements of F are just terms in variables x1, . . . , xk, and inner mappings in F can
be considered as inner words for V , since the equality V (1) = 1 in F becomes an identity
true in V .

The whole situation easily maps into every loop in V . Given Q ∈ V and a1 . . . , an ∈ Q,
let f : F → Q be the homomorphism induced by x1 7→ a1, . . . , xn 7→ an. Upon applying the
homomorphism, we obtain the equality in the statement of the lemma. �

Assuming the notation of Lemma 3.13, we say that, in the variety V , the mappings induced
by V are uniformly generated using the words W i and the terms tij. Since the statement of
Lemma 3.13 is a bit technical, we again make it clear with an example:

Example 3.14. Let Q be an arbitrary loop, a ∈ Q, and consider the mapping fa defined by
fa(z) = (z\a)\a. Then fa ∈ TMlt(Q), because fa = MaMa. It is an inner mapping because
fa(1) = 1. Consequently, Proposition 3.4 says that fa is a product of mappings A·x,y, B

·
x,y,

A
\
x,y and their inverses, for some choice of parameters x, y ∈ Q.

12



But what if we choose a different b ∈ Q, or if we work in a different loop? Do we get an
analogous generating word for fb? Lemma 3.13 guarantees that there is a uniform way of
generating fa in every loop for every choice of a, because fa is induced by the inner word
MxMx.

Note, however, that the proof of Lemma 3.13 is not constructive, so it is not at all clear
how to generate a particular inner mapping from a set of words that generates (total) inner
mapping groups.

4. Proof of the fundamental theorem

4.1. Auxiliary lemmas. The principal difficulty with the proof of Theorem 2.1 is the fact
that to establish centrality, one has to consider the term condition TC for all terms. Lemma
4.1 below reduces the set of terms that need to be considered.

A term t(x1, . . . , xn) is called slim with respect to x1, if there is only one occurrence of
x1 in t, if this occurrence is in the lowest level of t, and if every node of t has at most one
branch of length greater than 1.

For example, the term on the left is slim with respect to x1 but not with respect to the
other variables, and the term on the right is not slim with respect to any variables:

·

/ x2

x3 ·

x1 x2

·

/ ·

x1 x2 x3 x4

Lemma 4.1. Let A be an algebra and α, β, δ its congruences. If TC(t, α, β, δ) holds for
every term t that is slim with respect to the first variable, then C(α, β; δ) holds.

Proof. We prove the lemma in two steps. First, we show that TC(t, α, β, δ) holds for
every term t, not necessarily slim, with only one occurrence of the first variable. Let
t = t(x1, . . . , xn+1) be such a term. Define a new term, s(x1, y1, . . . , yk), by replacing each
maximal subterm si(x2, . . . , xn) of t not containing x1 by a new variable yi. Then s is slim
with respect to x1, and t(x1, . . . , xn+1) = s(x1, s1, . . . , sk), as illustrated below:

·

/ \

· ·

x2 x3 x1 x3

x2 x3

7→

·

/ s2 = x2\x3

s1 = x2 · x3 ·

x1 s3 = x3

Let aα b, ū β v̄. Then indeed si(u1, . . . , un) β si(v1, . . . , vn) for every i, because β is a con-
gruence. Suppose that t(a, u1, . . . , un) δ t(a, v1, . . . , vn), which we can restate as

s(a, s1(u1, . . . , un), . . . , sk(u1, . . . , un)) δ s(a, s1(v1, . . . , vn), . . . , sk(v1, . . . , vn)).

Using TC(s, α, β, δ), we deduce

s(b, s1(u1, . . . , un), . . . , sk(u1, . . . , un)) δ s(b, s1(v1, . . . , vn), . . . , sk(v1, . . . , vn)),
13



which means t(b, u1, . . . , un) δ t(b, v1, . . . , vn). Hence TC(t, α, β, δ) holds for every term t with
a single occurrence of the first variable.

In the second step, consider a general term t = t(x1, . . . , xn+1) with k occurrences of x1.
Define a new term, s(y1, . . . , yk, x2, . . . , xn+1), by replacing every occurrence of x1 by a unique
new variable y1, . . . , yk. We will use TC(s, α, β, δ) repeatedly, once for each of the variables
y1, . . . , yk, starting with t(a, u1, . . . , un) δ t(a, v1, . . . , vn), i.e., with

s(a, . . . , a, u1, . . . , un) δ s(a, . . . , a, v1, . . . , vn).

Then

s(b, a, . . . , a, u1, . . . , un) δ s(b, a, . . . , a, v1, . . . , vn),

s(b, b, a, . . . , a, u1, . . . , un) δ s(b, b, a, . . . , a, v1, . . . , vn),

...

s(b, . . . , b, u1, . . . , un) δ s(b, . . . , b, v1, . . . , vn),

which translates into t(b, u1, . . . , un) δ t(b, v1, . . . , vn), and we are through. �

The following lemma is more general than we need in the proof of Theorem 2.1, but it is
readily available using Lemma 3.13.

Lemma 4.2. Let V be a variety of loops, W a set of words that generates total inner
mapping groups in V , Q ∈ V and α, β congruences of Q. Put

δ = Cg( (Wū(a),Wv̄(a)); W ∈ W , 1α a, ū β v̄ ).

Then (Vū(a), Vv̄(a)) ∈ δ for every word V that is inner for V and for every 1α a, ū β v̄.

Proof. We first note that W−1
ū (a) δ W−1

v̄ (a) for every W ∈ W , 1α a and ū β v̄. Indeed, since
1 = W−1

ū (1)αW−1
ū (a), we get a = Wū(W

−1
ū (a)) δ Wv̄(W

−1
ū (a)), and thus W−1

ū (a) δ W−1
v̄ (a).

According to Lemma 3.13, there exist W 1, . . . ,W k ∈ W±1 and terms tji such that they
uniformly generate the mappings induced by V . To keep our notation simple, we will use the
shorthand W i

t̄(z̄) for the mapping W i
ti1(z̄),...,tiri (z̄)

. Notice that if x δ y, then W i
t̄(z̄)(x) δ W i

t̄(z̄)(y)

for every z̄ ∈ Q.
Fix aα 1. An easy induction shows the result: for i = k, we have W k

t̄(ū)(a) δ W k
t̄(v̄)(a) by

the definition of δ, and if W i+1
t̄(ū) . . .W

k
t̄(ū)(a) δ W i+1

t̄(v̄) . . .W
k
t̄(v̄)(a), then

W i
t̄(ū)W

i+1
t̄(ū) . . .W

k
t̄(ū)(a) δ W i

t̄(ū)W
i+1
t̄(v̄) . . .W

k
t̄(v̄)(a) δ W i

t̄(v̄)W
i+1
t̄(v̄) . . .W

k
t̄(v̄)(a),

where the former equivalence follows from the induction assumption, and the latter one
follows from the definition of δ, because W i+1

t̄(v̄) . . .W
k
t̄(v̄) is an inner mapping, and thus 1 =

W i+1
t̄(v̄) . . .W

k
t̄(v̄)(1)αW i+1

t̄(v̄) . . .W
k
t̄(v̄)(a). �

4.2. Proof of the fundamental theorem. We are ready to prove Theorem 2.1:

Proof of Theorem 2.1. Let δ = Cg( (Wū(a),Wv̄(a)); W ∈ W , 1α a, ū β v̄ ) and A = Nα.
First we show [α, β] ⊇ δ. We only need to check that Wū(a) [α, β]Wv̄(a) whenever W is

inner, a ∈ A and ū β v̄. Note that Wū(1) = 1 = Wv̄(1) because W is an inner word. In
particular Wū(1) [α, β]Wv̄(1) and the term condition C(α, β; [α, β]) for t(x̄, y) = Wx̄(y) gives
Wū(a) [α, β]Wv̄(a).
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Now we show [α, β] ⊆ δ. Recall that [α, β] is the smallest congruence with C(α, β; [α, β]).
In order to show [α, β] ⊆ δ, it is sufficient to check that C(α, β; δ). We will write x ≡ y if
x δ y.

According to Lemma 4.1, we need to check the term condition TC(t, α, β, δ) for every
term t that is slim in the first coordinate. Consider such a term t, aα b, ū β v̄ and assume
t(a, u1, . . . , un) ≡ t(a, v1, . . . , vn). We will show that t(b, u1, . . . , un) ≡ t(b, v1, . . . , vn).

Let d be the depth of the (unique) occurrence of x1 in t. We will construct a sequence of
(n + 2)-ary terms s0, . . . , sd and elements a0, . . . , ad ∈ A and a′0, . . . , a

′
d ∈ A satisfying the

following conditions for every i = 0, . . . , d:

(1) si has a single occurrence of x1 at depth d+ 1− i, and it appears in a subterm of the
form x1 · s for some term s,

(2) si(1, x1, . . . , xn+1) = t(x1, . . . , xn+1),
(3) si(ai, b, u1, . . . , un) ≡ si(a

′
i, b, v1, . . . , vn),

(4) ai ≡ a′i and ai, a
′
i ∈ A.

Assuming existence of the sequences, it is easy to finish the proof of the theorem: it follows
from (1) and (2) that sd(x1, . . . , xn+2) = x1 · t(x2, . . . , xn+2), and using (3),

ad · t(b, u1, . . . , un) = sd(ad, b, u1, . . . , un) ≡ sd(a
′
d, b, v1, . . . , vn) = a′d · t(b, v1, . . . , vn).

According to (4), ad ≡ a′d, so we can cancel in Q/δ and get t(b, u1, . . . , un) ≡ t(b, v1, . . . , vn).
Now we will construct the sequences. In the initial step, take

s0(x1, . . . , xn+2) = t(x1 · x2, x3, . . . , xn+2),

and let a0 = a′0 = a/b. It is readily seen that the conditions (1), (2), (4) are satisfied, and
(3) follows from the assumption that t(a, u1, . . . , un) ≡ t(a, v1, . . . , vn).

Induction step: given si, ai, a
′
i satisfying the conditions, we will construct si+1, ai+1, a

′
i+1.

Since t is slim, one of the following configurations takes place near the occurrence of x1 in
si, for some variable xk, some term s(x2, . . . , xn+2) and some operation ◦ ∈ {·, \, /}:

◦

· xk

x1 s

◦

xk ·

x1 s

Let Wx,y = A◦x,y in the former case and Wx,y = B◦x,y in the latter case. (Recall that (z ·x)◦y =
A◦x,y(z) · (x ◦ y) and y ◦ (z · x) = B◦x,y(z) · (y ◦ x).) Define

ai+1 = Ws(b,u1,...,un),uk−2
(ai), a′i+1 = Ws(b,v1,...,vn),vk−2

(a′i),

and let si+1 result from si by replacing the subterm (x1 · s) ◦xk by x1 · (s ◦xk), or xk ◦ (x1 · s)
by x1 · (xk ◦ s), respectively. Graphically, the configuration near the occurrence of x1 in si+1

becomes one of the following:

·

x1 ◦

s xk

·

x1 ◦

xk s

It is readily seen that the conditions (1), (2) hold for si+1 too.
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Let us verify condition (3). Suppose that we are in the former case. Then near x1

the evaluated term si(ai, b, u1, . . . , un) gives (ai · s(b, u1, . . . , un)) ◦ uk−2, which is equal to
A◦s(b,u1,...,un),uk−2

(ai) · (s(b, u1, . . . , un)◦uk−2) = ai+1 · (s(b, u1, . . . , un)◦uk−2), which is how the

evaluated term si+1(ai+1, b, u1, . . . , un) looks near x1. In other words, si(ai, b, u1, . . . , un) =
si+1(ai+1, b, u1, . . . , un). Similarly, si(a

′
i, b, v1, . . . , vn) = si+1(a′i+1, b, v1, . . . , vn). Then we can

use (3) for si to conclude that

si+1(ai+1, b, u1, . . . , un) = si(ai, b, u1, . . . , un) ≡ si(a
′
i, b, v1, . . . , vn) = si+1(a′i+1, b, v1, . . . , vn),

so that (3) holds for si+1. Similarly in the latter case.
To check condition (4), observe that ai+1, a

′
i+1 ∈ A because the normal subloop A is closed

under inner mappings by Proposition 3.7, and that

ai+1 = Ws(b,u1,...,un),uk−2
(ai) ≡ Ws(b,u1,...,un),uk−2

(a′i) ≡ Ws(b,v1,...,vn),vk−2
(a′i) = a′i+1,

where the former equivalence follows from the fact that ai ≡ a′i and ≡ is a congruence, and
the latter one follows from Lemma 4.2. �

The following example illustrates the inductive algorithm used in the proof of Theorem
2.1.

Example 4.3. Let t(x1, x2, x3, x4) = x3/((x1\x4) ·x2). The sequence s0, s1, s2, s3 is depicted
below. Notice the occurrence of x1 “climbing the tree” to the top level, while the structure
of the rest of the tree remains intact. Also notice that s3(x1, . . . , x5) = x1 · t(x2, . . . , x5).

/

x4 ·

\ x3

· x5

x1 x2

/

x4 ·

· x3

x1 \

x2 x5

/

x4 ·

x1 ·

\ x3

x2 x5

·

x1 /

x4 ·

\ x3

x2 x5

4.3. The fundamental theorem in loops with a finiteness condition. Assume that Q
has a bound on the order of all left and right translations, i.e., there is an integer n > 0 such
that Lnx = Rn

x = 1 for every x ∈ Q. (This is certainly true in every finite loop.) Then the
theory developed so far simplifies considerably, because we can avoid the division operations:
we have

x\y = L−1
x (y) = Ln−1

x (y) = x(. . . (x(x︸ ︷︷ ︸
n−1

y)) . . . ),

and dually for the right division. Hence, for every loop term t, there is a multiplicative term
s (i.e., a term in the language of multiplication) such that t = s is a valid identity in every
loop where Lnx = Rn

x = 1 for every x. So, in the term condition TC(t, α, β, δ) verified in
the proof of Theorem 2.1, we only need to consider multiplicative slim terms. Hence, later
in the proof, we only need to use the words A·x,y and B·x,y, which always induce mappings
from Inn(Q) (while the other options may induce mappings from TInn(Q)). It means that
we only need a weaker version of Lemma 4.2, for inner words from Inn(Q), and thus we can
choose a weaker W , a set of words that generates inner mapping groups (not necessarily
total inner mapping groups) in V . We have proved:
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Theorem 4.4. Let V be a variety of loops and W a set of words that generates inner
mapping groups in V . If for Q ∈ V there is n > 0 such that Lnx = Rn

x = 1 for every x ∈ Q,
then

[α, β] = Cg( (Wū(a),Wv̄(a)); W ∈ W , 1α a, ū β v̄ )

for any congruences α, β of Q.

5. Pruning the generating sets

Assume the notation of Theorem 2.1, that is, let V be a variety of loops and W a set
of words that generates inner mapping groups in V . For Q ∈ V and congruences α, β of
Q call Cg( (Wū(a),Wv̄(a)); W ∈ W , 1α a, ū β v̄ ) the congruence induced by W . In some
cases, a word can be removed from W with no effect on the congruences induced by W .
Formally, we say that a word W is removable from a set W , if for every loop Q ∈ V and
every congruences α, β of Q the congruence induced by W and the congruence induced by
W r {W} are equal.

Proposition 5.1. Let V be a variety of loops, W be a set of inner words, W ∈ W, and ≡
the congruence induced by W r {W}.

(i) If W has no parameters, it is removable from W.
(ii) The word W = Ux is removable from W, provided that [a, x, b] ≡ 1 for every loop

Q ∈ V , every congruences α, β of Q, and every 1α a, 1 β b, x ∈ Q.
(iii) The word W = Tx is removable from W, provided that [a, b] ≡ 1, [a, b, x] ≡ 1,

[b, a, x] ≡ 1 and [x, b, a] ≡ 1 for every loop Q ∈ V , every congruences α, β of Q, and
every 1α a, 1 β b, x ∈ Q.

Proof. (i) The diagonal element (W (a),W (a)) belongs to every congruence.
(ii) The assumption [a, x, b] ≡ 1 can be written as

(5.1) ax · b ≡ a · xb, i.e., RbRx(a) ≡ Rxb(a).

Upon replacing x with a\x, and dividing both sides by a, we get

(5.2) a\(xb) ≡ (a\x)b, i.e., Mxb(a) ≡ RbMx(a)

for every 1α a, 1 β b, x ∈ Q. Suppose that 1α a and u β v, thus 1 = M−1
v Rv(1)αM−1

v Rv(a)
and (v\u) β 1. Then

UuU
−1
v (a) = R−1

u MuM
−1
v Rv(a) = R−1

u Mv(v\u)M
−1
v Rv(a)

≡ R−1
u Rv\uMvM

−1
v Rv(a) = R−1

u Rv\uRv(a) by (5.2) with M−1
v Rv(a)α 1

≡ R−1
u Rv(v\u)(a) = R−1

u Ru(a) = a by (5.1).

Upon replacing a with Uv(a), we obtain Uu(a) ≡ Uv(a).
(iii) The assumptions can be written as

ab ≡ ba, i.e., Lb(a) ≡ Rb(a),

a · bx ≡ ab · x, i.e., Rbx(a) ≡ RxRb(a),

b · ax ≡ ba · x, i.e., LbRx(a) ≡ RxLb(a),

x · ba ≡ xb · a, i.e., LxLb(a) ≡ Lxb(a),
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for every 1α a, 1 β b, x ∈ Q. Suppose that 1α a and u β v, thus 1 = L−1
v Rv(1)αL−1

v Rv(a)
and (u/v) β 1. Then

TuT
−1
v (a) = R−1

u LuL
−1
v Rv(a) = R−1

u L(u/v)vL
−1
v Rv(a)

≡ R−1
u Lu/vLvL

−1
v Rv(a) = R−1

u Lu/vRv(a) by [u/v, v, L−1
v Rv(a)] ≡ 1

≡ R−1
u RvLu/v(a) by [u/v, a, v] ≡ 1

≡ R−1
u RvRu/v(a) by [a, u/v] ≡ 1

≡ R−1
u R(u/v)v(a) = R−1

u Ru(a) = a by [a, u/v, v] ≡ 1.

Upon replacing a with Tv(a), we obtain Tu(a) ≡ Tv(a). �

Item (i) of Proposition 5.1 applies, for example, to the inverse mapping J in inverse
property loops, or more generally, to the mapping M1 in every loop. The assumptions of (ii)
are satisfied, for example, if Rx,y ∈ W ; then Rb,x(a) ≡ R1,x(a) = 1 whenever 1α a, 1 β b and
x ∈ Q, and thus [a, x, b] ≡ 1. Using (iii) is less straightforward; we will do so in Corollary
7.5.

The full power of Theorems 2.1 and 4.4 is realized only in combination with the results of
Section 3, as summarized in Example 3.12.

Corollary 5.2. Let Q be a loop and α, β congruences of Q. Let W be defined as follows:

(i) If Q is a loop, let W = {Lx,y, Rx,y, Tx,Mx,y} or W = {A·x,y, B·x,y, A
\
x,y}.

(ii) If Q is an inverse property loop, let W = {Lx,y, Tx} or W = {Mx,y}.
(iii) If Q is a group, let W = {Tx}.
(iv) If Q is a commutative loop, let W = {Lx,y,Mx,y} or W = {A·x,y, A

\
x,y}.

Then
[α, β] = Cg( (Wū(a),Wv̄(a)); W ∈ W , 1α a, ū β v̄ )

for any congruences α, β of Q.

Proof. Apply Theorem 2.1 to the generating sets from Example 3.12, and use the pruning
principles of Proposition 5.1. �

It follows from Theorem 4.4 that for loops with a finiteness condition we can remove Mx,y

and A
\
x,y from the sets W in Corollary 5.2 (i,iv).

Problem 5.3. Find additional small generating sets for Corollary 5.2.

Proposition 5.1 is an ad hoc argument designed specifically to prune the standard gener-
ating sets. We therefore ask:

Problem 5.4. Describe systematically when a word is removable from a set of inner words.

Given a set of wordsW , we now show a simple trick that decreases the size of the generating
set of the commutator, useful for computational purposes. Suppose that some two-parameter
inner word Wx,y is used in W . We claim that

Cg( (Wu1,u2(a),Wv1,v2(a)); 1α a, ū β v̄ )

= Cg( (Wu,c(a),Wv,c(a)), (Wc,u(a),Wc,v(a)); 1α a, u β v, c ∈ Q ).

Indeed, choosing u2 = v2 = c (so surely u2 β v2) or u1 = v1 = c shows that the second
congruence is a subset of the first. Conversely, if the generators of the second congruence are
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available then Wu1,u2(a) is congruent to Wu1,v2(a), which is in turn congruent to Wv1,v2(a).
Of course, a similar observation holds for inner terms with an arbitrary number of parame-
ters. Note that the second generating set is generally smaller than the first, but it is more
cumbersome to write down.

6. Elementwise commutators and associators

6.1. Commutators and associators as inner mappings. We have seen that the words
A◦x,y, B

◦
x,y form a set that generates total inner mapping groups in all loops, and thus can

be used to generate congruence commutators. Can these words be replaced by terms that
resemble elementwise commutators and associators?

The standard commutator [x, y] defined by xy = (yx)[x, y] will not work, since the terms
tx(y) = [x, y] = sy(x) do not preserve normality in the variety of loops, in the sense that
there exists a loop Q with normal subloop N and x, y ∈ Q, a ∈ N such that neither of [x, a],
[a, y] is in N . The standard associator [x, y, z] is similarly flawed.

With Leong’s associator xy · z = aL(x, y, z)x · yz, we can write ALy,z(x) = aL(x, y, z)x, so

that xy · z = ALy,z(x) · yz, and we notice that ALy,z = R−1
yz RzRy is an inner mapping. (This is

the most important feature of the associator aL(x, y, z), which seems to have gone unnoticed
in [24].) Consequently, aL(N,Q,Q) ⊆ N for every N EQ.

We will now define commutators and associators systematically. Let V be the variety of
all loops. A loop term a(x, y, z) is an associator if we have ∗, ◦, ~, } ∈ {·, \, /} such that
the following hold:

(a) (x ∗ y) ◦ z = (a(x, y, z)x)~ (y } z) in V or z ∗ (y ◦ x) = (z ~ y)} (xa(x, y, z)) in V ,
(b) a(1, y, z) = 1 in V (thus the associators give rise to inner mappings),
(c) a(x, y, z) = 1 on all abelian groups in V .

A loop term c(x, y) is a commutator if we have ∗, ~ ∈ {·, \, /} such that the following hold:

(a) x ∗ y = y ~ xc(x, y) in V or y ∗ x = c(x, y)x~ y in V ,
(b) c(1, y) = 1 in V (thus the commutators give rise to inner mappings),
(c) c(x, y) = 1 on all abelian groups in V .

For instance, given the loop operations ∗ = ·, ◦ = /, can we find loop operations ~, } such
that a·/(x, y, z) defined by (x · y)/z = (a·/(x, y, z)x) ~ (y } z) fulfills (b) and (c)? We can

equivalently study A
·/
y,z(x) defined by A

·/
y,z(x) = a·/(x, y, z)x. To make the identity (x ·y)/z =

x~(y}z) valid in abelian groups, we must choose (x ·y)/z = x ·(y/z) or (x ·y)/z = x/(y\z).
But only the first choice gives a valid loop identity when x = 1. Equivalently, only the first

choice gives rise to an inner mapping A
·/
y,z, namely to A

·/
y,z = R−1

y/zR
−1
z Ry. Note that the

answer is therefore unique here.
The following lemma can be proved by similar arguments. We omit the straightforward

proof.

Lemma 6.1.

(i) Let ∗, ◦ be loop operations such that ∗ 6= /. Then
• there are uniquely determined loop operations ~, } such that (x ∗ y) ◦ z =
x~(y}z) is an identity in all abelian groups, and such that (1∗y)◦z = 1~(y}z)
is an identity in all loops;
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• there is a uniquely determined loop operation ~ such that x ∗ y = y ~ x is an
identity in all abelian groups, and such that 1 ∗ y = y ~ 1 is an identity in all
loops.

(ii) Let ∗, ◦ be loop operations such that ◦ 6= \. Then
• there are uniquely determined loop operations ~, } such that z ∗ (y ◦ x) =
z~(y}x) is an identity in all abelian groups, and such that z∗(y◦1) = z~(y}1)
is an identity in all loops;
• there is a uniquely determined loop operation ~ such that y ◦ x = x ~ y is an

identity in all abelian groups, and such that y ◦ 1 = 1 ~ y is an identity in all
loops.

The cases excluded in Lemma 6.1 do not have a solution. For instance, with ∗ = / and
◦ = ·, the only choices of ~, } ∈ {·, /, \} that make (x ∗ y) ◦ z = x ~ (y } z) valid in
all abelian groups are (x/y) · z = x · (y\z) and (x/y) · z = x/(y/z), and with x = 1 these
identities become (1/y) · z = y\z and (1/y) · z = 1/(y/z). But the first identity is not valid
in all loops (take z = 1 to get 1/y = y\1), and neither is the second identity (take y = 1 to
get z = 1/(1/z), i.e., 1/z = z\1).

We therefore obtain 12 associators and 4 commutators, summarized in Table 1. The
associators and commutators are presented in the form of inner mappings and also as actual
elementwise associators and commutators. The a-associators of Table 1 are dual to the b-
associators, and the c-commutators are dual to the d-commutators, in the order listed in the
table. For instance, a·/(x, y, z) is dual to b\·(x, y, z).

It is interesting to point out that the multiplicative associators and commutators corre-
spond to the standard generating set for the inner mapping groups:

A··y,z = Rz,y, B··y,z = Lz,y, C ·y = T−1
y , D·y = Ty.

The following discussion will be important with respect to the choice of associators and
commutors that generate the derived subloops and the associator subloops.

Lemma 6.2. Let Q be a loop and N EQ.

(i) Let a denote one of the associators a··, a·/, a\·, a\/, b··, b\·, b·/, b\/. Then Q/N is a
group if and only if {a(x, y, z); x, y, z ∈ Q} ⊆ N .

(ii) Let a denote one of the associators a·\, a\\, b/·, b//. Then Q/N is an abelian group
if and only if {a(x, y, z); x, y, z ∈ Q} ⊆ N .

Proof. We will give the proof for two cases and leave the remaining ten to the reader.
Let a = a··. Suppose that a(x, y, z) ∈ N for every x, y, z ∈ N . In Q/N , a(x, y, z) = 1,

hence (xy)z = (a(x, y, z)x)(yz) = x(yz). Conversely, if Q/N is a group then, in Q/N ,
x(yz) = (xy)z = (a(x, y, z)x)(yz), and a(x, y, z) = 1 (or a(x, y, z) ∈ N) follows by cancela-
tion in Q/N .

Let a = a·\. Suppose that a(x, y, z) ∈ N for every x, y, z ∈ N . In Q/N , a(x, y, z) = 1,
hence (xy)\z = (a(x, y, z)x)\(y\z) = x\(y\z), so y(x((xy)\z)) = z. Substituting z = xy,
we obtain commutativity. Substituting z = xy · u and using commutativity, we obtain
associativity. Conversely, if Q/N is an abelian group then, in Q/N , x−1(y−1z) = (xy)−1z =
(xy)\z = (a(x, y, z)x)\(y\z) = (a(x, y, z)x)−1(y−1z), and a(x, y, z) = 1 (or a(x, y, z) ∈ N)
follows by cancelation in Q/N . �
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defining identity as an inner mapping as an associator/commutator

(x · y) · z = A··y,z(x) · (y · z) A··y,z = R−1
yz RzRy a··(x, y, z) = A··y,z(x)/x

(x · y)\z = A
·\
y,z(x)\(y\z) A

·\
y,z = M−1

y\zMzRy a·\(x, y, z) = A
·\
y,z(x)/x

(x · y)/z = A
·/
y,z(x) · (y/z) A

·/
y,z = R−1

y/zR
−1
z Ry a·/(x, y, z) = A

·/
y,z(x)/x

(x\y) · z = A
\·
y,z(x)\(y · z) A

\·
y,z = M−1

yz RzMy a\·(x, y, z) = A
\·
y,z(x)/x

(x\y)\z = A
\\
y,z(x) · (y\z) A

\\
y,z = R−1

y\zMzMy a\\(x, y, z) = A
\\
y,z(x)/x

(x\y)/z = A
\/
y,z(x)\(y/z) A

\/
y,z = M−1

y/zR
−1
z My a\/(x, y, z) = A

\/
y,z(x)/x

z · (y · x) = (z · y) ·B··y,z(x) B··y,z = L−1
zy LzLy b··(x, y, z) = x\B··y,z(x)

z/(y · x) = (z/y)/B
/·
y,z(x) B

/·
y,z = M−1

z/yM
−1
z Ly b/·(x, y, z) = x\B/·

y,z(x)

z\(y · x) = (z\y) ·B\·y,z(x) B
\·
y,z = L−1

z\yL
−1
z Ly b\·(x, y, z) = x\B\·y,z(x)

z · (y/x) = (z · y)/B
·/
y,z(x) B

·/
y,z = Mz·yLzM

−1
y b·/(x, y, z) = x\B·/y,z(x)

z/(y/x) = (z/y) ·B//
y,z(x) B

//
y,z = L−1

z/yM
−1
z M−1

y b//(x, y, z) = x\B//
y,z(x)

z\(y/x) = (z\y)/B
\/
y,z(x) B

\/
y,z = Mz\yL

−1
z M−1

y b\/(x, y, z) = x\B\/y,z(x)
x · y = y · C ·y(x) C ·y = L−1

y Ry c·(x, y) = x\C ·y(x)

x\y = y/C
\
y (x) C

\
y = MyMy c\(x, y) = x\C\y (x)

y · x = D·y(x) · y D·y = R−1
y Ly d·(x, y) = D·y(x)/x

y/x = d
/
y(x)\y D

/
y = M−1

y M−1
y d/(x, y) = D

/
y(x)/x

Table 1. Commutators and associators that yield inner mappings in loops.

6.2. The fundamental theorem in terms of commutators and associators. The
machinery of Theorem 2.1 can now be applied to various subsets of the commutators and
associators in Table 1.

Whether we work with the inner mappings or with the elementwise commutators and
associators is irrelevant. Indeed, for trivial reasons, the two elements A··y1,z1(x), A··y2,z2(x)
are congruent if and only if the two elements a··(x, y1, z1) = A··y1,z1(x)/x, a··(x, y2, z2) =

A··y2,z2(x)/x are congruent; and similarly for all other commutators/associators.2

Using the operations from Table 1, we can reformulate Corollary 5.2 as follows:

Corollary 6.3. Let Q be a loop and α, β congruences of Q. Let W be defined as follows:

(i) If Q is a loop, let W = {A··x,y, B··x,y, A
·\
x,y, C ·x}.

(ii) If Q is an inverse property loop, let W = {A··x,y, C ·x}.
(iii) If Q is a group, let W = {C ·x}.
(iv) If Q is a commutative loop, let W = {A··x,y, A

·\
x,y}.

Then

[α, β] = Cg( (Wū(a),Wv̄(a)); W ∈ W , 1α a, ū β v̄ ).

Proof. Note that Rx,y = A··y,x, Lx,y = B··y,x, Tx = (C ·x)
−1 and Mx,y = A

·\
y,xUx, so W ∪ {Ux}

does the job, by Corollary 5.2. We can remove Ux by Proposition 5.1. �

2However, inner mappings can be composed to form a group while commutators and associators cannot
be composed. This is why Theorem 2.1 is stated in terms of inner mappings.
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It follows from Theorem 4.4 that for loops with a finiteness condition we can remove A
·\
x,y

from the sets W of Corollary 6.3.

Problem 6.4. Find all minimal subsets of the 12 associators and 4 commutators that,
together with M1, generate total inner mapping groups in all loops.

7. The commutator of normal subloops

The correspondence α 7→ Nα, N 7→ γN between loop congruences and normal subloops
allows us to restate Theorem 2.1 and all its corollaries in terms of normal subloops, rather
than in terms of congruences.

Lemma 7.1. Let Q be a loop.

(i) If X ⊆ Q×Q and α = Cg(X), then Nα = Ng( x/y; (x, y) ∈ X ).
(ii) If X ⊆ Q and N = Ng(X), then γN = Cg( (x, 1); x ∈ X ).

Proof. (i) Let N = Ng( x/y; (x, y) ∈ X ). Since (x, y) ∈ X ⊆ α, we immediately get
N ⊆ Nα. On the other hand, since (x/y, 1) ∈ γN for every (x, y) ∈ X, we also get (x, y) ∈ γN
for every (x, y) ∈ X, hence α ≤ γN . Part (ii) is similar. �

Applying this observation to Theorem 2.1, we immediately get a generating set for the
commutator of two normal subloops, as described in Theorem 2.2, stating that

[A,B]Q = Ng( Wū(a)/Wv̄(a); W ∈ W , a ∈ A, ū/v̄ ∈ B )

for any normal subloops A, B of any loop Q in a variety V , where W is a set of words that
generates total inner mapping groups in V . Of course, in loops with a finiteness condition we
only needW that generates inner mapping groups. Using Corollary 6.3, we obtain generating
sets consisting of quotients of certain associators and commutators. Let us discuss the case
of groups first.

Let Q be a group and A, BEQ. Note that C ·y(x) = y−1xy and c·(x, y) = x−1y−1xy = [x, y].
Corollary 6.3 therefore yields

[A,B]Q = Ng( [a, u]/[a, v]; a ∈ A, u/v ∈ B ).

From this it is not difficult to recover the standard group-theoretical result

[A,B]Q = 〈[a, b]; a ∈ A, b ∈ B〉.

Namely, let N1 = Ng( [a, u]/[a, v]; a ∈ A, u/v ∈ B ) and N2 = 〈[a, b]; a ∈ A, b ∈ B〉.
First notice that N2 is a normal subgroup, since Inn(Q) = 〈Tx; x ∈ Q〉 ≤ Aut(Q) and
thus Tx([a, b]) = [Tx(a), Tx(b)] and Tx(a) ∈ A, Tx(b) ∈ B for every a ∈ A, b ∈ B. Taking
u = b ∈ B and v = 1, we obtain [a, b] = [a, u]/[a, v] with u/v ∈ B, hence N2 ⊆ N1.
Conversely, calculating in Q/N2, we get [a, u]/[a, v] = a−1u−1auv−1a−1va = 1, since we can
commute uv−1 ∈ B with a ∈ A and cancel; this shows N1 ⊆ N2.

The discussion of the group case raises two natural questions for general loops. First,
is the subloop generated by the quotients always normal? Second, can we dispose of the
quotients in the generating set of [A,B]Q?

Let us first answer the first question. In general, normality fails, as the following example
and Corollary 5.2 illustrate:

22



Example 7.2. Let Q be the commutative loop

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 1 0 6 7 4 5
3 3 2 0 1 7 6 5 4
4 4 5 6 7 3 0 1 2
5 5 4 7 6 0 3 2 1
6 6 7 4 5 1 2 3 0
7 7 6 5 4 2 1 0 3

Then A = {0, 1, 2, 3} is a normal subloop of Q. But 〈Lu1,u2(a)/Lv1,v2(a); a ∈ A, ū/v̄ ∈ A〉 =
{0, 1} is not a normal subloop of Q.

On the other hand, in many loops, the answer is positive. The gist of the proof for groups
was the fact that inner mappings of groups are automorphisms. Recall that a loop Q is said
to be automorphic if Inn(Q) ≤ Aut(Q).

Proposition 7.3. Let V be a variety of automorphic loops and W a set of words that
generates total inner mapping groups in V . Then

[A,B]Q = 〈Wū(a)/Wv̄(a); W ∈ W , a ∈ A, ū/v̄ ∈ B〉
for any normal subloops A, B of any Q ∈ V .

Proof. Denote the right hand side subloop by N . In view of Theorem 2.2, we only need to
check that N is normal in Q. Since inner mappings are automorphisms, we only need to
check that the generators of N are preserved by inner mappings. Let F be any of the words
Lx,y, Rx,y, Tx, and let W ∈ W . Then the composition FW is also an inner word. Hence, by
Lemma 4.2, (Fx̄Wū(a), Fx̄Wv̄(a)) ∈ [γA, γB] for every tuple x̄ over Q, a ∈ A and tuples ū, v̄
over Q such that ū/v̄ ∈ B. Thus Fx̄(Wū(a)/Wv̄(a)) = Fx̄Wū(a)/Fx̄Wv̄(a) ∈ [A,B]Q. �

Problem 7.4. Characterize loops Q such that (with the notation of Theorem 2.2) the subloop
〈Wū(a)/Wv̄(a); W ∈ W , a ∈ A, ū/v̄ ∈ B〉 is normal for all subloops A, B EQ.

The second question, whether quotients can be reduced, is also tricky. Example 9.2 shows
that it is not possible to get rid of quotients in the standard generating set, or in the
generating set resulting from elementwise associators and commutators. (It might be possible
to get rid of all quotients in different generating sets.) On the other hand, Proposition 5.1
says that some quotients can be removed: words without parameters for good, and the words
Ux and Tx can be replaced by certain associators and commutators.

Corollary 7.5. Let Q be a loop and A,B normal subloops of Q.

(i) Then

[A,B]Q = Ng( [a, b], [b, a, x], Wu1,u2(a)/Wv1,v2(a);

W ∈ {L,R,M}, a ∈ A, b ∈ B, x ∈ Q, ū/v̄ ∈ B ).

(ii) If Q is an inverse property loop, then

[A,B]Q = Ng( [a, b], Lu1,u2(a)/Lv1,v2(a); a ∈ A, b ∈ B, ū/v̄ ∈ B ).
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(iii) If Q is a group, then

[A,B]Q = 〈[a, b]; a ∈ A, b ∈ B〉.

(iv) If Q is a commutative loop, then

[A,B]Q = Ng( Wu1,u2(a)/Wv1,v2(a); W ∈ {L,M}, a ∈ A, ū/v̄ ∈ B ).

Proof. Corollary 5.2 can be translated via Lemma 7.1 in the same way that we have translated
Theorem 2.1 into Theorem 2.2. We will use the translation of Corollary 5.2 without reference.
In all cases, let N denote the subloop on the right hand side.

(i) We check that N satisfies the assumptions of conditions (ii), (iii) of Proposition 5.1.
We will calculate in Q/N . For every a ∈ A, b ∈ B, x ∈ Q, we have Rx,b(a) = Rx,1(a) = a,
so [a, x, b] = 1, and Rx,b(a) = Rx,1(a) = a, so [a, b, x] = 1, and also Lx,b(a) = Lx,1(a) = a, so
[x, b, a] = 1.

(ii) Following the proof of case (i), we only need to show that [b, a, x] ∈ N for every a ∈ A,
b ∈ B, x ∈ Q. The following statements, universally quantified with a ∈ A, b ∈ B, x ∈ Q, are
equivalent: b ·ax = ba ·x, ax = b−1(ba ·x), (use substitution x 7→ (ba)−1x) a · (ba)−1x = b−1x,
(ba)−1x = a−1 · b−1x, (use the AAIP) [a−1, b−1, x] = 1.

(iii) This follows from case (ii) once we realize that Lx,y = 1. Proposition 7.3 applies.
(iv) This is merely a restatement of Corollary 5.2(iv). �

In loops with a finiteness condition we can omit the mappings Mx,y from the sets W of
Corollary 7.5.

In the proof, we rely on the ad hoc arguments of Proposition 5.1. We therefore ask:

Problem 7.6. Describe systematically when quotients of inner mappings can be reduced,
analogously to Corollary 7.5.

8. The derived subloop and the associator subloop

Recall that the derived subloop Q′ of Q is the smallest normal subloop of Q such that
Q/Q′ is an abelian group, and the associator subloop A(Q) of a loop Q is the smallest normal
subloop of Q such that Q/A(Q) is a group. It is clear that

Q′ = Ng( [x, y, z], [x, y]; x, y, z ∈ Q ) and A(Q) = Ng( [x, y, z]; x, y, z ∈ Q ).

Alternatively, we can use the associators and commutators defined in Section 6, along the
guidelines given by Lemma 6.2.

As in groups, it was shown by Bruck [5, p. 13] that, in fact, Q′ = 〈[x, y, z], [x, y]; x, y, z ∈
Q〉. However, the case of A(Q) is more complicated: 〈[x, y, z]; x, y, z ∈ Q〉 needs not
be normal in Q; one has to consider its normal closure. We are going to see that the
normal closure is not needed upon replacing the traditional associators/commutators with
our associators/commutators.

Lemma 8.1. Let V be a variety of loops, W a set of words generating inner mapping groups
in V , and N EQ ∈ V . The following two conditions are equivalent:

(i) Q/N is an abelian group.
(ii) Wx̄(z)/z ∈ N for every W ∈ W, x̄ a tuple over Q, and z ∈ Q.
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Proof. Condition (ii) says that, in Q/N , Wx̄ = 1 for every W ∈ W and x1, . . . , xn ∈ Q/N .
Since the mappings Wx̄ generate Inn(Q/N), this is equivalent to the fact that Inn(Q/N) = 1.
This is equivalent to Q/N being an abelian group, i.e., (i). �

Theorem 8.2. Let V be a variety of loops, W a set of words generating inner mapping
groups in V , and Q ∈ V . Then

Q′ = 〈Wx̄(z)/z; W ∈ W , x̄ a tuple over Q, z ∈ Q〉.

Proof. Let H denote the subloop on the right hand side. In view of Lemma 8.1, it suffices
to show that H EQ. Using Proposition 3.3(ii), we only need to check that Wx̄(H) = H for
every W ∈ W and every tuple x̄ over Q. For a ∈ H, we have Wx̄(a)/a ∈ H by definition, so
Wx̄(a) = (Wx̄(a)/a) · a ∈ H. �

Any choice of associators and commutators such that the set of the corresponding inner
words generates inner mapping groups will provide a generating set for Q′. Here is such a
choice, corresponding to the standard generating set of Inn(Q). (The facts of Corollary 8.3
were observed by Covalschi and Sandu in [7].)

Corollary 8.3.

(i) Let Q be a loop. Then

Q′ = 〈Lx,y(z)/z, Rx,y(z)/z, Tx(z)/z; x, y, z ∈ Q〉
= 〈a··(x, y, z), b··(x, y, z), c·(x, y); x, y, z ∈ Q〉.

(ii) Let Q be an inverse property loop. Then

Q′ = 〈Lx,y(z)/z, Tx(z)/z; x, y, z ∈ Q〉 = 〈a··(x, y, z), c·(x, y); x, y, z ∈ Q〉.
(iii) Let Q be a group. Then

Q′ = 〈Tx(y)/y; x, y ∈ Q〉 = 〈[x, y]; x, y ∈ Q〉.

Proof. Note that if N EQ then a/b ∈ N iff a\b ∈ N . It is therefore irrelevant on which side
of the inner mappings W (z) we divide by z. �

Notice that we have just recovered the classical result of group theory that Q′ is the
subgroup generated by all commutators.

The case of the associator subloop is more difficult. A similar trick as above allows us
to show that the subloop is preserved by the inner mappings Lx,y and Rx,y, but it cannot
be used for Tx, because A(Q) does not contain commutators. The idea behind the proof of
Theorem 8.4 comes from Leong [24], who proved a similar result with a different choice of
associators, described in Section 2. We will imitate his proof with our associators.

Theorem 8.4. Let Q be a loop. Then A(Q) = 〈a··(x, y, z), b··(x, y, z); x, y, z ∈ Q〉.

Proof. Write a instead of a··, b instead of b··, and let H be the subloop on the right hand
side. By Lemma 6.2, it suffices to show that H EQ.

For h ∈ H we have (hx)y = a(h, x, y)h · xy ∈ H · xy and x · yh = xy · hb(h, y, x) ∈ xy ·H,
so

Hx · y ⊆ H · xy and x · yH ⊆ xy ·H.
We will use these inclusions freely.
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We claim that

(8.1) (H/x)/y = H/(yx).

Let h ∈ H. For one inclusion, we need to show that ((h/x)/y)·yx ∈ H. Now, ((h/x)/y)·yx =
((h/x)/y)y · xb((h/x)/y, y, x) ∈ ((h/x)/y)y · xH = (h/x) · xH ⊆ (h/x · x)H = hH = H.
For the other inclusion, we need to show that (h/(yx))y · x ∈ H. Now, (h/(yx))y · x =
a(h/(yx), y, x)(h/(yx)) · yx ∈ (H · h/(yx)) · yx ⊆ H((h/(yx)) · yx) = Hh = H. We will use
(8.1) freely.

Let X = {H/x; x ∈ Q}. For x ∈ Q define αx ∈ Sym(X) by

αx(H/y) = (H/y)/x = H/(xy).

If H/y = H/z then (H/y)/x = (H/z)/x, so αx is a well-defined mapping into X. If
(H/y)/x = (H/z)/x then H/y = H/z, so αx is one-to-one. Finally, for any y ∈ Q we have
αx(H/(x\y)) = H/(x · x\y) = H/y, so αx is onto X.

Note that y · zx ∈ yz · xH ⊆ (yz · x)H, so there is h ∈ H such that y · zx = (yz · x)h.
Consequently, H/(y · zx) = H/((yz · x)h) = (H/h)/(yz · x) = H/(yz · x). Define

α : Q→ Sym(X), x 7→ αx.

Then αyz(H/x) = H/(yz · x) = H/(y · zx) = (H/(zx))/y = ((H/x)/z)/y = αyαz(H/x), so
α is a homomorphism into a group. Let K = ker(α). Then Q/K ∼= Img(α) is a group,
and so H ⊆ K by Lemma 6.2. Given x ∈ K, we have (H/y)/x = H/y for every y ∈ Q,
in particular, with y = 1 we get H/x = H, so x ∈ H, proving K ⊆ H. This means that
H = K EQ. �

Corollary 8.5. Suppose that Q is a finite loop, or an inverse property loop, or a commutative
loop. Then

A(Q) = 〈a··(x, y, z); x, y, z ∈ Q〉 = 〈b··(x, y, z); x, y, z ∈ Q〉.

Proof. If Q is an inverse property loop, observe that a··(x, y, z)−1 = b··(x−1, y−1, z−1). If Q is
commutative, we have a··(x, y, z) = b··(x, y, z). In either case, we are done by Theorem 8.4.

Now suppose that Q is a finite loop, and let us focus on the associator b = b··. Let
H = 〈b(x, y, z); x, y, z ∈ Q〉. As in the proof of Theorem 8.4, we have x · yH ⊆ xy ·H. Since
the two sets have the same cardinality, we have x · yH = xy · H by finiteness. Using this
inclusion with h ∈ H, we have ((h/x)/y) ·yx ∈ ((h/x)/y)y ·xH = (h/x) ·xH ⊆ (h/x ·x)H =
hH = H, so (H/x)/y ⊆ H/(yx), and thus (H/x)/y = H/(yx) by finiteness. Then the last
two paragraphs of the proof of Theorem 8.4 go through word for word. �

Our choice of associators and commutators for Theorem 8.4 is certainly not the only choice;
in the end, Leong used a different associator b.

Problem 8.6. Determine all minimal subsets A of the eight types of associators of Lemma
6.2(i) such that for every loop Q we have A(Q) = 〈a(x, y, z); a ∈ A, x, y, z ∈ Q〉.

Just like in group theory, it is reasonable to consider the smallest normal subloop N such
that Q/N is a commutative loop. Clearly, N = Ng( [x, y]; x, y ∈ Q ). Can we possibly avoid
the normal closure? Let

Comm(Q) = 〈c·(x, y), d·(x, y), c\(x, y), d/(x, y); x, y ∈ Q〉.
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It is easy to check that c\(x, y) = c·(x, x\y) and d/(x, y) = d·(x, y/x), hence, in fact,
Comm(Q) = 〈c·(x, y), d·(x, y); x, y ∈ Q〉. Unfortunately, Comm(Q) is not necessarily nor-
mal in Q, as witnessed by Example 9.5.

Problem 8.7. Is there a loop Q such that 〈a··(x, y, z); x, y, z ∈ Q〉 6= 〈b··(x, y, z); x, y, z ∈
Q〉? Is there a loop Q such that 〈c·(x, y); x, y ∈ Q〉 6= 〈d·(x, y); x, y ∈ Q〉?

9. Examples and counterexamples

All examples in this section will be based on a general construction, inspired by the
example in [12, Chapter 5, Exercise 10].

Construction 9.1. Let (G,+) be an abelian group and let (G,⊕) be a quasigroup. We
define Q = G[⊕] to be the loop on G× Z2 with multiplication

(x, a)(y, b) =

{
(x+ y, a+ b) if a = 0 or b = 0,
(x⊕ y, 0) otherwise.

Properties. The set H = G × {0} forms a normal subloop isomorphic to (G,+), since it
is the kernel of the projection Q → Z2, (x, a) 7→ a. Hence Q possesses a chain of normal
subloops 0 ≤ H ≤ Q such that each factor is an abelian group. Consequently, Q′ ≤ H and
Q is solvable (in the sense of Bruck).

Notational remarks. For x ∈ Q, we will implicitly assume x = (x0, x1). For brevity, for
a ∈ H and k ∈ N, let ka = (ka0, 0). The division operations with respect to ⊕ will be
denoted by � and �. The identity element (0, 0) of Q will be denoted by 0.

Inner mappings. Since Q′ ⊆ H, to determine congruence solvability and nilpotency we
will need to calculate commutators [A,B]Q for A, B E Q such that A ⊆ H. Hence, we
need to determine the values of inner mappings on the elements of H. For every a, b ∈ H,
x, y ∈ QrH and every z ∈ Q, we get

Tz(a) = a and Uz(a) = −a,
Lb,z(a) = Lz,b(a) = Rb,z(a) = Rz,b(a) = a and Mz,b(a) = Mx,z(a) = −a,
Lx,y(a) = ((x0 ⊕ (y0 + a0))− (x0 ⊕ y0), 0),

Rx,y(a) = (((y0 + a0)⊕ x0)− (y0 ⊕ x0), 0),

Mb,x(a) = ((x0 � b0)− ((x0 − a0) � b0), 0).

It follows from Theorem 2.2 and Proposition 3.4 that

[A,B]Q = Ng( Wu1,u2(a)/Wv1,v2(a); W ∈ {L,R,M}, a ∈ A, ū/v̄ ∈ B )

for every A, B EQ such that A ⊆ H.
Also note that c·(z, a) = 1 and a··(a, b, z) = a··(a, z, b) = b··(a, b, z) = b··(a, z, b) = 1

whenever a, b ∈ H and z ∈ Q.

The next three examples show how to use our theory to efficiently calculate commutators
and derived subloops, and also illustrate the variety of options that Construction 9.1 offers.
Imitating the notation for congruences, set

Q(0) = Q(0) = Q, Q(i+1) = [Q(i), Q]Q, Q(i+1) = [Q(i), Q(i)]Q.

Note that Q(1) = Q(1) = Q′. A loop Q is called centrally nilpotent if Q(n) = 1 for some n,

and it is called congruence solvable if Q(n) = 1 for some n.
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Example 9.2. Let (G,+) be an abelian group. Consider the loop Q = G[−], i.e., x ⊕ y =
x− y, the subtraction in G. In general we obtain a non-commutative non-associative loop.
It is easy to check that x � y = x − y and x � y = x + y. For n ∈ N, let Hn = 2nG × {0},
where mG = {mg; g ∈ G}, and notice that this is a subloop of Q.

Let a, b ∈ H and x, y ∈ QrH. Using the general expressions above, we see that Lx,y(a) =
((x0 − (y0 + a0)) − (x0 − y0), 0) = (−a0, 0) = −a, and thus also L−1

x,y(a) = −a. Similar
computations yield Rx,y(a) = a and Mb,x(a) = a, and the remaining inner mappings are also
identical or inverse mappings on H. Consequently, every subloop of H is normal in Q (in
particular, Hn EQ), and

[A,B]Q = Ng( Lu1,u2(a)/Lv1,v2(a); a ∈ A, ū/v̄ ∈ B )

for every A,B EQ such that A ⊆ H.
Let us calculate the derived subloop of Q = G[−]. Note that a··(x, y, z), b··(x, y, z), and

c·(x, y), evaluated in Q, are expressions with an even number of occurences of x0, y0, z0, each
with a positive or negative sign. For example,

c·((x0, 1), (y0, 1)) = ((y0 � (x0 ⊕ y0))− x0, 0) = ((y0 − (x0 − y0))− x0, 0) = (2y0 − 2x0, 0).

Consequently, the result is always in H1 = 2G × {0}. On the other hand, every element
2a ∈ H1 can be expressed, for example, by 2a = (2a0, 0) = c·((a, 1), (0, 1)). We see that
Q′ = H1.

Now, let us have a look at the commutator. If both A,B ⊆ H, then [A,B]Q ⊆ [H,H]Q.
But [H,H]Q = 0: if ui/vi ∈ H, then ui ∈ H iff vi ∈ H, hence either Lu1,u2(a)/Lv1,v2(a) =
a/a = 0, or Lu1,u2(a)/Lv1,v2(a) = (−a)/(−a) = 0. In particular, Q(2) = 0 and Q is congruence
solvable.

On the other hand, [A,Q]Q may not vanish, since L(0,1),(0,1)(a)/L(0,0),(0,0)(a) = (−a)/a =
−2a, hence [A,Q]Q = 2A. Consequently, we have Q(n) = Hn for every n ≥ 1. If |G| is odd,
we have Q(n) = H for every n, and Q is not centrally nilpotent. If G = Z, for instance, we
obtain a strictly decreasing chain with trivial intersection, hence Q is not centrally nilpotent
(this situation is sometimes refered to as transfinite nilpotency). If |G| is a power of two,
then 2nG = 0 for some n, and thus Q is centrally nilpotent.

Example 9.2 also shows an obstacle to removing quotients from the generating set of the
commutator, as described in Corollary 7.5. Let A,B E G[⊕] be such that A ⊆ H. On one
hand, all associators and commutators with at least one parameter from A and one parameter
from B vanish. On the other hand, associators with one parameter in A (or B) and other
parameters arbitrary may not belong to [A,B]Q. For instance, in G[−] with A = B = H,
we have [H,H]Q = 0, but b··(a, x, y) = a\Ly,x(a) = −2a, for every a ∈ H and x, y ∈ QrH.

The next two examples show a particular choice of G and⊕ such that the subloop H, which
itself is an abelian group, is not abelian in G[⊕]. In Example 9.3, G[⊕] is not congruence
solvable. This is a rather typical situation, resulting from most combinations of G and ⊕.
In Example 9.4, G[⊕] is congruence solvable.
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Example 9.3. Consider the loop Q = Z4[⊕], where the operation ⊕ is given by the following
multiplication table:

0 1 2 3
0 0 1 2 3
1 1 3 0 2
2 2 0 3 1
3 3 2 1 0

Notice that ({0, 1, 2, 3},⊕) ∼= Z4. We will show that Q′ = H and that Q(2) = Q(2) = H,
hence Q is not congruence solvable.

Observe that L(0,1),(0,1)((1, 0)) = (1, 0) and L(1,1),(0,1)((1, 0)) = (2, 0). It follows that
b··((1, 0), (0, 1), (1, 1)) = (1, 0)\L(1,1),(0,1)((1, 0)) = (1, 0) ∈ Q′, and thus H = 〈(1, 0)〉 ⊆
Q′ ⊆ H, hence Q′ = H. Furthermore, L(1,1),(0,1)((1, 0))/L(0,1),(0,1)((1, 0)) = (1, 0) ∈ [H,H]Q,
hence H = 〈(1, 0)〉 ⊆ [H,H]Q ⊆ [H,Q]Q ⊆ H, so [H,H]Q = [H,Q]Q = H.

According to GAP, the total multiplication group TMlt(Q) is solvable. Hence, Vesanen’s
theorem [38] does not strengthen to congruence solvability.

Example 9.4. Consider the loop Q = Z4[⊕], where the operation ⊕ is given by the following
multiplication table:

0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Notice that ({0, 1, 2, 3},⊕) ∼= Z2 × Z2 and that

r ⊕ s =

{
r + s+ 2 if r, s ∈ {1, 3},
r + s otherwise.

Consequently, we can write r ⊕ s = r + s+ ε where ε ∈ {0, 2}, where ε = 2 iff r, s ∈ {1, 3},
and similarly for the division operations � , �. Let K = {0, 2} × {0}. We will show that
Q′ = [H,H]Q = K, and that Q(2) = Q(2) = 0. Hence, Q is centrally nilpotent, although H
is not abelian in Q.
Q is finite and commutative, so we can focus on Lx,y. For a ∈ H and x, y ∈ Q r H, we

have

Lx,y(a) = ((x0⊕(y0 +a))−(x0⊕y0), 0) = (x+(y+a)+ε1−(x+y+ε2), 0) = (ε1−ε2, 0) ∈ K.
We immediately see that K is normal in Q and that [H,H]Q ⊆ K. Since

L(1,1),(0,1)(1, 0)/L(0,1),(0,1)(1, 0) = (3, 0)/(1, 0) = (2, 0) ∈ [H,H]Q,

we obtain [H,H]Q = K. Furthermore, if a ∈ K, then ε1 = ε2, and thus [K,K]Q ⊆ [K,Q]Q =
0. To show that Q′ = K, calculate the associator a··(x, y, z) = ((xy · z)/(yz))/x = ((((x0 +
y0 + ε1) + z0 + ε2) − (y0 + z0 + ε3) + ε4) − x + ε5, 0) = (ε1 + ε2 − ε3 + ε4 + ε5, 0) ∈ K, so
Q′ ⊆ K. Since Q is not associative, we get Q′ = K.

The distinction between “abelianess” and “abelianess in Q” persists even in varieties of
loops that are very close to groups. For instance, let Q be the left Bol loop of order 8 from
Example 3.6 (catalog number LeftBolLoop(8,1) in the LOOPS package for GAP), and let
N = {1, 2, 3, 4}. Then N EQ, N is an abelian group, but [N,N ]Q = Z(Q) = {1, 2}, so N is
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not abelian in Q. Nevertheless, Q is congruence solvable. A similar situation occurs in the
Moufang loop of order 16 with catalog number MoufangLoop(16,4) for one of its normal
subloops isomorphic to Z2 × Z4.

Finally, we present an example of a loop where Comm(Q) is not normal.

Example 9.5. Consider the loop Q = Z4[⊕], where the operation ⊕ is given by

⊕ 0 1 2 3
0 0 2 3 1
1 1 0 2 3
2 3 1 0 2
3 2 3 1 0

One can check that Comm(Q) = {(0, 0), (2, 0)}, which is not a normal subloop of Q.

10. Center and nilpotency, abelianess and solvability

The purpose of this section is to supply details for the exposition in Section 2.
Recall the definitions of the commutator [α, β], the center ζ(A) and abelianess in A. First,

we show how [α, 1A] relates to the center, and how [α, α] relates to abelianess.
Let α be a congruence of an algebra A. By definition, [α, 1A] is the smallest congruence δ

such that C(α, 1A; δ) in A, or equivalently, C(α/δ, 1A/δ; 0A/δ) in A/δ. The definition of the
center says C(ξ, 1B; 0B) in B iff ξ ≤ ζ(B). Applied to B = A/δ, we see that [α, 1A] is the
smallest δ such that α/δ ≤ ζ(A/δ).

By definition, [α, α] is the smallest congruence δ such that C(α, α; δ) in A, or equivalently,
C(α/δ, α/δ; 0A/δ) in A/δ. The latter says that the congruence α/δ is abelian in A/δ.

10.1. In loops. Recall that the center Z(Q) of a loop Q is defined in loop theory as

Z(Q) = {a ∈ Q; ax=xa, a(xy)=(ax)y, x(ay)=(xa)y, x(ya)=(xy)a for every x, y ∈ Q}.
Theorem 10.1 shows that Z(Q) and ζ(Q) define the same concept. For groups, the proof
can be found in [6, Section II.13], for instance, and it easily extends to loops. For the sake
of completeness (and because we are not aware of a proof in the literature), we present a
complete proof here. It is instructive to read the proof to become accustomed to the universal
algebraic approach to loop theory.

Theorem 10.1. If Q is a loop, then Z(Q) = Nζ(Q).

Proof. We will prove two inclusions: γZ(Q) ⊆ ζ(Q) and Nζ(Q) ⊆ Z(Q).
Let a γZ(Q) b. We want to show a ζ(Q) b. Since ζ(Q) is the largest congruence such that

C(ζ(Q), 1Q; 0Q), it is sufficient to show that (the congruence generated by) the pair (a, b)
centralizes 1Q over 0Q. Let t be a term and u1, . . . , un, v1, . . . , vn two tuples over Q. Assuming
t(a, u1, . . . , un) = t(a, v1, . . . , vn), we get

t(b, u1, . . . , un) = t(b/a · a, u1, . . . , un) = b/a · t(a, u1, . . . , un)

= b/a · t(a, v1, . . . , vn) = t(b/a · a, v1, . . . , vn) = t(b, v1, . . . , vn),

where the second and the fourth equalities follow form the fact that b/a ∈ Z(Q), i.e., b/a
commutes and associates with everything.

Conversely, let a ∈ Nζ(Q), i.e., a ζ(Q) 1. We want to show that a ∈ Z(Q). It actually
suffices to show that ab = ba, a(bc) = (ab)c and b(ca) = (bc)a for every b, c ∈ Q, since
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then b(ac) = b(ca) = (bc)a = a(bc) = (ab)c = (ba)c, too. We will use C(ζ(Q), 1Q; 0Q) freely,
noting that the equivalence modulo 0Q is merely the equality.

For ab = ba, consider the term t(x, y, z) = x(yz). Then t(1, 1, b) = b = t(b, 1, 1), and upon
replacing the middle argument 1 with a, we conclude that ab = t(1, a, b) = t(b, a, 1) = ba.
For a(bc) = (ab)c, consider the auxiliary term m(x, y, z) = x(y\z). (This is in fact a Mal’tsev
term for loops.) Then m(1, a, a)m(b, 1, c) = bc = m(1, 1, b)m(c, c, c), and replacing the first
argument 1 with a yields a(bc) = m(a, a, a)m(b, 1, c) = m(a, 1, b)m(c, c, c) = (ab)c. For
b(ca) = (bc)a, we proceed dually and consider the auxiliary term m′(x, y, z) = (x/y)z. Then
m′(b, b, b)m′(c, 1, 1) = bc = m′(b, 1, c)m′(a, a, 1), and replacing the last argument 1 with a
yields b(ca) = m′(b, b, b)m′(c, 1, a) = m′(b, 1, c)m′(a, a, a) = (bc)a. �

Corollary 10.2. A loop is abelian if and only if it is a commutative group.

Proof. ζ(Q) = 1Q iff Z(Q) = Q iff Q is commutative and associative. �

Using the observations at the beginning of the section, this finishes the proof that universal
algebraic nilpotency is the same notion as central nilpotency.

We want to point out that abelian groups and nilpotent loops are important classes of
algebras in the abstract structure theory of universal algebra. Let A be an algebra with a
Mal’tsev term m. Choose an arbitrary element e ∈ A and define a + b = m(a, e, b). The
fundamental theorem of abelian algebras [12, Section 5] says that if A is abelian, then (A,+)
is an abelian group with unit e (it actually states a stronger property: A is polynomially
equivalent to a module, whose group reduct is (A,+)). According to [12, Section 7], if A
is nilpotent, then (A,+) is a nilpotent loop with unit e (no polynomial equivalence in this
case).

10.2. In groups. It is instructive to look at how the commutator theory from universal
algebra applies to groups. Unlike in loops, the standard commutator in groups is in ac-
cordance with the commutator theory. In fact, the situation in groups (and also in rings)
gave rise to the general commutator theory. Nevertheless, an elementary proof that the two
commutators agree in groups is not obvious, and the reader might want to look at one, for
instance, in [28].

In groups, unlike in loops, if A is a normal subgroup of G and A itself is an abelian
group, then A is abelian in G. It is interesting to see why. The following chain of equivalent
conditions settles it: A is abelian in G, [γA, γA] = 0G (by definition), [A,A]G = 1 (because
the two commutators agree), A is a commutative group (by definition of the commutator
in groups), Z(A) = A (by definition of the center in groups), ζ(A) = 1A (because the two
centers agree), [1A, 1A] = 0A, A is abelian (by definition). This explains why it is safe to
call commutative groups by the traditional name abelian groups, and why it is not necessary
to distinguish between normal subgroups that are abelian and normal subgroups that are
abelian in the enveloping group.

Problem 10.3. Investigate the commutator in varieties of loops close to groups, e.g., Mo-
ufang loops, Bruck loops or automorphic loops. Describe what does it mean for a subloop of
Q to be abelian in Q. Is congruence solvability equivalent to solvability here?

10.3. Alternative approaches to commutators, nilpotency and solvability. Each of
the following four paragraphs presents an alternative to what we have done here.
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Recent discussions in the universal algebraic community seem to lead to a conclusion
that the notion of nilpotency coming from the Freese-McKenzie commutator theory is too
weak. A new approach, called supernilpotency, based on Bulatov’s higher commutators,
has been promoted recently by Aichinger and Mudrinski [1]. An important property of
supernilpotency, reflecting the situation in finite groups, is the following. A finite algebra
with a Mal’tsev term (a finite loop in particular) is supernilpotent if and only if it is a
direct product of nilpotent algebras of prime power size. Wright [39] proved that a loop Q
satisfies the latter property if and only if Mlt(Q) is nilpotent. A characterization of infinite
supernilpotent loops, and more generally, calculation of higher commutators in the variety
of loops, is an interesting open problem.

Yet another approach to nilpotency has been proposed by Mostovoy [26], using so-called
commutator-associator filtration. The relation between the commutator-associator filtrations
and the universal algebraic approach is not clear.

Solvability in loops has been tackled by Lemieux et al. [23] in connection with the question
whether algebras can express arbitrary Boolean functions. They introduced the notion of
polyabelianess, a property of loops strictly between nilpotency and solvability (in the Bruck
sense), and proved that a finite loop is polyabelian if and only it is not able to express Boolean
functions. It follows easily from the tame congruence theory [20] that, for finite algebras with
a Mal’tsev term (finite loops in particular), solvability in the sense of commutator theory
is equivalent to inability to express Boolean functions in the sense of [23]. Hence, for finite
loops, polyabelianess is the same as congruence solvability. The relation of the two notions
in the infinite case is under investigation.

Finally, let us mention that in category theory, an alternative commutator theory, called
the Huq commutator, has been proposed. For groups, the two commutators agree. For loops,
they do not [19]. Translating the Huq commutator into loop theory might identify important
structural features in loops.
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[8] P. Csörgő, Abelian inner mappings and nilpotency class greater than two, European J. Combin. 28
(2007), no. 3, 858–867.
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in Trans. Amer. Math. Soc.
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