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Associated to each ultrafilterU onω and each mapp : ω → ω is a Dedekind cut in the ultrapowerωω/p(U).
Blass has characterized, under CH, the cuts obtainable whenU is taken to be either a p-point ultrafilter, a
weakly-Ramsey ultrafilter or a Ramsey ultrafilter.

Dobrinen and Todorcevic have introduced the topological Ramsey spaceR1. Associated to the spaceR1 is a
notion of Ramsey ultrafilter forR1 generalizing the familiar notion of Ramsey ultrafilter onω. We characterize,
under CH, the cuts obtainable whenU is taken to be a Ramsey forR1 ultrafilter andp is taken to be any map. In
particular, we show that the only cut obtainable is the standard cut, whose lower half consists of the collection
of equivalence classes of constants maps.

Forcing withR1 using almost-reduction adjoins an ultrafilter which is Ramsey forR1. For such ultrafilters
U1, Dobrinen and Todorcevic have shown that the Rudin-Keislertypes of the p-points within the Tukey type of
U1 consists of a strictly increasing chain of rapid p-points oforder typeω. We show that for any Rudin-Keisler
mapping between any two p-points within the Tukey type ofU1 the only cut obtainable is the standard cut.
These results imply existence theorems for special kinds ofultrafilters.
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1 Introduction

In this section, we define the notion of a Rudin-Keisler mapping and associate to each mapping a Dedekind cut.
Then we state some results of Blass in [1] characterizing, under CH, the types of cuts obtainable for Rudin-Keisler
mappings from a p-point or a weakly-Ramsey ultrafilter onω. In last part of this section, we provide an outline
of the rest of the article and highlight its main results.

We remind the reader of the Rudin-Keisler reducibility relation. If U is an ultrafilter on the base setX andV
is an ultrafilter on the base setY , then we say thatV is Rudin-Keisler reducible toU and writeV ≤RK U if there
there exists a functionf : X → Y such thatV = f(U), where

f(U) = 〈{f(Z) : Z ∈ U}〉 . (1)

A Rudin-Keisler mapping fromU to V is a functionf : X → Y such thatV = f(U).
Associated to each ultrafilterU onX is an equivalence relation onωX . If f andg are two functions fromX to

ω then we say thatf andg are equivalent modU if there existsZ ∈ U such thatf ↾ Z = g ↾ Z. Theultrapower
ωX/U is the collection of all equivalence classes with respect tothis equivalence. All operations and relations
defined onω have natural extensions making the ultrapower an elementary extension of the standard model ofω.
In particular,ωX/U forms a linearly ordered set. ( In this case,[f ] ≤ [g] if and only if {x ∈ X : f(x) ≤ g(x)} ∈
U .)

Recall that, aDedekind cut of a linearly ordered setis a partition(S,L) of the linear order such that no element
of L precedes any element ofS. We follow the work of Blass in [1] and associate to each Rudin-Keisler mapping
from U on X to V on Y a Dedekind cut in the ultrapowerωY /V . A cut (S,L) in the ultrapower is said to be
proper if L is nonempty andS contains the equivalence class of each constant map. The cutgiven by takingS to
be the set of equivalence classes of constant maps is calledthe standard cut.
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2 T. Trujillo: Dedekind Cuts

Definition 1.1 ( [1]) Let U be an ultrafilter on the base setX andp : X → Y . For anyA ⊆ X , we definethe
cardinality function ofA relative top by

CA(y) = |A ∩ p−1{y}| for y ∈ Y. (2)

The set of all equivalence classes of cardinality functionsof sets inU , and all larger elements ofωX/p(U),
constitute the upper partL of a cut(S,L) of ωX/p(U), which we callthe cut associated top andU . (If CA(n)
is infinite for somey thenCA 6∈ ωY and has no equivalence class, so it makes no contribution toL; it is entirely
possible forL to be empty.)

The cut associated top andU is proper if and only ifp is finite-to-one but not one-to-one on any set inU .
Additionally, the existence of a proper cut inωX/U implies thatU is non-principal. The next three theorems are
due to Blass and appear as Theorems 1, 2 and 4 in [1]. The first theorem shows that certain Dedekind cuts are
not obtainable from Rudin-Keisler mappings. In the remaining theorems of this section,(S,L) is assumed to be
a proper cut.

Theorem 1.2( [1]) (S,L) is the cut associated to some map of some ultrafilter toU if and only ifS is closed
under addition.

Before stating the next two theorems we remind the reader of the definitions of some special types of ultrafilters
onω.

Definition 1.3 LetU be an ultrafilter onω.

1. U is ap-point ultrafilter, if for each sequenceA0 ⊇ A1 ⊇ A2 ⊇ · · · of members ofU there existsA ∈ U
such that for eachi < ω, A ⊆∗ Ai. (Here⊆∗ denotes the almost-inclusion relation.)

2. U is aweakly-Ramsey ultrafilter, if for each partition of the two-element subsets ofω into three parts there
exists an element ofU all of whose two-element subsets lie in two parts of the partition.

3. U is aRamsey ultrafilter, if for each partition of the two-element subsets ofω into two parts there exists an
element ofU all of whose two-element subsets lie in exactly one part of the partition.

Remark 1.4 It clear that every Ramsey ultrafilter is weakly-Ramsey. In Theorem 5 of [1], Blass has shown
that every weakly-Ramsey ultrafilter is a p-point.

Theorem 1.5( [1]) Assume CH.(S,L) is the cut associated to some map of some p-point ultrafilter to U if
and only ifU is a p-point,S is closed under addition, and every countable subset ofL has a lower bound inL.

Theorem 1.6( [1]) Assume CH.(S,L) is the cut associated to some map of some weakly Ramsey ultrafilter
to U if and only ifU is Ramsey,S is closed under exponentiation, and every countable subsetof L has a lower
bound inL.

Blass has remarked in [1] that many of the ultrafilter-theoretic concepts involved in the previous theorems
have natural model-theoretic interpretations in terms of ultrapowers. Following Blass, we consider models that
are elementary extensions of the standard model whose universe isω and whose relations and functions are all
the relations and functions onω. Suppose thatN is such a model. An elementx ∈ N is said togenerateN over
the submodelM if and only if no proper submodel ofN includesM ∪ {x}.

In [1], Blass notes that, iff : X → Y andU is an ultrafilter onX , then

f∗ : ωY /f(U) → ωX/U (3)

is an elementary embedding. Furthermore,f is an isomorphism of ultrafilters if and only iff∗ is an isomorphism
of models. The image off∗ is cofinal inωY /U if and only if f is finite-to-one on some set ofU . Hence,U is a
p-point (Ramsey ultrafilter) if and only if every nonstandard submodel ofωX/V is cofinal in ( equal to )ωX/U .
An elementx ∈ ωY /f(V) is in the upper half of the cut associated tof andU if and only if f∗(x) is greater than
some generator ofωX/U overf∗(ωY /f(U)).

Remark 1.7 LetU be an ultrafilter on the base setX andp : X → Y . Suppose thatg : W → X is a bijection
andW is an ultrafilter onW such thatg(W) = U . Then the cut associated top ◦ g andW is exactly the cut
associated top andU . Additionally, suppose thath : Y → Z is a bijection. Sinceh∗ is an isomorphism of
models, it follows that if(S,L) is the cut associated toh ◦ p andU then(h∗′′S, h∗′′L) is the cut associated top
andU . In particular, if(S,L) is the standard cut inωω then(h∗′′S, h∗′′L) is the standard cut inωω/p(U).
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The purpose of this paper is to prove analogous results for ultrafilters satisfying similar properties. In Section
2 we introduce the setting for the main results of this article, namely the topological Ramsey spaceR1. In Section
3 we introduce the generalization of the notion Ramsey ultrafilter we study in later sections. In Section4, we
characterize the cuts obtainable, under CH, from the generalization of Ramsey we defined in Section3. The next
theorem which we prove in Section4 is one of the two main results of this manuscript.

Theorem 1.8 Assume CH.(S,L) is the cut associated to some map of some Ramsey forR1 ultrafilter on [T1]
to V if and only ifV is selective and(S,L) is the standard cut inωω/V .

In Section5, we introduce the basic definitions associated with the Tukeytheory of ultrafilters. Applying
theorems of Dobrinen and Todorcevic in [6] about ultrafilters generated from generic subsets of(R1,≤∗) we
prove the second main result of this paper.

Theorem 1.9 SupposeU1 is a Ramsey forR1 ultrafilter onT1 generated by a generic subset of(R1,≤∗). If
(S,L) is the cut associated to some map from some p-point ultrafilter in the Tukey type ofU1 to some ultrafilter
V thenV is a p-point ultrafilter and(S,L) is the standard cut.

In Section6 we show that the main results imply the existence of special ultrafilters. We then conclude with
some questions about the types of cuts obtainable from ultrafilters defined from other similar topological Ramsey
spaces.

The author would like to express his deepest gratitude to Natasha Dobrinen for valuable comments and sug-
gestions that helped make this article and its proofs more readable.

2 The topological Ramsey spaceR1

We begin this section with the definition given by Dobrinen and Todorcevic in [6] of the triple(R1,≤, r). The
construction ofR1 was motivated by the work of Laflamme in [11] which uses forcing to adjoin a weakly-Ramsey
ultrafilter satisfying complete combinatorics overHOD(R) (see [11] for a definition of complete combinatorics.)

Definition 2.1 ((R1,≤, r), [6]) For eachi < ω, let

T1(i) = {〈 〉 , 〈i〉 , 〈i, j〉 : i(i+ 1) ≤ 2j < (i+ 1)(i+ 2)} and (4)

T1 =
⋃

i<ω

T1(i). (5)

R1 consists of all subtrees ofT1 which are isomorphic toT1. More precisely,S ⊆ T1 is a member ofR1 if and

Fig. 1 Graph ofT1

only if there exists a strictly increasing sequence(ki)i<ω of natural numbers such that the following conditions
hold:

For eachi < ω, S ∩ T1(ki) is isomorphic toT1(i). (6)

For eachk < ω, S ∩ T1(k) 6= {〈 〉} implies thatk = ki for somei < ω. (7)

Copyright line will be provided by the publisher



4 T. Trujillo: Dedekind Cuts

For each treeS ∈ R1 andi < ω, let S(i) = S ∩ T (ki) andri(S) =
⋃

j<i S(j). LetAR =
⋃

i<ω{ri(S) :

S ∈ R1} and definer : ω ×R1 → AR by lettingr(i, S) = ri(S). For eachi < ω, letR(i) = {S(i) : S ∈ Ri}
andARi = {ri(S) : S ∈ R1}.

ForS, T ∈ R1, S ≤ T if and only if there exists a strictly increasing sequence(ki)i<ω of natural numbers
such that for eachi < ω, S(ki) ⊆ T (i). For S, T ∈ R1, S ≤∗ T if and only there existsi < ω such that
S \ ri(S) ⊆ T . The relation≤∗ is called thealmost-reduction relation onR1.

Notation 2.2 If S ∈ R1 then we let[S] denote the maximal nodes ofS, that is the length two sequences inS.
Similarly, for s ∈ AR andp ∈

⋃

i<ω R1(i) we let [s] and[p] denote the collection of maximal nodes ofs andp
respectively. IfS ∈ R1 andi < ω then we let,R1(i) ↾ S = {p ∈ R1(i) : p ⊆ S} andARi|S = {s ∈ ARi :
s ⊆ S}. For eachs ∈ AR, we letdepthT1

(s) be the least natural numbern such thats ⊆ rn(T1).

Topological Ramsey theory was initiated by Ellentuck in [8]with his proof of an infinite-dimensional analogue
of the Ramsey theorem called the Ellentuck theorem. After similar examples where discovered, the abstract
notion of a topological Ramsey space was introduced in by Carlson and Simpson in [3]. Carlson and Simpson
also introduced a finite set of axioms sufficient for proving an abstract version of the Ellentuck theorem. The
text [16] by Todorcevic is now the standard reference for topological Ramsey spaces and proves the abstract
Ellentuck theorem using four axioms.

Definition 2.3 For eachs ∈ AR andS ∈ R1 we let [s, S] = {T ∈ R1 : (∃n) s = rn(T ) & T ≤ S}. The
Ellentuck topology onR1 is the topology generated by{[s, S] : s ∈ AR & S ∈ R1}. A subsetX of R1 is
Ramseyif for every∅ 6= [s, S], there is aT ∈ [s, S] such that[s, T ] ⊆ X or [s, T ] ∩ X = ∅. A subsetX of R is
Ramsey nullif for every∅ 6= [s, S], there is aT ∈ [s, S] such that[s, S] ∩ X = ∅.

Theorem 2.4(The abstract Ellentuck theorem forR1, [6]) The triple(R1,≤, r) forms atopological Ramsey
space. That is, every subset ofR1 with the Baire property is Ramsey and every meager subset ofR1 is Ramsey
null.

The next theorem, which we use in Section6, can be thought of as a finite version of the Ramsey theorem for
the spaceR1. The result is Theorem 3.5 of Mijares in [12] applied to the topological Ramsey spaceR1.

Theorem 2.5(The finite Ramsey theorem forR1, [12]) Letk, n < ω with k ≤ n be given. Then, there exists
m < ω such that for eachp ∈ R1(m) and each partition ofR1(k) ↾ p into two parts there existsq ∈ R1(n) ↾ p
such thatR1(k) ↾ q lies in exactly one one part of the partition.

Next we define a collection of natural projection maps related to the spaceR1. Dobrinen and Todorcevic in [6]
have used these projections to completely characterize theTukey ordering below weakly-Ramsey ultrafilters
obtained from forcing withR1 using almost-reduction.

Definition 2.6 Eachx ∈ [T1] is a sequence of natural numbers of length two, which we denote by〈x0, x1〉.
Let π : [T1] → ω be the map which sendsx ∈ [T1] to x0. For eachi < j < ω, defineπT (i) : R1(j) → R1(i) to
be the map that removes the right-mostj − i branches of a given element ofR1(j).

3 Selective and Ramsey forR1.

In this section we introduce the generalizations of Ramsey ultrafilter that we study in this manuscript and prove
some theorems needed to for the main results in Sections5 and6. First we remind the reader of the definition of
selective ultrafilter onω.

Definition 3.1 Let U be an ultrafilter onω. U is selective, if for each sequenceA0 ⊇ A1 ⊇ A2 ⊇ · · · of
members ofU there existsA = {a0, a1, . . . } ∈ U enumerated in increasing order such that for eachi < ω,
A \ {a0, . . . , ai−1} ⊆ Ai.

By a result of Kunen in [2], an ultrafilter is Ramsey if and onlyif it is selective. For each topological Ramsey
spaceR, Mijares in [13] has introduced the notions of Ramsey forR and selective forR ultrafilters. IfR is taken
to be the Ellentuck space the notions are equivalent and reduce to Ramsey and selective given above. Below, we
follow the presentation of Ramsey forR1 and selective forR1 given by Dobrinen and Todorcevic in [6].

Definition 3.2 Let U be an ultrafilter on[T1]. U is generated byC ⊆ R1 if and only if {[S] : S ∈ C} is
cofinal in (U ,⊇). An ultrafilter U generated byC ⊆ R1 is selective forR1, if for each decreasing sequence
S0 ≥ S1 ≥ S2 ≥ · · · of members ofC, there is anotherS ∈ C such that for eachi < ω, S \ ri(S) ⊆ Si.
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Theorem 3.3 Suppose thatU is an ultrafilter on the base set[T1] and generated by a subsetC of R1. The
following statements are equivalent:

1. U is selective forR1.

2. U is a p-point andπ(U) is selective.

3. for each decreasing sequenceS0 ≥ S1 ≥ S2 ≥ · · · of members ofC, there is anotherS ∈ C such that for
eachn < ω, S \ rn(S) ⊆ Sdepth

T1
(rn(S)).

P r o o f. First we show that1. ⇒ 2. Suppose thatU is selective forR1. To show thatU is a p-point consider
a sequenceA0 ⊇ A1 ⊇ A2 ⊇ . . . of elements ofU . SinceU is generated byC there exists a sequence
S0 ≥ S1 ≥ S2 ≥ . . . of elements ofC such that for alli < ω, [Si] ⊆ Ai. SinceU is selective forR1 there exists
S ∈ S such that for alli < ω, S \ ri(S) ⊆ Si. As eachri(S) is finite for eachi < ω, [S] ⊆∗ [Si] ⊆ Ai. Hence
U is a p-point ultrafilter on[T1].

To show thatπ(U) is selective consider a sequenceX0 ⊇ X1 ⊇ X2 ⊇ . . . of elements ofπ(U). SinceU is
generated byC there exists a sequenceS0 ≥ S1 ≥ S2 ≥ . . . of elements ofC such that for alli < ω,π′′[Si] ⊆ Xi.
SinceU is selective forR1 there existsS ∈ S such that for alli < ω, S \ ri(S) ⊆ Si. Let {x0, x1, . . . } be
the increasing enumeration ofπ′′[S]. Then for eachi < ω, π′′[S] \ {x0, x1, . . . , xi−1} = p′′([S] \ [ri(S)]) ⊆
π′′[Si] ⊆ Xi. π(U) is selective as{x0, x1, . . . } is in π(U).

Next we show that2. ⇒ 3. Suppose thatU is a p-point andπ(U) is selective. To show thatU satisfies
condition3., consider an arbitrary decreasing sequenceS0 ≥ S1 ≥ S2 ≥ · · · of members ofC. There is an
S ∈ C such that for eachn < ω, [S] ⊆∗ [Sn]. Let (ki)i<ω be the strictly increasing sequence such that for all
i < ω, S(i) ⊆ T1(ki). Define(k′n)n<ω recursively by letting,

{

k′0 = k0,

k′i+1 is the smallestkj > k′i such that{x ∈ [S] : π(x) > kj} ⊆ Xk′

i
.

(8)

Now defineg : ω → ω by letting

g(n) = i if k′i ≤ n < k′i+1. (9)

Note thatg can not be constant modπ(U) asπ(U) is non-principal. Sinceπ(U) is selective, it must be the
case that there is aY ⊆ π′′[S] such thatg is increasing onY ∈ π(U). EnumerateY in increasing order, as
{y0, y1, . . . }. Then either{y0, y2, y4, . . . } or {y1, y3, y5, . . . } is a member ofπ(U). Let Z = {z0, z1, . . . }
denote which ever is inπ(U). By construction, we find that for each pairi < j of natural numbers there exists
k′l+1 < ω such thatzi < k′l+1 < zj .

Sinceπ−1(Z) ∈ U and[S] ∈ U , there is aS′ ∈ C such that[S′] ⊆ π−1(Z) ∩ [S]. Let (k′′i )i<ω be the strictly
increasing sequence such that for alli < ω, S′(i) ⊆ T1(k

′′
i ). Sinceπ′′[S′] ⊆ Z, we find that for eachn < ω,

eachm > n and eachs ∈ [S′(m)], there existsk′l+1 such thatπ(s) = k′′m > k′l+1 > k′′n. By definition of the
sequence(k′i)i<ω , it follows thats ∈ [Sk′

l
]. On the other hand,k′l+1 > k′′n implies thatSk′

l
⊆ Sk′′

n
. Sos ∈ [Sk′′

n
]

andS′ \ rn(S′) ⊆ Sk′′

n
= Sdepth

T1
(rn(S′)). Hence2. ⇒ 3. holds.

Next note that for eachS ∈ R1, depthT1
(rn(S)) ≥ n. Hence3. ⇒ 1. holds trivially.

Definition 3.4 Let U be an ultrafilter on[T1] generated byC ⊆ R1. U is Ramsey forR1, if for every i < ω
and every partition ofARi into two parts there existsS ∈ C such thatARi|S lies in one part of the partition.

Theorem 3.5 Suppose thatU is an ultrafilter on[T1] generated byC ⊆ R1. U is Ramsey forR1 if and only
if U is selective forR1 and for eachn < ω, U|R1(n) = {R1(n) ↾ A : A ∈ C} forms an ultrafilter onR1(n).

P r o o f. (⇒) By a Lemma 3.8 of Mijares in [13], every Ramsey forR1 ultrafilter is selective forR1. One the
other hand, ifU is Ramsey forR1 then for eachn < ω, U|R1(n) = {R1(n) ↾ A : A ∈ C} forms an ultrafilter
onR1(n).

(⇐) SupposeU is selective forR1 and for eachn < ω, U|R1(n) = {R1(n) ↾ S : S ∈ C} forms an ultrafilter
onR1(n). SinceAR1 = R1(0) andU|R1(0) forms an ultrafilter onR1(0), it follows that if i = 0 then every
partition ofAR1

i into two parts there existsS ∈ C such thatARi|S lies in one part of the partition. We proceed
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6 T. Trujillo: Dedekind Cuts

by induction oni to show thatU is Ramsey forR1. The previous remarks show that the base case of the induction
holds.

Let i be a natural number and suppose that every partition ofARi into two parts there existsS ∈ C such that
ARi|S lies in one part of the partition. Let{Π0,Π1} be a partition ofARi+1. We show that there existsS ∈ C
such thatARi+1|S lies in one part of the partition.

For eachs ∈ ARi, letAs = {p ∈ R1(i) : s ∪ p ∈ Π0}. Let

Π′
0 = {s ∈ ARi : As ∈ U|R1(i)} andΠ′

1 = {s ∈ ARi : R1(i) \As ∈ U|R1(i)}.

SinceU|R1(i) forms an ultrafilter onR1(i) it follows that {Π′
0,Π

′
1} is a partition ofARi. By the inductive

hypothesis, there existsS ∈ C andj < 2 such thatR1(i)|S ⊆ Π′
j .

We first consider the case whenj = 0. In particular, for eachs ∈ ARi|S, As ∈ U|R1(i). For eachn < ω,
let Bn =

⋂

depth
T1

(s)≤n As ∈ U|R1. Hence there exists a sequence{Sn : n < ω} of elements ofC such that

S0 ≥ S1 ≥ S2 ≥ . . . and for eachn < ω, R1(i)|Sn ⊆ Bn. By Theorem3.3 there existS ∈ C such that for each
n < ω, S \ rn(S) ⊆ Sdepth

T1
(rn(S)).

Suppose thatt ∈ ARi+1|S. Thenri(t) ∈ ARi|A andt(i) ∈ R1(i). If k = depthS(ri(t)) then t(i) ∈
R1(i)|(S \ rk(S)) ⊆ R1(i)|Sdepth

T1
(rk(S)) ⊆ Ari(t). Hence,ri(t) ∪ t(i) ∈ Π0. So in the case whenj = 0,

ARi+1|S ⊆ Πj . By an identical argument in the case whenj = 1, there existsS ∈ C such thatARi+1|S ⊆ Πj .
By induction we find that for eachi < ω and each partition ofAR1

i into two parts there existsS ∈ C such that
AR1

i |S = {s ∈ AR1
i : s ⊆ S} lies in one part of the partition. In other words,U is a Ramsey forR1 ultrafilter

on [T1].

4 Ramsey forR1 ultrafilters and their Dedekind cuts

In this section, assuming CH, we characterize the types of proper Dedekind cuts that can be obtained from a map
p : [T1] → ω and a Ramsey forR1 ultrafilter. In the following theorems, all cuts are assumedto be proper.

Lemma 4.1 LetU be a Ramsey forR1 ultrafilter on [T1] generated byC ⊆ R1 andp be a map from[T1] to
ω. The cut associated top andU is the standard cut inωω/p(U).

P r o o f. Suppose that(S,L) is the cut associated top andU . Let f : ω → ω be given and suppose thatf is
not constant modp(U). For eachs ∈ AR2 let {s0, s1, s2} be the lexicographically increasing enumeration of
[s]. Let {Π0,Π1,Π2} be the partition ofAR2 given by letting

Π0 = {s ∈ ARn : p(s0) < p(s1) & p(s1) = p(s2)}, (10)

Π1 = {s ∈ ARn : p(s0) < p(s1) & p(s1) 6= p(s2)} and (11)

Π2 = {s ∈ ARn : p(s0) ≥ p(s1)}. (12)

SinceR1 is Ramsey forR1 there existsS′ ∈ C andj < 3 such thatAR2|S′ ⊆ Πj . If j = 2 thenp is bounded
by p(x) modU wherex is the lexicographically least element of[S′]. So if j = 2 thenp is constant modU and
(S,L) is not a proper cut. Ifj = 1 thenp is one-to-one modU , so(S,L) is not a proper cut. Hence, if(S,L) is a
proper cut thenAR2|S′ ⊆ Π0. In particular, ifT ≤ S′ and(ki)i<ω is the increasing enumeration ofπ′′[T ], then
for eachi < ω, C[T ](ki) = |[T ] ∩ p−1{ki}| = i.

For eachn < ω, let

Xn = {x ∈ [S′] : f(p(x)) ≥ n}. (13)

SinceU is an ultrafilter on[T1] we find that for eachn < ω, eitherXn ∈ U or [T1] \ Xn ∈ U . If there exists
n < ω such that[T1] \Xn ∈ U thenf would be bounded byn modp(U). However, this can not happen since
we assumed thatf is not constant modp(U). Hence for eachn < ω, Xn ∈ U .

Note thatX0 ⊇ X1 ⊇ X2 ⊇ . . . is a decreasing sequence of members ofU . SinceU is selective forR1 there
existsS′′ ∈ C such that for eachn < ω, [S′′ \ rn(S′′)] ⊆ Xn. Let {kn : n < ω} be the increasing enumeration
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of p′′[S′′]. SinceAR2|S′′ ⊆ Π0, we find that for eachn < ω and each[S′′] ∩ p−1{kn} = [S′′(n)]. So for each
n < ω, [S′′] ∩ p−1{kn} ⊆ [S′′ \ rn(S′′)] ⊆ Xn. Hence, for eachn < ω and eachx ∈ [S′′] ∩ p−1{kn},

f(kn) = f(p(x)) ≥ n = |[S′′] ∩ p−1(kn)| = C[S′′](kn). (14)

Since{kn : n < ω} = p′′[S′′] ∈ p(U) we find that[f ] ≥ [C[S′′]]. So[f ] ∈ L asS′′ ∈ C. Additionally, note that
the cardinality function of any member ofC is not constant modp(U). Therefore the cut(S,L) is the standard
cut inωω/p(U).

In the next Lemma and Theorem,V is an ultrafilter onω, and(S,L) is a proper cut inωω/V .

Lemma 4.2 Assume CH. IfV is selective and(S,L) is the standard cut inωω/V then there exists a Ramsey
for R1 ultrafilter U such that(S,L) is the cut associated toU andπ.

P r o o f. LetV be selective and(S,L) be the standard cut inωω/V . We will construct a≤∗-decreasing
sequence{Aα ∈ R1 : α < ω1} that generates a Ramsey forR1 ultrafilter U on [T1] such thatπ(U) = V .
Let {Zα : α < ω1} be an enumeration of the elements of{Z : (∃k)Z ⊆ R1(k)}. We impose the following
requirements on the sequence, for eachα < ω1:

EitherZα orR1(k) \ Zα includesR1(k) ↾ Aα+1 (α)

wherek is the natural number such thatZα ⊆ R1(k). SinceR1(0) is in bijective correspondence with[T1] and
{Aα ∈ R1 : α < ω1} is an almost-decreasing sequence the sequence will generate a p-point ultrafilter on[T1].
EachAα we belarge in the sense thatπ′′[Aα] ∈ V ; this suffices to guarantee thatπ(U) = V . By Theorem3.3
this is enough to show thatU is selective forR1. The conditions(α) for α < ω1, guarantee that for eachk < ω,
U|R1(k) is an ultrafilter onR1(k). By Theorem3.5 this is enough to show thatU is a Ramsey forR1 ultrafilter.
By previous lemma this guarantees that the cut associated toU andp in ωω/V is standard.

First letA0 = T1. Suppose thatβ < ω1 and{Aα : α < β} have been defined so thatAα+1 satisfies theαth

condition. Assume that for eachα < β, Aα is large and theseAα’s form a≤∗-decreasing chain. c Consider the
case whenβ is a successor ordinal. Letα be the ordinal such thatβ = α+ 1. Let k be the natural number such
thatZα ⊆ R1(k). Let (km)m<ω be the increasing enumeration ofπ([Aα]) ∈ V . By Theorem2.5 there exists a
subsequence(k′m)m<ω such that for eachm < ω there exists a setA′

m ∈ R1(m) ↾ Aα(k
′
m) such that either(†)

R1(k) ↾ A
′
m ⊆ Z or (‡)R1(k) ↾ A

′
m ⊆ R1(k) \ Z.

SinceV is an ultrafilter there exists a strictly increasing sequence (mi)i<ω such that{k′mi
: i < ω} ∈ V and

either for alli < ω, R1(k) ↾ A
′
mi

⊆ Z or for all i < ω, R1(k) ↾ A
′
mi

⊆ R1(k) \Z. LetB =
⋃

i<ω A′
mi

. So for
eachi < ω,

C[B](k
′
mi

) = |[B] ∩ π−1(k′mi
)|,

= |[A′
mi

]|,

≥ i.

Consequently, the following construction ofC ∈ R1 is well-defined:

C =
⋃

i<ω

πT (i)(A
′
mi

).

By constructionC ≤ Aα and eitherR1(k) ↾ C ⊆ Z or R1(k) ↾ C ⊆ R1(k) \ Z. Note thatC is large since
π′′[C] = {k′mi

: i < ω} ∈ V . LetAβ = C, thenAβ is large satisfies the condition (α).
Next consider the case whenβ is a limit ordinal. Since CH holds the cofinality ofβ is ω. Let {Bn : n < ω}

be a≤∗-cofinal sequence in{Aα : α < β}. So for eachi < ω, there existsHi ∈ V such that for alln ∈ Hi,
i ≤ CBi

(n). Without loss of generality, we may assume thatH0 ⊇ H1 ⊇ H2 ⊇ . . . SinceV is selective there
existH ∈ V , H = {h0, h1, . . . } and for alli < ω, hi+1 ∈ Hhi

. Therefore for alli < ω, hi+1 ≤ CBhi
(hi+1).

Hence for alli < ω, i ≤ CBhi
(hi+1). For eachn < ω, letA′(n) = πT (n)(Bhn

(hn+1)). LetAβ =
⋃

n<ω A′(n),
thenAβ ∈ R1 is large becauseπ′′[Aβ ] = {h1, h2, h3, . . . } ∈ V . Moreover, for eachn < ω, Aβ ≤∗ Bhn

. So
{Aα : α ≤ β} is a≤∗-decreasing sequence of large sets.

This completes the inductive construction of{Aβ : β < ℵ1} and thus the proof of the lemma.

Proof of Theorem1.8. Lemma4.2 and3.3 show that necessity holds and Lemma4.1 shows that sufficiency
holds.
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8 T. Trujillo: Dedekind Cuts

5 The cuts obtained fromπT (i) and Ramsey forR1 ultrafilters

If U1 is a Ramsey forR1 ultrafilter generated by a generic subset of(R1,≤∗) andi < ω, then we letYi+1 denote
the ultrafilterU1|R1(i). In this section, we show that for any Rudin-Keisler mappingbetween any two p-points
within the Tukey type ofU1 the only cut obtainable is the standard cut. Notice that for eachi < j < ω and each
Ramsey forR1 ultrafilterU1,

πT (i)(U1|R1(j)) = U1|R1(i). (15)

Additionally, notice that ifZ ∈ U1|R1(j) then the cardinality function ofZ with respect toπT (i) is defined as

CZ(p) = |Z ∩ π−1
T (i)(p)|, for p ∈ R1(i). (16)

A simple counting argument shows that for eachS ∈ R1, eachn < ω and eachp ∈ R1(i) ↾ S(n),

CR1(j)↾S(p) = |R1(j) ↾ S ∩ π−1
T (i)(p)| ≤

(

n− i

j − i

)

. (17)

Next we outline the basic definitions of the Tukey theory of ultrafilters. The Tukey types of ultrafilters have been
studied by many authors (see [9], [14], [5], [6], [7] and [15]). For a survey of the area see [4] by Dobrinen.

Definition 5.1 Suppose thatU andV are ultrafilters. A functionf fromU toV is Tukeyif every cofinal subset
of (U ,⊇) is mapped byf to a cofinal subset of(V ,⊇). We say thatV is Tukey reducible toU and writeV ≤T U
if there exists a Tukey mapf : U → V . If U ≤T V andV ≤T U then we writeV ≡T U and say thatU andV are
Tukey equivalent.The relation≡T is an equivalence relation and≤T is a partial order on its equivalence classes.
The equivalence class are also calledTukey typesor Tukey degrees.

The Tukey reducibility relation is a generalization of the Rudin-Keisler reducibility relation. Ifh(U) = V
then the map sendingX ∈ U to h′′X ∈ V is Tukey. So ifV ≤RK U , thenV ≤T U . This leads to the following
question: For a given ultrafilterU , what is the structure of the Rudin-Keisler ordering withinthe Tukey type of
U?

Dobrinen and Todorcevic in [6], have given an answer to this question ifU is a Ramsey forR1 ultrafilter
on [T1] generated by a generic subset of(R1,≤∗). Furthermore, Dobrinen and Todorcevic describe the Rudin-
Keisler structure of the p-points within the Tukey type of a Ramsey forR1 ultrafilter generated by a generic
subset of(R1,≤∗). In particular, the Tukey type of such an ultrafilterU1 consists of a strictly increasing chain of
rapid p-points of order typeω: Y1 <RK Y2 <RK . . . whereYi+1 = U1|R1(i) for i < ω. The next proof is the
main result of this section.

Proof of Theorem1.9. Suppose thatU1 is a Ramsey forR1 ultrafilter on[T1] generated by a generic subset
of (R1,≤∗). LetY be a p-point ultafilter in the Tukey-type ofU1 andg be a map from the base ofY to ω. Let
(S,L) be the cut associated toY andg. By Theorem 5.10 and Example 5.17 from [6] there existsi, j < ω such
thati ≤ j, Y ∼= Yj+1 andg(Y) ∼= Yi+1. Notice that since(S,L) is not proper we havei < j. By Remark 1.7, it
is enough to prove the this theorem in the case whenY = Yj+1 andg(Y) = Yi+1. In particular, we may assume
without loss of generality thatg : R1(j) → R1(i).

SinceU1 is generated by a generic subset of(R1,≤∗), we find that Theorem 4.25 and Proposition 5.8 in [6]
imply that there existsT ∈ C and i′ ≤ i such that for allp, q ∈ R1(i) ↾ T , g(p) = g(q) if and only if
πT (i′)(p) = πT (i′)(q). So ifT ′ ∈ C, then for eachn < ω and eachp ∈ R1(i) ↾ T (n),

CR1(i)↾(T ′∩T )(p) = |R1(i) ↾ (T
′∩T )∩g−1(p)| = |R1(i) ↾ (T

′∩T )∩π−1
T (i′)(p)| ≤

(

n− i′

i− i′

)

. (18)

Let f : R1(i) → ω be given and suppose thatf is not constant modU|R1(i). For eachn < ω, let

Xn = {p ∈ R1(i) : f(p) ≥

(

n− i′

i− i′

)

}. (19)

SinceU1|R1(i) is an ultrafilter onR1(i) we find that for eachn < ω, eitherXn ∈ U1|R1(i) or R1(i) \ Xn ∈
U1|R1(i). If there existsn < ω such thatR1(i) \Xn ∈ U1|R1(i) thenf would be bounded byn modU1|R1(i).
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However, this can not happen since we assumed thatf is not constant modU1|R1(i). Hence for eachn < ω,
Xn ∈ U1|R1(i).

Note thatX0 ⊇ X1 ⊇ X2 ⊇ . . . is a decreasing sequence of members ofU1|R1(i). SinceU1 is selective
for R1 there existsS′ ∈ C such that for eachn < ω, R1(i) ↾ S′ \ rn(S

′) ⊆ Xn. For eachn < ω and
eachp ∈ R1(i) ↾ S′(n), p ∈ R1(i) ↾ (S′ \ rn(S

′)) ⊆ Xn. So (18) implies that for eachn < ω and each
p ∈ R1(i) ↾ S

′(n),

f(p) ≥

(

n− i′

i− i′

)

≥ CR1(j)↾(T ′∩S′)(p). (20)

SoR1(i) ↾ (T ∩ S′) ∈ U1|R1(i) and [f ] ≥ [CR1(i)↾(T∩S′)]. So [f ] ∈ L asR1(i) ↾ (T ∩ S′) ∈ Yi+1.
Additionally, note that the cardinality function of any member ofYj+1 is not constant modg(Yj+1) = U1|R1(i).
Therefore the cut(S,L) is the standard cut inωR1(i)/U1|R1(i).

6 Conclusion

In this section we use the two main results to prove that, under CH, certain special ultrafilters exists. Additionally,
we ask some questions about the types of cuts that can be obtained from similarly defined topological Ramsey
spaces. The two main results of this paper only associate thestandard cut to a given ultrafilter mapping. However
the results of Blass from [1] only require the lower half of the cuts to be closed under certain operations. These
differences allow us to show that, under CH, certain specialultrafilters exists which are not Ramsey forR1.

Corollary 6.1 Assume CH. There exists a p-point ultrafilter on[T1] which is neither weakly Ramsey nor
Ramsey forR1.

P r o o f. Recall that under CH, p-point ultrafilters exist. LetU be a p-point ultrafilter onω, [f ] be a nonstandard
element ofωω/U and

S =
⋃

n<ω

{[g] ∈ ωω/U : [g] ≤ n · [f ]}. (21)

Notice thatS is closed under addition and contains the standard part ofωω/U . LetL be the complement ofS.
The condition thatL is nonempty and every countable subset ofL has a lower bound in L, will be automatically
satisfied ifS has a countable cofinal subset, becauseωω/U is countably saturated (see [10]). So(S,L) is a proper
cut such thatS is closed under addition and every countable subset ofL has a lower bound inL. By Theorem
1.5 there is a p-point ultrafilterV and a Rudin-Keisler mapp such thatp(V) = U and(S,L) is the cut associated
to p andV . Since(S,L) is not the standard cut Theorem1.8 implies thatV is not Ramsey forR1. Since(S,L)
is not closed under exponentiation Theorem1.6 implies thatV is not weakly-Ramsey.

We remind the reader of the recursive definition ofiterated exponentials. For each natural numbern andi we
let,

{

0n = 1,
i+1n = n

in.
(22)

For example,32 = 22
2

and26 = 66. Note that ifk, n andm are natural numbers, then(nk)
mk ≤ n+mk.

Corollary 6.2 Assume CH. There exists a weakly Ramsey ultrafilter on[T1] which is not Ramsey forR1.

P r o o f. Recall that under CH, selective ultrafilters exist. LetU be a selective ultrafilter onω, [f ] be a non-
standard element ofωω/U and

S =
⋃

n<ω

{[g] ∈ ωω/U : [g] ≤ n[f ]}. (23)

If [g] and [h] are inS then there exists natural numbersn andm such that[g] ≤ n[f ] and [h] ≤ m[f ]. So
[g][h] ≤ n+m[f ]. ThereforeS is closed under exponentiation. AdditionallyS contains the standard part of
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10 T. Trujillo: Dedekind Cuts

ωω/U . LetL be the complement ofS. The condition thatL is nonempty and every countable subset ofL has a
lower bound in L, will be automatically satisfied ifS has a countable cofinal subset, becauseωω/U is countably
saturated (see [10]). So(S,L) is a proper cut such thatS is closed under exponentiation and every countable
subset ofL has a lower bound inL. By Theorem1.6 there is a weakly Ramsey ultrafilterV and a Rudin-Keisler
mapp such thatp(V) = U and (S,L) is the cut associated top andV . Since(S,L) is not the standard cut
Theorem1.8 implies thatV is not Ramsey forR1.

In [17] Trujillo has shown that assuming CH there exists a selective forR1 ultrafilter which is not Ramsey for
R1. Using a similar proof to that in Theorem1.8 it is possible to characterize the cuts obtainable from a selective
for R1 ultrafilter and the mapπ; they are exactly the standard cuts. However, it is unclear if there is a selective for
R1 ultrafilterU and a Rudin-Keisler mapp such that the cut associated top andU is not standard. This motivates
the following question:

Question 1 Can the notions of selective forR1 and Ramsey forR1 be distinguished by characterizing the
Dedekind cuts obtainable from selective forR1 ultrafilters on[T1]?

If it is shown that the only cuts obtainable are standard thenthis method will not distinguish between the two
notions. However if there exists a selective forR1 ultrafilter and a Rudin-Keisler mapp such that(S,L) is not
standard thenU will not be Ramsey forR1 and the two notions will be distinguished.

Dobrinen and Todorcevic in [7] have defined generalizationsof the spaceR1 for 1 < α < ω1. The spaces are
built from treesTα in much the same way thatR1 is built fromT1. Trujillo [17] has shown that for each positive
integern, under CH, there are selective forRn ultrafilters on[Tn] which are not Ramsey forRn. However it
is still unknown if, under CH, there are selective forRα ultrafilters on[Tα] which are not Ramsey forRα for
ω ≤ α < ω1. The methods used in [17] fail for infiniteα as the treesTα have infinite height.

Question 2 Assume that1 < α < ω1. Can the notions of selective forRα and Ramsey forRα be distin-
guished by characterizing the Dedekind cuts obtainable from selective and Ramsey forRα ultrafilters on[Tα]?

We may also prove similar existence results using the secondmain result, Theorem1.9.

Corollary 6.3 Assume CH holds andU1 is a Ramsey forR1 ultrafilter on [T1] generated by a generic subset
of (R1,≤∗). There exists a weakly Ramsey ultrafilterV on [T1] such thatV 6≤T U1.

P r o o f. Notice thatπ(U1) is a selective ultrafilter by Theorem 3.3. Let[f ] be a nonstandard element of
ωω/π(U1) and

S =
⋃

n<ω

{[g] ∈ ωω/π(U1) : [g] ≤
n[f ]}. (24)

S is closed under exponentiation. AdditionallyS contain the standard part ofωω/π(U). LetL be the complement
of S. The condition thatL is nonempty and every countable subset ofL has a lower bound inL, is automatically
satisfied ifS has a countable cofinal subset, becauseωω/π(U1) is countably saturated (see [10]). So(S,L) is a
proper cut such thatS is closed under exponentiation and every countable subset of L has a lower bound inL.
By Theorem1.6 there is a weakly Ramsey ultrafilterV and a Rudin-Keisler mapp such thatp(V) = π(U1) and
(S,L) is the cut associated top andV . Since(S,L) is not the standard cut Theorem1.9 implies thatV is not
Tukey-reducible toU1.

Corollary 6.4 Assume CH holds andU1 is a Ramsey forR1 ultrafilter on [T1] generated by a generic subset
of (R1,≤∗). There exists a p-point ultrafilterW on [T1] which is not weakly Ramsey such thatW >T U1.

P r o o f. Notice thatπT (1)(U1) is a p-point ultrafilter by Theorem 3.3. Let[f ] be a nonstandard element of
ωω/πT (1)(U1) and

S =
⋃

n<ω

{[g] ∈ ωω/πT (1)(U1) : [g] ≤ n · [f ]} and (25)

S is under addition. AdditionallyS contain the standard part ofωω/πT (1)(U). Let L be the complement of
S. The condition thatL is nonempty and every countable subset ofL has a lower bound inL, is automatically
satisfied ifS has a countable cofinal subset, becauseωω/πT (1)(U1) is countably saturated (see [10]). So(S,L)
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is a proper cut such thatS is closed under addition and every countable subset ofL has a lower bound inL.
By Theorem1.5 there is a p-point ultrafilterW and a Rudin-Keisler mapp such thatp(W) = πT (1)(U1) and
(S,L) is the cut associated top andW . Since(S,L) is not the standard cut Theorem1.9 implies thatW is not
Tukey-reducible toU1. On the other hand,πT (1)(U1) is Tukey equivalent toU1. ThereforeW >T V .

Remark 6.5 Notice that the previous corollary shows that the converse of Theorem1.9, under CH, does not
hold. In particular there is a p-pointW such that there is no p-point in the Tukey-type ofU1 which gives the
standard cut inωω/W since otherwiseW would be Tukey reducible toU1.

This leads naturally to the next question.

Question 3 Is it possible to strengthen the conclusion of Theorem1.9 so that, under CH, a converse to the
modified theorem holds?

The previous remark shows that at the very least one needs to assume that the not only isV a p-point but it is
also Tukey-reducible toU1. We conclude this paper with a more general question of Dobrinen from [17] which
has motivated much of the work in this paper.

Question 4 For a given topological Ramsey spaceR, are the notions of selective forR and Ramsey forR
equivalent?
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