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DISTRIBUTIVITY IN SKEW LATTICES

MICHAEL KINYON, JONATHAN LEECH, AND JOÃO PITA COSTA

Abstract. Distributive skew lattices satisfying x ^ py _ zq ^ x “ px ^ y ^ xq _ px ^ z ^ xq
and its dual are studied, along with the larger class of linearly distributive skew lattices, whose
totally preordered subalgebras are distributive. Linear distributivity is characterized in terms of
the behavior of the natural partial order between comparable D-classes. This leads to a second
characterization in terms of strictly categorical skew lattices. Criteria are given for both types of
skew lattices to be distributive.
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1. Introduction

Recall that a lattice pL;^,_q is distributive if the identity x ^ py _ zq “ px ^ yq _ px ^ zq
holds on L. One of the first results in lattice theory is the equivalence of this identity to its dual,
x_ py ^ zq “ px_ yq ^ px_ zq. Distributive lattices are also characterized as being cancellative in
that x^ y “ x^ z and x_ y “ x _ z jointly imply y “ z. A third characterization is that neither
of the 5-element lattices below can be embedded in the given lattice.
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Distributivity also arises when studying skew lattices, that is, algebras with associative, idempo-
tent binary operations _ and ^ that satisfy the absorption identities:

(1.1) x^ px_ yq “ x “ py _ xq ^ x and x_ px^ yq “ x “ py ^ xq _ x.

Given that ^ and _ are associative and idempotent, (1.1) is equivalent to the dualities:

(1.2) x^ y “ x iff x_ y “ y and x^ y “ y iff x_ y “ x.

For skew lattices, the distributive identities of greatest interest have been the dual pair:

(1.3) x^ py _ zq ^ x “ px^ y ^ xq _ px^ z ^ xq;

(1.4) x_ py ^ zq _ x “ px_ y _ xq ^ px_ z _ xq.
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Indeed, a skew lattice is distributive if it satisfies both. Unlike the case of lattices, (1.3) and (1.4) are
not equivalent. Spinks, however, obtained a computer proof in [27] (humanized later by Cvetko-Vah
in [9]) of their equivalence for skew lattices that are symmetric in that:

(1.5) x^ y “ y ^ x iff x_ y “ y _ x.

(See [9], [26], [27].) Also unlike lattices, distributive skew lattices need not be cancellative in that
they need not satisfy:

(1.6) x_y “ x_z and x^y “ x^z imply y “ z, and x_z “ y_z and x^z “ y^z imply x “ y.

Conversely, cancellative skew lattices need not be distributive, but they are always symmetric,
unlike distributive skew lattices. M3 and N5 are forbidden subalgebras of both types of algebras.
Their absence is equivalent to the weaker condition of being quasi-distributive in that the skew
lattice has a distributive maximal lattice image. (See [10] Theorem 3.2.) Of course, many skew
lattices are both distributive and cancellative. This is true for skew Boolean algebras ([1], [2], [3],
[15], [19], [23], [27], [28]) and skew lattices of idempotents in rings ([6], [7], [11], [12], [13], [17], [22]).
Identities (1.3) and (1.4) also arise in studying broader types of noncommutative lattices. (See [16]
Section 6.)

Identities (1.3) and (1.4) insure that the maps x ÞÑ a^x^a and x ÞÑ a_x_a are homomorphic
retractions of S onto the respective subalgebras tx P S | a ^ x “ x “ x^ a u and tx P S | a _ x “
a “ x _ a u for each element a in the skew lattice S. In this paper we study further effects of
being distributive, as well as connections between distributive skew lattices and other varieties of
algebras. A main concept in our study is linear distributivity which assumes that all subalgebras
that are totally preordered under the natural preorder ľ as defined in (2.6) below, are distributive.
This is unlike the case for lattices where totally ordered sublattices are automatically distributive.
Like quasi-distributivity, linear distributivity, is necessary but not sufficient for a skew lattice to be
distributive.

We begin by reviewing some of the required background for this paper in Section 2. (For more
thorough remarks, see [21] or introductory remarks in [14].) In Section 3 linear distributivity is
introduced with characterizing identities given in Theorem 3.6. In the next section it is studied in
terms of the natural partial order ě defined in (2.11) below, with attention given to the behavior of
ě on a skew chain of comparable D-classes, A ą B ą C. Distributive skew chains are characterized
by the behavior of their midpoint sets given by µpa, cq “ t b P B | a ą b ą c u for any pair a ą c with
a P A and c P C. While these sets often contain many midpoints, (1.3) and (1.4) minimize their
size. The details are given in Section 4, whose main result, Theorem 4.6, characterizes distributive
skew chains (and by extension, linearly distributive skew lattices) not only in terms of midpoints
but also in terms of strictly categorical skew lattices (first studied in [14], Section 4). The latter
generalize both normal skew lattices (where pS,^q is a normal band) first studied in this journal
[18] and their ^ ´ _ duals.

Is linear distributivity in concert with quasi-distributivity enough to guarantee that a skew lattice
is distributive? In general, the answer is no. It is, however, for strictly categorical skew lattices,
which form a significant subclass of linearly distributive skew lattices. (See Theorem 5.1 and the
relevant discussion in Section 4.) If we assume that the skew lattice is symmetric, the answer is yes
(Theorem 5.8). A characterization of those linearly distributive and quasi-distributive skew lattices
that are distributive is given in Theorem 5.6.
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2. Background

Returning first to symmetric skew lattices, they form a variety of skew lattices that is charac-
terized by the following identities:

(2.1) x_ y _ px^ yq “ py ^ xq _ y _ x

(2.2) x^ y ^ px_ yq “ py _ xq ^ y ^ x

given first by Spinks [22]. The identity (2.1) characterizes upper symmetry (x^ y “ y ^ x implies
x_ y “ y _ x for all x, y P S) while the identity (2.2) characterizes lower symmetry (x_ y “ y _ x

implies x^ y “ y ^ x for all x, y P S).
The Greens relations are defined on a skew lattice by

(2.3R) aRb ô pa ^ b “ b and b^ a “ aq ô pa_ b “ a and b _ a “ bq;

(2.3L) aLb ô pa ^ b “ a and b^ a “ bq ô pa _ b “ b and b_ a “ aq;

(2.3D) aDb ô pa^ b^ a “ a and b^ a^ b “ bq ô pa_ b_ a “ a and b_ a_ b “ bq.

All three relations are canonical congruences, with L_R “ L˝R “ R˝L “ D and LXR “ ∆ “
t px, xq | x P S u, the identity equivalence. Their congruence classes are called D-classes, L-classes
or R-classes and are often denoted by Dx, Lx or Lx where x is some class member.

A skew lattice S is rectangular if x ^ y ^ x “ x, or dually y _ x _ y “ y, holds on S. Such a
skew lattice is anti-commutative in that x ^ y “ y ^ x or x _ y “ y _ x imply x “ y. The First
Decomposition Theorem (see [17] Theorem 1.7) states that in any skew lattice S each D-congruence
class is a maximal rectangular subalgebra of S and S{D is the maximal lattice image of S. In
particular, a rectangular skew lattice consists of a single D-class. A skew lattice is right-handed
[respectively left-handed ] if it satisfies the identities

(2.4R) x^ y ^ x “ y ^ x and x_ y _ x “ x_ y

(2.4L) rx^ y ^ x “ x^ y and x_ y _ x “ y _ xs.

Equivalently, x ^ y “ y and x _ y “ x [x ^ y “ x and x _ y “ y] hold in each D-class, thus
reducing D to R [or L]. The Second Decomposition Theorem (see [17] Theorem 1.15) states that
given any skew lattice S, S{R and S{L are its respective maximal left and right-handed images,
with S being isomorphic to the fibered product, S{RˆS{D S{L, of both over their common maximal
lattice image under the map x ÞÑ pRx,Lxq. All this is because every skew lattice is regular in that
for all x, y, z P S and all x1, x2 P Dx the following holds:

(2.5) x_ y _ x1 _ z _ x “ x_ y _ z _ x and x^ y ^ x1 ^ z ^ x “ x^ y ^ z ^ x.

A skew lattice S is distributive (symmetric, cancellative, etc.) if and only if its left and right
factors S{R and S{L are distributive (symmetric, cancellative, etc.). In general, S belongs to a
variety V of skew lattices if and only if both S{R and S{L do. (See also [8] and [21], Section 1).

The natural preorder is defined on a skew lattice by

(2.6) a ľ b ô a_ b_ a “ a or, equivalently, b^ a ^ b “ b.
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Observe that a ľ b in S if and only if Da ě Db in the lattice S{D whereDa and Db are the respective
D-classes of a and b. Useful variants of (2.4R) and (2.4L) for the respective right and left-handed
cases are as follows:

(2.7R) x ľ x1 ñ x^ y ^ x1 “ y ^ x1 and x_ y _ x1 “ x_ y;

(2.7L) x ľ x1 ñ x1 ^ y ^ x “ x1 ^ y and x_ y _ x1 “ y _ x1.

We let a ą b denote a ľ b when aDb does not hold.

Lemma 2.1. For left-handed skew lattices, the following identities hold:

(2.8) x^ py _ xq “ x “ px^ yq _ x.

(2.9) px_ py ^ xqq ^ x “ x_ py ^ xq

(2.10) px_ py ^ xqq ^ y “ y ^ x.

Proof. If S is a left-handed skew lattice, then x^ py_ xq “(2.4L) x^ px_ y_xq “(1.1) x. Similarly,
px^ yq _x “ x. As for (2.9) observe that for all skew lattices, x_ py^ xq _ x “ x, since x ľ y^x.
Thus (2.9) follows from (1.2). (2.10) follows from:

px_ py ^ xqq ^ y “(2.9),(2.4L) px_ py ^ xqq ^ x^ y ^ x

“(2.9) px_ py ^ xqq ^ y ^ x

“(1.1) y ^ x.
�

The natural preorder ľ is refined by the natural partial order which is defined on S by

(2.11) x ě y Ø x^ y “ y ^ x “ y or, equivalently, x_ y “ y _ x “ x.

All preorders and partial orders are assumed to be natural. Of course x ą y means x ě y but
x ‰ y. Given a ľ b, elements ab P Da and ba P Db exist such that a ě ba and ab ě b. To see this
just consider ab “ b_ a_ b and ba “ a ^ b^ a.

3. Linear Distributivity

A skew lattice S is linearly distributive if every subalgebra T that is totally preordered under
ľ is distributive. Since totally preordered skew lattices are trivially symmetric, a skew lattice S

is linearly distributive if and only if each totally preordered subalgebra T of S satisfies (1.3) or,
equivalently, (1.4).

Theorem 3.1. Linearly distributive skew lattices form a variety of skew lattices.

Proof. Consider the terms x, y^x^y and z^y^x^y^z. Clearly x ľ y^x^y ľ z^y^x^y^z

holds for all skew lattices. Conversely given any instance a ľ b ľ c in some skew lattice S, the
assignment x ÞÑ a, y ÞÑ b, z ÞÑ c will return this particular instance. Thus a characterizing set of
identities for the class of all linearly distributive skew lattices is given by taking the basic identity

u^ pv _ wq ^ u “ pu^ v ^ uq _ pu ^ w ^ uq

and forming all the identities possible in x, y, z by making bijective assignments from the variables
tu, v, w u to the terms tx, y ^ x^ y, z ^ y ^ x^ y ^ z u. �

In what follows, the following pair of lemmas will be useful.
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Lemma 3.2. Left-handed skew lattices that satisfy (1.3) are characterized by:

(3.1L) x^ y ^ x “ x^ y and x^ py _ zq “ px^ yq _ px^ zq.

Dually, right-handed skew lattices that satisfy (1.3) are characterized by:

(3.1R) x^ y ^ x “ y ^ x and py _ zq ^ x “ py ^ xq _ pz ^ xq.

Lemma 3.3. In a left-handed totally preordered skew lattice, if a^ pb_ cq ‰ pa^ bq _ pa^ cq, then
a ą b ą c. Thus a left-handed skew lattice S is linearly distributive if and only if

(3.2L) a^ ppb ^ aq _ pc ^ b^ aqq “ pa ^ bq _ pa ^ c^ bq for all a, b, c P S.

Dually a right-handed skew lattice S is linearly distributive if and only if

(3.2R) ppa^ b^ cq _ pa ^ bqq ^ a “ pb^ c ^ aq _ pb ^ aq for all a, b, c P S.

Proof. If say b ľ a, then a ^ pb _ cq “ a and pa ^ bq _ pa ^ cq “ a _ pa ^ cq “ a. If c ľ a, then
a^ pb_ cq “ a again, and pa^ bq _ pa^ cq “ pa^ bq _ a “ pa^ b^ aq _ a “ a. Thus, inequality only
occurs when a ľ b, c. But even here, a ľ c ľ b gives us a^ pb_ cq “ a^ c and pa^ cq ľ pa^ bq so
that pa^ bq _ pa^ cq “ a^ c also. Thus, to completely avoid a^ pb_ cq “ pa^ bq _ pa^ cq we are
only left with a ą b ą c. �

Linear distributivity is also characterized succinctly by either of a dual pair of identities. We
begin with an observation.

Lemma 3.4. Identities (1.3) and (1.4) are respectively equivalent to

(3.3) x^ ppy ^ xq _ pz ^ xqq “ x^ py _ zq ^ x “ ppx^ yq _ px^ zqq ^ x.

(3.4) x_ ppy _ xq ^ pz _ xqq “ x_ py ^ zq _ x “ ppx_ yq ^ px_ zqq _ x.

Proof. Since py ^ xq _ pz ^ xq _ x “(1.1) x, the skew lattice dualities (1.2) give us

(*) ppy ^ xq _ pz ^ xqq ^ x “ py ^ xq _ pz ^ xq.

Thus (1.3) implies,

x^ ppy ^ xq _ pz ^ xqq “ x^ ppy ^ xq _ pz ^ xqq ^ x

“ px^ y ^ xq _ px ^ z ^ xq
“ x^ py _ zq ^ x.

Likewise, (1.3) implies ppx^ yq _ px^ yqq ^ x “ x^ py _ zq ^ x. Conversely, if (3.3) holds, then

x^ py _ zq ^ x “ x^ ppy ^ xq _ pz ^ xqq “(*) x^ ppy ^ xq _ pz ^ xqq ^ x

“ ppx ^ y ^ xq _ px^ z ^ xqq ^ x “(*) px ^ y ^ xq _ px^ z ^ xq.

�

Corollary 3.5. For all skew lattices, (1.3) and (1.4) imply respectively:

(3.5) x^ ppy ^ xq _ pz ^ xqq “ ppx^ yq _ px^ zqq ^ x and

(3.6) x_ ppy _ xq ^ pz _ xqq “ ppx _ yq ^ px_ zqq _ x

Theorem 3.6. For all skew lattices, (3.5) and (3.6) are equivalent with a skew lattice satisfying
either and hence both if and only if it is linearly distributive.
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Proof. We begin with left-handed skew lattices. By Lemma 3.3 we need only consider the case
where a ą b ą c. The identity (3.5) gives us the middle equality in the chain of equalities:

a^ pb _ cq “ a ^ ppb^ aq _ pc ^ aqq “ ppa ^ bq _ pa ^ cqq ^ a “ pa ^ bq _ pa ^ cq.

Thus x ^ py _ zq “ px ^ yq _ px ^ zq holds in all totally preordered contexts in left-handed skew
lattices satisfying (3.5). In such symmetrical contexts, the dual pz^ yq _ x “ pz ^ xq _ py^ xq also
holds making the involved skew lattice linearly distributive. In dual fashion, right-handed skew
lattices satisfying (3.5) are also linearly distributive. Since any skew lattice S is embedded in the
direct product S{R ˆ S{L, every skew lattice satisfying (3.5) is linearly distributive. Conversely
assume that S is linear distributive. First, let S be left-handed. Then

x^ ppy ^ xq _ pz ^ xqq “(2.4L) x^ ppz ^ xq _ py ^ xq _ pz ^ xqq
“ px^ ppz ^ xq _ py ^ xqqq _ px^ pz ^ xqq

“(2.4L) px^ ppy ^ xq _ pz ^ xq _ py ^ xqqq _ px^ pz ^ xqq
“ px^ ppy ^ xq _ pz ^ xqqq _ px^ py ^ xqq _ px^ pz ^ xqq
“ px^ py ^ xqq _ px^ pz ^ xqq

“(2.4L) px^ yq _ px^ zq
“ ppx^ yq _ px^ zqq ^ x.

Here the second and fourth equalities follow from linear distributivity. The fifth equality is again
left-handedness upon observing that x ^ ppy ^ xq _ pz ^ xqq and px ^ py ^ xqq _ px ^ pz ^ xqq are
L-related (look at S{D “ S{L). The final equality follows from the fact that x ě px^yq_px^zq in
the left-handed case. Thus (3.5) holds. Similarly (3.5) holds for linearly distributive, right-handed
skew lattices. Again the embedding S Ñ S{R ˆ S{L guarantees that all linearly distributive skew
lattices satisfy (3.5). Thus linear distributivity is characterized by (3.5). The dual argument gives
a characterization by (3.6). �

Corollary 3.7. For left- and right-handed skew lattices, (3.5) reduces respectively to

(3.5L) x^ ppy ^ xq _ pz ^ xqq “ px ^ yq _ px^ zq and

(3.5R) ppx_ yq ^ px _ zqq _ x “ py ^ xq _ pz ^ xq

4. Midpoints and Distributive Skew Chains

A skew lattice is linearly distributive if and only if each skew chain ofD-classes in it is distributive.
In this section we characterize distributive skew chains in terms of the natural partial order. Given
a skew chain A ą B ą C where A, B and C are D-classes, with a P A, c P C such that a ą c, any
element b P B such that a ą b ą c is called a midpoint in B of a and c. We begin with several
straightforward assertions.

Lemma 4.1. Given a skew chain A ą B ą C, with a ą c for all a P A and c P C:

(i) For all b P B, a ^ pc_ b_ cq ^ a and c_ pa ^ b^ aq _ c are midpoints in B of a and c.
(ii) If b in B is a midpoint of a and c, then both midpoints in (i) reduce to b.
(iii) When A ą B ą C is a distributive skew chain, both midpoints in (i) agree:

(4.1) a ą a ^ pc_ b _ cq ^ a “ c_ pa ^ b^ aq _ c ą c.
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Midpoints provide a key to determining the effects of (1.3) and (1.4) in this context. To proceed
further, we recall several concepts. Given a skew chain A ą B ą C, an A-coset in B is any subset
of B of the form A ^ b ^ A “ t a ^ b ^ a1 | a, a1 P A u for some b in B. Given two A-cosets in B,
they are either identical or else disjoint. Since b P A^ b^A for all b in B, the A-cosets in B form a
partition of B. Dually a B-coset in A is a subset of A of the form B_a_B “ t b_a_b1 | b, b1 P B u
for some a in A. Again, the B-cosets in A form a partition of A. Given a B-coset X Ď A and
an A-coset Y Ď B, a coset bijection ϕ : X Ñ Y is given by ϕpaq “ b if a P X , b P Y and a ą b.
Alternatively, ϕpaq “ a^ b^ a and, dually, ϕ´1pbq “ b_ a _ b for all a P X and all b P Y . Cosets
are rectangular subalgebras in their D-classes and all coset bijections are isomorphisms. Thus all
A-cosets in B and all B-cosets in A have a common size, denoted by ωrA,Bs. If a, a1 P A lie in a
common B-coset, this is denoted by a´B a

1; likewise b´A b
1 if b and b1 lie in a common A-coset in

B. This is illustrated in the partial configuration below where the dashed lines indicate ą between
a’s and b’s while the full lines represent D-related elements.

A :

B :

a1 a2 a3 a4

b1 b2

B B

A

Binary outcomes between elements in A and B are given by, e.g., a ^ b “ ϕpaq ^ b in B and
a _ b “ a _ ϕ´1pbq in A using the relevant coset bijection ϕ : B _ a _ B Ñ A ^ b ^ A. (For more
details see [20] and [21] or remarks in [14].)

Similarly there are A-cosets in C, C-cosets in A, B-cosets in C and C-cosets in B. The C-coset
decomposition of A refines the B-coset decomposition of A; similarly B-cosets in C are refined by
A-cosets in C. Our interest is in the middle class B of the skew chain. Elements b and b1 in B

are AC-connected if a finite sequence b “ b0, b1, b2, . . . , bn “ b1 exists in B such that bi ´A bi`1 or
bi ´C bi`1 for all i ď n´ 1. A maximally AC-connected subset of B is an AC-component of B (or
just component if the context is clear). B is a disjoint union of all its AC-components and every
AC-component in B1 is the disjoint union of all A-cosets in B that are subsets of B1 and the disjoint
union of all C-cosets in B that are subsets of B1, as well as the disjoint union of all the AC-cosets
in B1. AC-connectedness is a congruence relation on B. Its congruence classes, the components,
are thus subalgebras of B. Given a component B1 of B, a sub-skew chain is given by A ą B1 ą C.
Since a ^ pc _ b _ cq ^ a is the same for all b in a common C-coset and c _ pa ^ b ^ aq _ c is the
same for all b in a common A-coset, we can extend Lemma 4.1 as follows:

Lemma 4.2. Given a distributive skew chain A ą B ą C, for any pair a ą c where a P A and
c P C, each AC-component B1 of B contains a unique midpoint b of a and c.

Given cosets X Ď A and Y Ď B as above, a coset bijection ϕ : X Ñ Y can be viewed as a partial
bijection between the involved D-classes, ϕ : A Ñ B. Recall that a skew lattice S is categorical if for
all skew chains A ą B ą C of D-classes in S, nonempty composites ψ ˝ϕ of coset bijections ϕ from
A to B and ψ from B to C are coset bijections from A to C. In this case, adjoining empty partial
bijections to account for empty compositions and identity bijections on D-classes, one obtains a
category with D-classes for objects, coset bijections for morphisms, and the composition of partial
functions for composition (see [14], [24] or [25] for more details). Clearly, a skew chain A ą B ą C

is categorical if and only if A ą B1 ą C is categorical for each component B1. Categorical skew
lattices form a variety (see [20], Theorem 3.16). We also have:
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Theorem 4.3 ([14], Theorem 2.3). A skew lattice S is categorical if and only if for all x, y, z P S.

(4.2) x ě y ľ z implies x^ pz _ y _ zq ^ x “ px^ z ^ xq _ y _ px^ z ^ xq

Thus linearly distributive skew lattices are categorical. The converse, however, does not hold (see
Example 4.8 below). It does hold, however, for strictly categorical skew lattices where, in addition,
for every chain of D-classes A ą B ą C each A-coset in B has nonempty intersection with each
C-coset in B, making of B a single AC-component. Strictly categorical skew lattices form a variety
(see [14], Corollary 4.3). This class includes:

(a) Normal skew lattices characterized by the condition x ^ y ^ z ^ w “ x ^ z ^ y ^ w, or
equivalently, every subset res Ó“ tx P S | e ě x u is a sublattice (see [18]). Skew Boolean
algebras are normal as skew lattices.

(b) Primitive skew lattices consisting of two D-classes, A ą B, and all skew lattices in the
subvariety generated from this class of skew lattices.

Theorem 4.4 ([14], Theorem 4.2). The following conditions on a skew lattice S are equivalent:

(i) S is strictly categorical.
(ii) Given both a ą b ą c and a ą b1 ą c in S with bDb1, b “ b1 follows.
(iii) Given a ą b in S, the subalgebra ra, bs “ tx P S | a ě x ě b u is a sublattice.
(iv) S is categorical and given skew chain A ą B ą C in S, for each coset bijection χ : A Ñ C

unique coset bijections ϕ : A Ñ B and ψ : B Ñ C exist such that χ “ ψ ˝ ϕ.

Returning to distributive skew chains we have the following:

Lemma 4.5. A left-handed, categorical skew chain S is distributive if and only if a ^ pb _ cq “
pa ^ bq _ pa ^ cq for all a ą b ą c such that a ą c, in which case the identity reduces to a ^
pb _ cq “ pa ^ bq _ c. Dually, a right-handed categorical skew chain S is distributive if and only if
pc _ bq ^ a “ pc ^ aq _ pb ^ aq for all a ą b ą c such that a ą c, in which case the identity reduces
to pc_ bq ^ a “ c _ pb ^ aq. (Note that these identities are the left and right-handed cases of (4.1)
above.)

Proof. Given a ą b ą c with respective D-classes A ą B ą C, let c1 “ a ^ c. Then a ą c1 and
pa^ bq _ pa^ cq “ pa^ bq _ c1. Next, since c and c1 lie in the same A-coset in C and S is categorical,
both b _ c and b _ c1 lie in the same A-coset in B so that a ^ pb _ cq “ a ^ pb _ c1q. Hence
a^ pb_ cq “ pa^ bq _ pa^ cq if and only if a^ pb_ c1q “ pa^ bq _ pa^ c1q where a ą b ą c1, a ą c1

with the latter expression reducing to pa ^ bq _ c1 as stated. The lemma follows from Lemma 3.2
and left-right duality. �

Theorem 4.6. Given a skew chain A ą B ą C, the following condition are equivalent:

(i) A ą B ą C is distributive.
(ii) For all a P A, b P B and c P C with a ą c,

a^ pc_ b_ cq ^ a “ c_ pa ^ b^ aq _ c.

(iii) Given a P A and c P C with a ą c, each component B1 of B contains a unique midpoint b
of a and c.

(iv) For each component B1 of B, A ą B1 ą C is strictly categorical.

When these conditions hold, each coset bijection χ : A Ñ C uniquely factors through each
component B1 of B in that unique coset bijections ϕ : A Ñ B1 and ψ : B1 Ñ C exist such that
χ “ ψ ˝ ϕ under the usual composition of partial bijections.
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Proof. (i) clearly implies (ii). Given a ą c in (ii), for each element x in B, both b1 “ a^pc_x_cq^a
and b2 “ c _ pa ^ x ^ aq _ c are midpoints of a and c in B. Replacing x by any element in its
C-coset, does not change the b1-outcome. Likewise, replacing x by any element in its A-coset, does
not change the b2-outcome. Hence (ii) is equivalent to asserting that given a ą c fixed, for all x in
a common AC-component B1 of B, both a^ pc_x_ cq ^a and c_ pa^x^aq _ c produce the same
output b in B1 such that a ą b ą c. Conversely, for any b in B1 such that a ą b ą c we must have
a ^ pc _ b _ cq ^ a “ b “ c _ pa ^ b ^ aq _ c. Thus (ii) and (iii) are equivalent. Their equivalence
with (iv) follows from Theorem 4.4 above. Given (ii) (iv), (iv) forces A ą B ą C to categorical,
since for each component B1 in B, A ą B1 ą C is categorical. Denoting the skew chain by S, (ii)
forces S{R and S{L to be distributive by Lemma 4.5 and thus S Ď S{R ˆ S{L to be distributive.
In the light of Theorem 4.4, the final comment is clear. �

Corollary 4.7. A strictly categorical skew lattice is linearly distributive.

Given a ą c as above, their midpoint b in the component B1 depends on the interplay of the
A-cosets and C-cosets within B1. Indeed, given any a P A, the set of images of a in B1, is the
set a ^ B1 ^ a “ t a ^ b ^ a | b P B1 u “ t b P B1 | a ą b u. This set parameterizes the A-cosets
in B1 since each possesses exactly one b such that a ą b. Likewise, for each c P C the image set
c _ B1 _ c “ t c _ b _ c | b P B1 u “ t b P B1 | b ą c u parameterizes all cosets of C in B1 (see [20],
Section 1). Both images sets are orthogonal in B1 in the following sense: for any a P A, all images
of a in B1 lie in a unique C-coset in B1. Likewise for any c P C, all images of c in B1 lie in a unique
A-coset in B1. Finally, given a ą c with a P A and c P C, their unique midpoint b P B1 lies jointly
in the C-coset in B1 containing all images of a in B1 and in the A-coset in B1 containing all images
of c in B1. (See [14], Theorem 4.1.) Of course, every b in B1 is the midpoint of some pair a ą c.
For a fixed pair a ą c, the set µpa, cq of all midpoints in B is a rectangular subalgebra that forms a
natural set of parameters for the family of all AC-components in B: just let b in µpa, cq correspond
to the component B1 containing b. In the following partition diagram, the A-coset of b contains all
images (‚’s) of c in B1, while the C-coset of b has all images (‹’s) of a in B1. The element b is the
unique image of both a and c.

D-class BAC-coset

. . .

. . .

. . .

. . .
...

...
...

A-coset

C-coset

b‚

‹

‹

‚

Example 4.8. Using Mace4 [5], two minimal 12-element categorical skew chains have been found
that are not linearly distributive, one left-handed and the other its right- handed dual. Their common
Hasse diagram follows where bi ´C dj iff i` j “ 0 (mod 4).
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A

...

B

...

C

a1 a2

c1 c2

b1 b2 b3 b4 d1 d2 d3 d4
A A A A

In both cases, a1 ą bodd, dodd and a2 ą beven, deven, all bi ą c1, all di ą c2, and a1, a2 ą both c1, c2.
(thus both skew chains are categorical since all cosets involving just A and C are trivial). We denote
the left-handed skew lattice thus determined by U2 and its right-handed dual by V2. Both U2 and
V2 are not distributive. Indeed, given the coset structure on B, we get a1 ^ pb2 _c2q “ a1 ^d2 “ d1,
while pa1 ^ b2q _ pa1 ^ c2q “ b1 _ c2 “ d3 ‰ d1 in U2. V2 is handled similarly. Note that in both
U2 and V2, B is an AC- connected, but a1 ą b1, b3 ą c1, and also a2 ą b2, b4 ą c1, etc.

(Strictly) categorical skew lattices were studied in [14]. A number of lovely counting results for
finite strictly categorical skew chains may be found in [24] or [25].

5. From Linear Distributivity to Distributive Skew Lattices

One may ask: Does linearly distributive plus quasi-distributive imply distributive? In general
the answer is no. It is however yes in two special cases. In [18] it was shown that a normal skew
lattice is distributive if and only it is quasi-distributive. This result can be extended to strictly
categorical skew lattices. But first recall from [10] that a skew lattice S is simply cancellative if for
all x, y, z P S,

(5.1) x_ z _ x “ y _ z _ y and x^ z ^ x “ y ^ z ^ y imply x “ y.

Cancellative skew lattices are simply cancellative, and simply cancellative skew lattices in turn are
quasi-distributive since (5.1) rules out M3 and N5 as subalgebras.

Theorem 5.1. Strictly categorical, quasi-distributive skew lattices are both distributive and simply
cancellative. They are cancellative precisely when they are also symmetric.

Proof. In general, a ą a ^ pb _ cq ^ a and a ą pa ^ b ^ aq _ pa ^ c ^ aq both hold. In turn, so do
both a^ c^ b^ a ă a^ pb_ cq ^ a and a^ c^ b^ a ă pa^ b^ aq _ pa^ c^ aq. Indeed, applying
regularity and absorption we have, e.g.,

pa^ c ^ b^ aq ^ ra^ pb _ cq ^ as “(2.5) a^ c^ b^ pb _ cq ^ a

“(1.1) a^ c^ b^ a

and

pa^ c ^ b^ aq ^ rpa^ b ^ aq _ pa ^ c^ aqs “(2.5) a^ c^ a ^ b^ a^ rpa^ b^ aq _ pa ^ c^ aqs
“(1.1) a^ c^ a ^ b^ a “(2.5) a ^ c^ b^ a

In any quasi-distributive skew lattice S, a ^ pb _ cq ^ a D pa ^ b ^ aq _ pa ^ c ^ aq. Thus if S
is quasi-distributive and strictly categorical, Theorem 4.4 implies that (1.3) and dually (1.4) must
hold.
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Let x, y, z P S be such that x_ z_x “ y_ z_ y and x^ z^x “ y^ z^ y. If S{D is distributive,
then x and y share a common image in S{D, placing them in the same D-class in S. But also
x^ z ^ x ď both x, y ď x_ z _ x. If S is strictly categorical, then Theorem 4.4 gives x “ y. �

Corollary 5.2. A strictly categorical skew lattice is distributive if and only if no subalgebra is a
copy of M3 or N5

Given Theorems 4.6 and 5.1 one might expect linearly distributive, quasi-distributive skew lat-
tices to be distributive. Mace4, however, has produced four minimal counterexamples. They turn
out to be Spinks’ minimal 9-element examples of skew lattices for which exactly one of (1.3) or
(1.4) hold. (See [27] and Example 5.4 below.) Since (1.3) and (1.4) are equivalent for symmetric
skew lattices and skew chains are always symmetric, these examples are linearly distributive, so
that appropriate products of them are both linearly distributive and quasi-distributive, but satisfy
neither (1.3) nor (1.4).

Spinks’ examples are necessarily non-symmetric. This leads one to ask: Do linear distributivity
and quasi-distributivity jointly imply distributivity for symmetric skew lattices?

Before showing this to be the case, we first consider the broader problem of deciding which
linearly distributive, quasi-distributive skew lattices are distributive. To see what else is required,
we begin with a property common to all skew lattices.

Given D-classes A and B, their meet classM , and an element m P M , then a^ b^a “ a^ b1 ^a

for all a P A and all b, b1 P Impm | Bq, the set of all images of m in B.

A B

M

a b, b1 P Impm | Bq

m

Indeed if a1 P Impm | Aq so that a1 ^ b “ m “ b^ a1 for all b P Impm | Bq, then regularity implies
a ^ b^ a “ a ^ a1 ^ b ^ a1 ^ a “ a ^m^ a, and this occurs for all b P Impm | Bq. More generally
we have:

The Meet-class Condition (MCC): Given D-classes A and B, their meet-class M , and elements
a, a1 P A and b, b1 P B, then a^ b^ a “ a^ b1 ^ a if b and b1 share a common image in M . Likewise
b ^ a ^ b “ b ^ a1 ^ b if a and a1 share a common image in B. Finally, all four outcomes coincide
when a, a1, b and b1 all share a common image in M .

Dualizing, one has the Join-class Condition (JCC), with all skew lattices having both properties.

Not all skew lattices, however, have their following extensions:

The Extended Meet-class Condition (EMCC). Given D-classes A and B, their meet class M , an
element a in A and elements d and d1 in a D-class D lying above B, then a^ d ^ a “ a ^ d1 ^ a if
d and d1 share a common image in M and a common B-coset in D.

A B

M

D

a

d´B d1 P Impm | Dq

m

Dually, there is the Extended Join-class Condition (EJCC).

An equivalent formulation of the (E)MCC requires a broader way to describe cosets. Given
D-classes A and B, set A^b^A “ t a^b^a1 | a, a1 P A u for any b P B. If A ě B, then A^b^A is
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just a typical A-coset in B. If B ě A, then A^ b^A “ A, the unique A-coset in itself. In general,
setting M “ A ^B, regularity (2.5) and other basic facts imply:

i) Given b ě m where b P B and m P M , A^ b^A “ A^m^A, an A-coset in M ; conversely
every coset A ^m^A of A in M is just A ^ b^A for some b in B.

ii) For all b, b1 in B, if A^ b^A “ A^ b1 ^A, then a^ b^ a “ a^ b1 ^ a for all a in A, with
A^ b ^A being just t a^ b ^ a | a P A u.

Indeed, given b ě m, pick am P A so that am ě m. Then m “ am ^ b so that a ^ b ^ a1 “
a ^ am ^ b ^ a1 “ a ^ m ^ a1 by (2.5). Conversely each m P M factors as some am ^ b; thus
a^m^a1 “ a^am^b^a1 “ a^b^a1 by (2.5) and (i) follows. Note that A^b^A “ t a^b^a | a P A u
since (2.5) gives a^ b ^ a1 “ a^ a1 ^ b^ a^ a1. The remainder of (ii) also follows from (2.5).

The MCC is thus equivalent to: given A, B and M as above, b, b1 ě m for m P M and b, b1 P B
implies A ^ b ^ A “ A ^ b1 ^ A as cosets of A in M . The EMCC is likewise equivalent to: given
also d, d1 ě m for m P M and d ´B d1 P D ě B, A ^ d ^ A “ A ^ d1 ^ A as cosets of A in A ^ D.
Dual remarks apply to the (extended) join-class condition.

Theorem 5.3. A skew lattice S has the EMCC property if and only if it satisfies

(5.3) x^ ppy ^ x^ yq _ z _ y _ z _ py ^ x^ yqq ^ x “ x^ py _ z _ yq ^ x.

S has the EJCC property if and only if it satisfies the dual of (5.3). Skew lattices having the
EMCC property [or the EJMC property] thus form a subvariety. Finally, ^-distributivity, given by
(1.3), implies EMCC, while _-distributivity, given by (1.4), implies EJCC.

Proof. Setting a “ x, m “ y ^ x ^ y, B “ Dy, D “ Dd “ Dd1 where d “ y _ z _ y and
d1 “ py ^ x^ yq _ z _ y _ z _ py ^ x^ yq, the EMCC gives (5.3).

Conversely, given a, m, d and d1 satisfying the requirements of (5.3), first pick b in B so that
m ă b ă d and pick a1 in A so that a1 ^b “ b^a1 “ m. Next let d1 “ b1 _d_b1 for some b1 in B. By
assumption we also have d1 “ m_ b1 _m_ c_m_ b1 _m so that we may assume that m ă b1 ă d1.
Assigning a1 to x, b1 to y and d to z, (5.3) gives a1 ^ d ^ a1 “ a1 ^ pm _ d _ b1 _ d _ mq ^ a1 “
a1 ^ pb1 _ d_ b1q ^ a1 “ a1 ^ d1 ^ a1 from which a^ d^ a “ a^ d1 ^ a follows by the argument above,
and the EMCC is verified. Clearly we have a pair of subvarieties. The implications are clear. �

The left-handed and right-handed versions of (5.3) are respectively:

(5.3L) x^ py _ z _ py ^ xqq “ x^ pz _ yq

(5.3R) ppx^ yq _ z _ yq ^ x “ py _ zq ^ x.

We will soon see (cf. Theorem 5.6 below) that all four special consequences of (1.3) and (1.4) -
quasi-distributivity, linear distributivity, EMCC and EJCC - are also sufficient for a skew lattice to
be distributive. It is fortuitous that the two latter conditions are also consequences of symmetry,
leading to a major result of this paper, Theorem 5.8.

Example 5.4. [27] Consider the following left-handed, 9-element example after Spinks where (1.4)
holds but not (1.3) since:

2 ^ p5 _ 8q ^ 2 “ 2 ^ 4 ^ 2 “ 6 ‰ 5 “ 5 _ 0 “ p2 ^ 5 ^ 2q _ p2 ^ 8 ^ 2q.
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^ 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 2 5 6 5 6 0 0
3 0 3 5 3 3 5 5 7 7
4 0 4 6 4 4 6 6 8 8
5 0 5 5 5 5 5 5 0 0
6 0 6 6 6 6 6 6 0 0
7 0 7 0 7 7 0 0 7 7
8 0 8 0 8 8 0 0 8 8

_ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1 1
2 2 1 2 1 1 2 2 1 1
3 3 1 1 3 4 3 4 3 4
4 4 1 1 3 4 3 4 3 4
5 5 1 2 3 4 5 6 3 4
6 6 1 2 3 4 5 6 3 4
7 7 1 1 3 4 3 4 7 8
8 8 1 1 3 4 3 4 7 8

1

2 3 4

5 6 7 8

0

This example is non-upper symmetric. (Indeed, 5 ^ 8 “ 0 “ 8 ^ 5 but 5 _ 8 “ 4 ‰ 3 “ 8 _ 5.)
Notice that 2 ^ p8 _ 5 _ p8 ^ 2qq “ 2 ^ p3 _ 0q “ 2 ^ 3 “ 5, while 2 ^ p5 _ 8q “ 2 ^ 4 “ 6, so that
(5.3L) fails. As mentioned above, Spinks’ four examples of order 9 are the first cases where (5.3)
or its dual do not hold. Mace 4 has shown that all cases of order 10 - 13 where (5.3) or its dual do
not hold contain a copy of a Spinks example. The first cases where (5.3) or its dual do not hold,
but contain no copy of a Spinks example occur with order 14.

Proceeding on to Theorem 5.6, we first further characterize quasi-distributivity in the left-handed
case.

Lemma 5.5. A left-handed skew lattice is quasi-distributive if and only if for all x, y, z P S:

(5.4) x^ ppy ^ xq _ zq “ x^ py _ zq

Proof. (ð) Clearly, neither M3 nor N5 satisfy (5.4).
(ñ) If a skew lattice S is left-handed, then y _ z ě py ^ xq _ z for all y, z P S. Indeed,taking

joins of both sides both ways gives

y _ z _ py ^ xq _ z “(2.4L) y _ py ^ xq _ z “(1.1) y _ z and
py ^ xq _ z _ y _ z “(2.4L) py ^ x^ yq _ y _ z “(1.1) y _ z.

But quasi-distributivity implies both sides of (5.4) are D-related and in fact, L-related. Thus,
we have px ^ py _ zqq ^ px ^ ppy ^ xq _ zqq “ x ^ py _ zq. But y _ z ě py ^ xq _ z gives
px^ py _ zqq ^ px^ ppy ^ xq _ zqq “(2.4L) x^ py_ zq ^ ppy^ xq _ zq “(1.1) x^ ppy ^ xq _ zq so that
(5.4) follows. �

Theorem 5.6. A quasi-distributive, linearly distributive skew lattice satisfies (1.3) if and only if
it satisfies (5.3). Likewise, a quasi-distributive, linearly distributive skew lattice satisfies (1.4) if
and only if it satisfies the dual of (5.3). Finally, a skew lattice is distributive if and only if it is
quasi-distributive, linearly distributive and satisfies both (5.3) and its dual.

Proof. Clearly, (1.3) ñ (5.3). To show (5.3) ñ (1.3) under the given conditions, we first consider
the left-handed case:
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px ^ yq _ px^ zq “(3.5L) x^ rpy ^ xq _ pz ^ xqs
“(5.4) x^ ry _ pz ^ xqs
“(2.4L) x^ rpz ^ xq _ y _ pz ^ xqs
“(5.4) x^ rz _ y _ pz ^ xqs
“(5.3L) x^ py _ zq

The right-handed case is similar and the general case now follows as usual. The second assertion
now follows by _ ´ ^ duality and the final assertion from the first two. �

Recall that a skew diamond is a skew lattice with four D-classes, two being incomparable, say A
and B, and the remaining two being their join and meet D-classes, say J and M . Skew diamonds
trivially satisfy the EMCC. Here the nontrivial situations are A ą M ă B ă J where A^j^A “ A

for all j P J , and B ą M ă A ă J where similar remarks hold. Dually they satisfy the EJCC.
Since skew diamonds are clearly quasi-distributive, we have: a skew diamond is distributive if and
only if it is linearly distributive. Skew diamonds play an important role in the basic theory of skew
lattices. See, e.g., their role in [10] where a number of forbidden algebras are skew diamonds.

Under what reasonable conditions must either (5.3) or its dual hold? They must hold for strictly
categorical skew lattices since both sides of (5.3) are ă x but ą x^ y ^ x. We also have:

Proposition 5.7. An upper symmetric skew lattice satisfies (5.3).

Proof. We organize the proof for the case when S is left-handed in the following steps:
1) Upper symmetry in the left-handed case is characterized by

(2.1L) x_ y _ px^ yq “ y _ x.

Since x, y ľ y ^ x, py ^ xq _ y _ x reduces to y _ x in the left-handed case.
2) For all x, y, z P S, x_ y ě px_ py ^ zqq ^ pz _ py ^ zqq.
Set u “ px_ py ^ zqq ^ pz _ py ^ zqq. Since u^ y “(2.10) px_ py ^ zqq ^ py ^ zq “(1.1) y ^ z ď y,

we get

x_ y _ u “(2.1L) x_ u_ y _ pu^ yq “ x_ u_ y _ py ^ zq “(1.1) x_ u_ y

“(2.5) x_ y _ u_ y “(2.8) x_ py ^ zq _ y _ u_ y

“pLHq x_ py ^ zq _ u_ y “ x_ py ^ zq _ ppx_ py ^ zqq ^ pz _ py ^ zqsq _ y

“(1.1) x_ py ^ zq _ y “(2.8) x_ y,

which is what needed to be shown in the left-handed case.
3) For all x, y, z P S, z ^ rx_ py ^ zqs “ z ^ px_ yq ^ px_ py ^ zqq.

z ^ px_ py ^ zqq “(1.1) z ^ pz _ py ^ zqq ^ px_ py ^ zqq
“(2.4L) z ^ pz _ py ^ zqq ^ u

“p2q z ^ pz _ py ^ zqq ^ px_ yq ^ u

“(2.4L) z ^ pz _ py ^ zqq ^ px_ yq ^ px_ py ^ zqq
“(1.1) z ^ px_ yq ^ px_ py ^ zqq.

4) For all x, y, z P S, z ^ px_ py ^ x^ zqq “ z ^ px_ py ^ xqq. Replacing y by y ^ x in (3) gives

z ^ px _ py ^ x^ zqq “ z ^ px_ py ^ xqq ^ px_ py ^ x^ zqq
“(2.9) z ^ px_ py ^ xqq ^ x^ px_ py ^ x^ zqq
“(1.1) z ^ px_ py ^ xqq ^ x

“(2.9) z ^ px_ py ^ xqq.
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5) Concluding the left-handed case. Replace x with y _ x in (4). On the left side we get

z ^ py _ x_ py ^ py _ xq ^ zqq “(1.1) z ^ py _ x_ py ^ zqq.

On the right side,

z ^ py _ x_ py ^ py _ xqqq “(1.1) z ^ py _ x_ yq “(2.4L) z ^ px_ yq.

Therefore z ^ px_ yq “ z ^ py _ x_ py ^ zqq which is (5.3L) with the variables permuted.
The verification of the right-handed case is similar, and the general case follows. �

These results and their duals lead to:

Theorem 5.8. (i) An upper symmetric skew lattice is ^-distributive if and only if it is both
quasi-distributive and linearly distributive;

(ii) A lower symmetric skew lattice is _-distributive if and only if it is both quasi-distributive
and linearly distributive.

(iii) Thus a symmetric skew lattice is distributive if and only if it is both quasi-distributive and
linearly distributive.

Prover9 has also provided proofs of the following results, which we just state.

Theorem 5.9. A simply cancellative skew lattice is distributive if and only if it is linearly distribu-
tive.

Theorem 5.10. A quasi-distributive skew lattice S is distributive if it is biconditionally distributive:
(1.3) holds for any particular x, y, z P S iff (1.4) does.

A skew lattice S is relatively distributive if every quasi-distributive subalgebra of S is distributive.
Such a skew lattice is linearly distributive. More general statements of Theorems 5.8 (iii) and 5.10
are as follows:

Corollary 5.11. Biconditionally distributive skew lattices as well as symmetric, linearly distributive
skew lattices are relatively distributive.

Examples 5.4 show that relative distributivity is properly stronger than linear distributivity.
The modular lattice M3 shows that biconditional distributivity is properly stronger than relative
distributivity. Indeed any lattice is relatively distributive, but elements x, y and z are easily found
in M3 satisfying exactly one of (1.3) or (1.4). It can be shown that biconditionally distributive
skew lattices form a variety. It can also be shown, using Prover9, that a skew lattice is relatively
distributive if and only if it is linearly distributive and possesses both the EMCC and EJCC
properties. Thus relatively distributive skew lattices also form a variety.
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