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Associated to each ultrafiltéf onw and each map : w — w is a Dedekind cut in the ultrapower” /p(U{).
Blass has characterized, under CH, the cuts obtainable Whisntaken to be either a p-point ultrafilter, a
weakly-Ramsey ultrafilter or a Ramsey ultrafilter.

Dobrinen and Todorcevic have introduced the topologicah&ey spac® ;. Associated to the spad®, is a
notion of Ramsey ultrafilter foR 1 generalizing the familiar notion of Ramsey ultrafilteronWe characterize,
under CH, the cuts obtainable whignis taken to be a Ramsey f&; ultrafilter andp is taken to be any map. In
particular, we show that the only cut obtainable is the stashdut, whose lower half consists of the collection
of equivalence classes of constants maps.

Forcing withR, using almost-reduction adjoins an ultrafilter which is Raynfor R ;. For such ultrafilters
U, Dobrinen and Todorcevic have shown that the Rudin-Ketglees of the p-points within the Tukey type of
U, consists of a strictly increasing chain of rapid p-pointefer typew. We show that for any Rudin-Keisler
mapping between any two p-points within the Tukey typéfofthe only cut obtainable is the standard cut.
These results imply existence theorems for special kinddtifilters.
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1 Introduction

In this section, we define the notion of a Rudin-Keisler maggnd associate to each mapping a Dedekind cut.
Then we state some results of Blass in [1] characterizindeu@H, the types of cuts obtainable for Rudin-Keisler
mappings from a p-point or a weakly-Ramsey ultrafilter.onin last part of this section, we provide an outline
of the rest of the article and highlight its main results.

We remind the reader of the Rudin-Keisler reducibility tiela. If I/ is an ultrafilter on the base s&t andV
is an ultrafilter on the base sgt then we say that is Rudin-Keisler reducible tof and writeV <gyx U if there
there exists a functiofi : X — Y such tha = f(i/), where

fu)={f(2): Zeu}). (1)

A Rudin-Keisler mapping frof to V is a functionf : X — Y such tha® = f(U).

Associated to each ultrafiltéf on X is an equivalence relation an*. If f andg are two functions fronX to
w then we say thaf andg are equivalent moi if there existsZ € U such thatf | Z = ¢ | Z. Theultrapower
wX /U is the collection of all equivalence classes with respethi®equivalence. All operations and relations
defined onw have natural extensions making the ultrapower an elemeexaension of the standard modelof
In particularw® /U forms a linearly ordered set. ( In this cagg, < [g] ifand only if {z € X : f(z) < g(z)} €
U.)

Recall that, @edekind cut of a linearly ordered sista partition(S, L) of the linear order such that no element
of L precedes any element 6f We follow the work of Blass in[1] and associate to each Ruisler mapping
from/ on X to V onY a Dedekind cut in the ultrapower” /V. A cut (S, L) in the ultrapower is said to be
properif L is nonempty and' contains the equivalence class of each constant map. Tlyéveutby takingS to
be the set of equivalence classes of constant maps is th#ediandard cut
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2 T. Trujillo: Dedekind Cuts

Definition 1.1 ([I]) Leti/ be an ultrafilter on the base sktandp : X — Y. For anyA C X, we definghe
cardinality function ofA relative top by

Caly) =|Anp {y}| fory e Y. @)

The set of all equivalence classes of cardinality functiohsets inZ/, and all larger elements of X /p(i4),
constitute the upper patft of a cut(S, L) of w* /p(i/), which we callthe cut associated tp andi/. (If Ca(n)
is infinite for somey thenC4 ¢ wY and has no equivalence class, so it makes no contributiénitds entirely
possible forL to be empty.)

The cut associated to andi{ is proper if and only ifp is finite-to-one but not one-to-one on any setdn
Additionally, the existence of a proper cutdr® /i/ implies that/ is non-principal. The next three theorems are
due to Blass and appear as Theorems 1, 2 and[4 in [1]. The fistain shows that certain Dedekind cuts are
not obtainable from Rudin-Keisler mappings. In the remagrtheorems of this sectiof$, L) is assumed to be
a proper cut.

Theorem 1.2( [A]) (S, L) is the cut associated to some map of some ultrafiltés tband only if S is closed
under addition.

Before stating the next two theorems we remind the readéead¢finitions of some special types of ultrafilters
onw.

Definition 1.3 Letl/ be an ultrafilter onv.

1. U is ap-point ultrafilter, if for each sequencdy O A; O A; O --- of members ol/ there existsA € U
such that for each < w, A C* A;. (HereC* denotes the almost-inclusion relation.)

2. U is aweakly-Ramsey ultrafilteif for each partition of the two-element subsets.woihto three parts there
exists an element @f all of whose two-element subsets lie in two parts of the panti

3. U is aRamsey ultrafilterif for each partition of the two-element subsets.woifnto two parts there exists an
element ot/ all of whose two-element subsets lie in exactly one part efptartition.

Remark 1.4 It clear that every Ramsey ultrafilter is weakly-Ramsey. hedrem 5 of[[1], Blass has shown
that every weakly-Ramsey ultrafilter is a p-point.

Theorem 1.5( [I]) Assume CH(S, L) is the cut associated to some map of some p-point ultrafitef if
and only ifi/ is a p-point,S is closed under addition, and every countable subsétlods a lower bound iri..

Theorem 1.6( [1]) Assume CH(S, L) is the cut associated to some map of some weakly Ramseylteltrafi
to U if and only ifi/ is Ramseys is closed under exponentiation, and every countable sudisethas a lower
bound inL.

Blass has remarked inl[1] that many of the ultrafilter-théoreoncepts involved in the previous theorems
have natural model-theoretic interpretations in termsliwhpowers. Following Blass, we consider models that
are elementary extensions of the standard model whosergaiies and whose relations and functions are all
the relations and functions an Suppose thaV is such a model. An elemente N is said togenerateN over
the submode) if and only if no proper submodel @¥ includesM U {x}.

In [I], Blass notes that, if : X — Y andi/ is an ultrafilter onX, then

frow’ fU) = ot u ®3)

is an elementary embedding. Furthermdgies an isomorphism of ultrafilters if and only j is an isomorphism
of models. The image of* is cofinal inw¥ /U if and only if f is finite-to-one on some set of. Hencel/ is a
p-point (Ramsey ultrafilter) if and only if every nonstandiaubmodel ofoX /V is cofinal in ( equal to o /U.
An elementr € wY /f(V) is in the upper half of the cut associatedftandl/ if and only if £*(z) is greater than
some generator of* /i/ over f*(wY / f(U)).

Remark 1.7 Let!/ be an ultrafilter on the base s€tandp : X — Y. Suppose thaj : W — X is a bijection
andW is an ultrafilter onl¥ such thaty(VW) = U. Then the cut associated poo ¢ and)WV is exactly the cut
associated t@ and{. Additionally, suppose that : Y — Z is a bijection. Sincé* is an isomorphism of
models, it follows that if(.S, L) is the cut associated foo p andi/ then(h*”S, h*”' L) is the cut associated {0
andi/. In particular, if(S, L) is the standard cut in“ then(h*"S, h*" L) is the standard cut ia“ /p(i).
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The purpose of this paper is to prove analogous results fiafilters satisfying similar properties. In Section
Rlwe introduce the setting for the main results of this artickemely the topological Ramsey spdee. In Section
Blwe introduce the generalization of the notion Ramsey uliieafive study in later sections. In Sectidhwe
characterize the cuts obtainable, under CH, from the génatian of Ramsey we defined in SectiBinThe next
theorem which we prove in Secti@iis one of the two main results of this manuscript.

Theorem 1.8 Assume CH(S, L) is the cut associated to some map of some Rams&yfoitrafilter on [T7]
to V if and only ifV is selective andsS, L) is the standard cut in® /).

In Sectionfl we introduce the basic definitions associated with the Tukepry of ultrafilters. Applying
theorems of Dobrinen and Todorcevic I [6] about ultrafidtgenerated from generic subsets(&f;, <*) we
prove the second main result of this paper.

Theorem 1.9 Supposé/; is a Ramsey foR; ultrafilter on T} generated by a generic subset(@,, <*). If
(S, L) is the cut associated to some map from some p-point ultraifilttne Tukey type dff; to some ultrafilter
V thenV is a p-point ultrafilter and S, L) is the standard cut.

In Sectiorltl we show that the main results imply the existence of spetiafilters. We then conclude with
some questions about the types of cuts obtainable fronfilitra defined from other similar topological Ramsey
spaces.

The author would like to express his deepest gratitude tadta Dobrinen for valuable comments and sug-
gestions that helped make this article and its proofs maeéaiele.

2 The topological Ramsey spac®&,

—

construction ofR ; was motivated by the work of Laflamme [n]11] which uses fogdimadjoin a weakly-Ramsey
ultrafilter satisfying complete combinatorics ol 8®D(R) (see[[11] for a definition of complete combinatorics.)

Definition 2.1 ((R1, <, 7), [6]) For eachi < w, let

We begin this section with the definition given by Dobriner diodorcevic in[[6] of the tripld R, <,r). The

Ty(i) = {(), (i), (6, 5) il +1) <2j < (i+1)(i +2)} and @)

T = Tu(). (5)

i<w

R, consists of all subtrees @f which are isomorphic td’,. More preciselyS C T is a member ok, if and

SN PR AN AN DIRDZ SV D
SN SN AN AR A AR R R EEE G AR G AR U AR U R R R R R

0 1 (2) (3) (4) 5y ..

)

Fig. 1 Graph ofT;

only if there exists a strictly increasing sequelikg; ., of natural numbers such that the following conditions
hold:

For each < w, S N1y (k;) is isomorphic tal} (7). (6)
For eachk < w, SNTi(k) # {()} implies thatk = k; for somei < w. @)
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4 T. Trujillo: Dedekind Cuts

For each tre&S € Ry andi < w, let.S(i) = SN T(k;) andr;(S) = U,.; S(j). Let AR = U, {r:(S) :
S € Rq1} and define : w x Ry — AR by lettingr (i, S) = r;(S). Foreach < w, letR(:) = {S(i) : S € R;}
andAR,; = {TZ(S) : S e Rl}

ForS,T € Ry, S < T if and only if there exists a strictly increasing sequeficg; ., of natural numbers
such that for each < w, S(k;) € T'(i). ForS,T € Ry, S <* T if and only there exist$ < w such that
S\ r;(S) CT. The relation<* is called thealmost-reduction relation ofR ;.

Notation 2.2 If S € R, then we lefS] denote the maximal nodes 8f that is the length two sequencesdn
Similarly, fors € AR andp € |J,_,, R1(i) we let[s] and[p] denote the collection of maximal nodessoéndyp
respectively. IfS € R, andi < wthenwe letR (i) [ S = {p € R1(i) : p C S} and AR;|S = {s € AR, :

s C S}. Foreachs € AR, we letdepthr, (s) be the least natural numbersuch thats C 7, (7).

Topological Ramsey theory was initiated by Ellentuckinh his proof of an infinite-dimensional analogue
of the Ramsey theorem called the Ellentuck theorem. Aftailar examples where discovered, the abstract
notion of a topological Ramsey space was introduced in bys@arand Simpson in [3]. Carlson and Simpson
also introduced a finite set of axioms sufficient for provimgadostract version of the Ellentuck theorem. The
text [16] by Todorcevic is now the standard reference footogical Ramsey spaces and proves the abstract
Ellentuck theorem using four axioms.

Definition 2.3 For eachs € AR andS € Ry we let[s,S] ={T € Ry : (In) s = r,(T) & T < S}. The
Ellentuck topology orRR; is the topology generated Hys, S] : s € AR & S € R1}. A subsetY of R, is
Ramseyf for every () # [s, S|, there is & € [s, S| such thafs, 7] C X or [s,T] N X = (). A subsetY of R is
Ramsey nulif for every ) # [s, S], thereis & € [s, S] such thafs, S] N X = 0.

Theorem 2.4(The abstract Ellentuck theorem f&r,, [6]) The triple(R1, <, r) forms atopological Ramsey

space That is, every subset &, with the Baire property is Ramsey and every meager subse{ @ Ramsey
null.

The next theorem, which we use in Sec{@rtan be thought of as a finite version of the Ramsey theorem for
the spaceék;. The result is Theorem 3.5 of Mijares in]12] applied to thedlmgical Ramsey spade;.

Theorem 2.5(The finite Ramsey theorem f@t;, [12]) Letk,n < w with & < n be given. Then, there exists
m < w such that for eachp € R, (m) and each partition ofR, (k) | p into two parts there existg € R1(n) | p
such thatR, (k) | ¢ lies in exactly one one part of the partition.

Next we define a collection of natural projection maps relaethe spac& ;. Dobrinen and Todorcevic in|[6]
have used these projections to completely characterizdukey ordering below weakly-Ramsey ultrafilters
obtained from forcing withiR; using almost-reduction.

Definition 2.6 Eachxz € [T1] is a sequence of natural numbers of length two, which we @dmp{x,, x1).
Letr : [T1] — w be the map which sendse [T}] to . For eachi < j < w, definer(;) : R1(j) — Ri(i) to
be the map that removes the right-mgst i branches of a given element®&f (j).

3 Selective and Ramsey foRR;.

In this section we introduce the generalizations of Ramdegfilter that we study in this manuscript and prove
some theorems needed to for the main results in Sed@ansldl First we remind the reader of the definition of
selective ultrafilter om.

Definition 3.1 Let i/ be an ultrafilter onv. U is selective if for each sequencdy O A; O A O --- of
members off there existsA = {ag,a1,...} € U enumerated in increasing order such that for eaeh w,
A\ {ao, .. .7ai_1} - Al

By a result of Kunen in[2], an ultrafilter is Ramsey if and oiflit is selective. For each topological Ramsey
spaceR, Mijares in [13] has introduced the notions of RamseyRoand selective foR ultrafilters. IfR is taken
to be the Ellentuck space the notions are equivalent anatesduRamsey and selective given above. Below, we
follow the presentation of Ramsey f&; and selective foR; given by Dobrinen and Todorcevic inl[6].

Definition 3.2 Let i/ be an ultrafilter or[T3]. U is generated by’ C R4 if and only if {[S] : S € C} is
cofinal in (4, D). An ultrafilter/ generated by C R; is selective forR;, if for each decreasing sequence
Sp > S1 > Sy > --- of members of, there is anothe$ € C such that for each< w, S\ ;(S) C ;.
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Theorem 3.3 Suppose thal/ is an ultrafilter on the base séf;] and generated by a subs@etof R,. The
following statements are equivalent:

1. U is selective fofR .
2. U is a p-point andr(l{) is selective.

3. for each decreasing sequentg > S; > S, > --- of members of, there is anothelS € C such that for
eachn < w, S \ Tn (S) - Sdeptth (rn(9))

Proof. First we show that. = 2. Suppose thdl is selective forR,. To show that/ is a p-point consider
a sequencedy 2 A; D A, D ... of elements of/. Sincel/ is generated by there exists a sequence
Sp > S1 >S5y > ... of elements o€ such that for ali < w, [S;] C A;. Sincel{ is selective forR, there exists
S € Ssuch thatforall < w, S\ r;(S) C S;. As eachr;(.5) is finite for eachl < w, [S] C* [S;] C A,. Hence
U is a p-point ultrafilter orf7}].

To show thatr (i) is selective consider a sequenkg 2 X; O X, D ... of elements ofr(U/). Sincel{ is
generated by there exists a sequenfg > S; > S, > ... of elements of such thatforalf < w, 7”[S;] C X;.
Sincel{ is selective forR; there existsS € S such that for ali < w, S\ 7;(S) C S;. Let{xzo,x1,...} be
the increasing enumeration of [S]. Then for each < w, 7”[S]\ {zo,x1,...,xi—1} = p"([S] \ [r:(S)]) C
7" [Si] C X;. m(U) is selective agxo, z1, ... }isinw(U).

Next we show thaR. = 3. Suppose thal/ is a p-point andr (i) is selective. To show thdt satisfies
condition3., consider an arbitrary decreasing sequefige> S; > Sy > --- of members of’. There is an
S € C such that for each < w, [S] C* [S,]. Let (k;)i<. be the strictly increasing sequence such that for all
i <w,S(i) CTi(k;). Define(k!,)n<w recursively by letting,

{’“6 e ®

ki, is the smallest; > &; such thaf{z € [S] : (z) > k;} C X
Now defineg : w — w by letting
gn) =iif ki <n <kj. 9)

Note thatg can not be constant mad(/) asn (/) is non-principal. Sincer(U/) is selective, it must be the
case that there is ¥ C #”[S] such thaly is increasing ot € w(/). Enumerat&” in increasing order, as
{v0,91,-..}. Then either{yo,y2,y4,...} Of {y1,¥3,95,...} is @ member ofr(U). Let Z = {z0,21,...}
denote which ever is irr({/). By construction, we find that for each paix j of natural numbers there exists
ki, <wsuchthat; <k, < z;.

Sincer~1(Z) € U and[S] € U, there is a5’ € C such thafS’] C #=1(Z) N [S]. Let (k!);<., be the strictly
increasing sequence such that forialt w, S’(i) C T1(k!). Sincer”[S’] C Z, we find that for each < w,
eachm > n and eachs € [S'(m)], there exists;, , such thatr(s) = k;;, > k;, > k. By definition of the
sequencék;); <., it follows thats € [Sy/]. On the other handi;, > kj, implies thatSy, C Sy,. Sos € [Sky]
andsS’ \ 7,(8") C Spr = Sdcptth (ra(57))- HENCE2. = 3. holds.

Next note that for each € R, depthy, (r,(S)) > n. Hence3. = 1. holds trivially. O

Definition 3.4 Let/ be an ultrafilter of7;] generated b¢ C R;. U is Ramsey fofR4, if for everyi < w
and every partition 0fAR; into two parts there existS € C such thatdR;|.S lies in one part of the partition.

Theorem 3.5 Suppose thal is an ultrafilter on[T}| generated by C R;. U is Ramsey foR; if and only
if U is selective fofR, and for eachn < w, U|R1(n) = {Ri(n) [ A: A € C} forms an ultrafilter oriRy (n).

Proof. &) ByalLemma 3.8 of Mijares ir [13], every Ramsey @i ultrafilter is selective fofR;. One the
other hand, it/ is Ramsey fofR, then for eacth < w, U|R1(n) = {Ri(n) | A: A € C} forms an ultrafilter
onRi(n).

(<) Supposé/ is selective fofR, and for eachn < w, U|R1(n) = {R1(n) [ S : S € C} forms an ultrafilter
onRq(n). SinceAR; = R1(0) and/|R,(0) forms an ultrafilter orR, (0), it follows that if i = 0 then every
partition of AR} into two parts there exists§ € C such thatdR;|S lies in one part of the partition. We proceed
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6 T. Trujillo: Dedekind Cuts

by induction oni to show that/ is Ramsey fofR ;. The previous remarks show that the base case of the inductio
holds.

Let: be a natural number and suppose that every partitiof7f into two parts there existS € C such that
AR;|S lies in one part of the partition. L€f1y, IT; } be a partition ofAR, 1. We show that there exiss € C
such thatdR,1|S lies in one part of the partition.

Foreachs € AR;, letA; = {p € R1(¢) : sUp € Ilp}. Let

H/O = {S S ARl : AS S Z/[|R1(Z)} andH’l = {S S ARZ : Rl(l) \ As S U|R1(’L)}

Sincel{|R+ (i) forms an ultrafilter oriR,(7) it follows that {II, II} } is a partition of AR;. By the inductive
hypothesis, there exists € C and;j < 2 such thatR, (i)|S C TI’.

We first consider the case when= 0. In particular, for eacls € AR;|S, As € U|R+(i). For eachn < w,
let B, = ﬂdepthT] (s)<n As € U|R1. Hence there exists a sequedc®, : n < w} of elements o’ such that
Sp > S1 > 52 > ... andforeach < w, R1(7)|S, C B,,. By TheorenB.3lthere existS € C such that for each
n<w,S\r,(S)C Sdcptth (rn(S9))-

Suppose that € AR;+1]S. Thenr;(t) € AR;|A andt(i) € R1(i). If k = depthg(r;(t)) thent(i) €
R1()|(S\ m:(5)) € R (z’)|SdethT1 (re(s)) € App). Hencepr;(t) Ut(i) € Ip. So in the case whep = 0,
AR;11]S CII;. By an identical argument in the case whes 1, there existsS € C such thatdR ;1|5 C II;.

By induction we find that for each< w and each partition o R} into two parts there exist$ € C such that
AR}|S = {s € AR} : s C S} lies in one part of the partition. In other words,is a Ramsey foR; ultrafilter
on|[Ty]. O

4 Ramsey forR, ultrafilters and their Dedekind cuts

In this section, assuming CH, we characterize the typesag@rDedekind cuts that can be obtained from a map
p: [T1] — w and a Ramsey foR, ultrafilter. In the following theorems, all cuts are assurteede proper.

Lemma 4.1 Let!/ be a Ramsey foR, ultrafilter on [T}] generated by C R; andp be a map fronjT;] to
w. The cut associated @andl/ is the standard cut i /p(U).

Proof. Suppose thdfS, L) is the cut associated gpandi{. Let f : w — w be given and suppose thAtis
not constant mog(Zf). For eachs € AR let {so, s1, s2} be the lexicographically increasing enumeration of
[s]. Let{IIy,II;, 11>} be the partition ofAR- given by letting

Iy = {s € AR, : p(s0) < p(s1) & p(s1) = p(s2)}, (20)
IT; = {s € AR, : p(s0) < p(s1) & p(s1) # p(s2)} and (11)
I, = {s € AR, : p(s0) > p(s1)}. (12)

SinceR; is Ramsey fofR, there existsS” € C andj < 3 such thatdR,|S’" C II;. If j = 2 thenp is bounded
by p(x) modi/ wherez is the lexicographically least element[sf]. So if j = 2 thenp is constant mod{ and
(S, L) is not a proper cut. Ij = 1 thenp is one-to-one mot¥, so(.S, L) is not a proper cut. Hence, (b, L) is a
proper cut themd R, | S’ C I,. In particular, if7’ < S’ and(k;);<., is the increasing enumerationof[7], then
for eachi < w, Cipy(ks) = |[T]Np~{ki}| = i.

For eachn < w, let

X ={xe[5]: f(p(x)) = n}. (13)

Sincel{ is an ultrafilter onT}] we find that for eachn < w, eitherX,, € U or [T1] \ X,, € U. If there exists
n < w such thafTy] \ X,, € U thenf would be bounded by modp(Z/). However, this can not happen since
we assumed that is not constant mog(Z/). Hence for each < w, X,, € U.

Note thatXy, O X; D X, D ... is a decreasing sequence of membeid.08incel/ is selective forR; there
existsS” € C such that for each < w, [S” \ r,(5")] C X,,. Let{k, : n < w} be the increasing enumeration
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of p”[S”]. SinceAR,|S” C Iy, we find that for eaclh < w and eachS”] N p~{k,} = [S”(n)]. So for each
n<w, 9" Np Yk} C[S”\ .(S")] C X,,. Hence, for each < w and eachr € [S”] N p~H{k,},

fkn) = f(p(2)) = n = [[S"]Np~" (k)| = Clsr(kn). (14)

Since{k, : n < w} = p"[S"] € p(U) we find that[f] > [C(s]. So[f] € L asS” € C. Additionally, note that
the cardinality function of any member 6fis not constant mog(l{). Therefore the cutS, L) is the standard
cutinw® /pY). O

In the next Lemma and TheoreM,is an ultrafilter orw, and(.S, L) is a proper cut inv* /.

Lemma 4.2 Assume CH. IV is selective andS, L) is the standard cut in” /V then there exists a Ramsey
for R, ultrafilter ¢/ such that(S, L) is the cut associated @ andr.

Proof. LetV be selective andsS, L) be the standard cut in“ /). We will construct a<*-decreasing
sequencd A, € R; : o < w;} that generates a Ramsey fRq ultrafilter &/ on [T1] such thatr (i) = V.
Let {Z, : a < wy} be an enumeration of the elements{df : (3k)Z C R,(k)}. We impose the following
requirements on the sequence, for each ws:

EitherZ, or Ry (k) \ Z, includesRy (k) | Aq+1 ()

wherek is the natural number such thdt, C R, (k). SinceR1(0) is in bijective correspondence wiff; ] and
{A, € R1: a < w} is an almost-decreasing sequence the sequence will gerepapoint ultrafilter orf7;].
EachA, we belargein the sense that”[A,] € V; this suffices to guarantee thafZ/) = V. By TheorenB.3]
this is enough to show thaf is selective forR;. The conditiong«) for o < w1, guarantee that for eaéh< w,
U|R1 (k) is an ultrafilter oriR4 (k). By TheorenfB.H this is enough to show that is a Ramsey foRR; ultrafilter.
By previous lemma this guarantees that the cut associatéatalp in w*/V is standard.

First let Ay = T,. Suppose that < w; and{A, : o < 8} have been defined so that,  ; satisfies thex'"
condition. Assume that for each< 3, A,, is large and thesd,’s form a <*-decreasing chain. ¢ Consider the
case wherg is a successor ordinal. Latbe the ordinal such thdt = « + 1. Let k be the natural number such
thatZ, C Ri(k). Let (k.,)m<w be the increasing enumerationiaff4,]) € V. By Theorenf25 there exists a
subsequencé:,, ) m<w such that for eacin < w there exists aset], € Rq1(m) | An(k},) such that eitheft)
Ra(k) [ A, € Zor(f) Ra(k) [ A, € Ra(k)\ Z.

SinceV is an ultrafilter there exists a strictly increasing seqe€nc; ); ., such that{k;, : i <w} € V and
either foralli < w, Ry (k) [ A;,, € Zorforalli <w,Ri(k) | A;,, CRi1(k)\ Z. LetB =], 4;,,. So for
eachi < w,

Cigy(kyn,)

my

<w

(Bl N7~ (k)
(Al

|
i.

Y

Consequently, the following construction©fe R, is well-defined:
C = | e (A,,)-

<w
By constructionC' < A, and eitherR (k) | C C Z orR.(k) | C C Rq(k) \ Z. Note thatC' is large since
7'[C] ={k;,, :i <w} € V. LetAg = C, thenAp is large satisfies the condition),

Next consider the case whehis a limit ordinal. Since CH holds the cofinality gfisw. Let{B,, : n < w}
be a<*-cofinal sequence ifiA,, : « < 8}. So for each < w, there existd1; € V such that for allh € H;,
1 < Cp,(n). Without loss of generality, we may assume thiat > H; O Ho O ... SinceV is selective there
existH € V, H = {hg, h1,... } and for alli < w, h;+1 € Hy,. Therefore for ali < w, h;y1 < Cg,, (hit1)-
Hence foralli < w,i < Cp,_ (hi+1). Foreacm < w, letA'(n) = nr(n) (B, (hnt1)). LetAg = U, ., A'(n),
thenAg € R4 is large because” [Ag] = {h1, ha, hs,...} € V. Moreover, for eaclm < w, Ag <* By,,. SO
{A, : « < B} is a<*-decreasing sequence of large sets.

This completes the inductive construction{ofs : 5 < 8, } and thus the proof of the lemma. O

Proof of Theoreri.8 LemmdZ.2] and3.3] show that necessity holds and Lemiha shows that sufficiency
holds. O
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8 T. Trujillo: Dedekind Cuts

5 The cuts obtained fromz(;) and Ramsey forR, ultrafilters

If U, is a Ramsey foR, ultrafilter generated by a generic subse{®f, <*) andi < w, then we lef/;;, denote
the ultrafilterl/; | R+ (¢). In this section, we show that for any Rudin-Keisler mapgiegveen any two p-points
within the Tukey type ot/; the only cut obtainable is the standard cut. Notice that&mhe < j < w and each
Ramsey forR ultrafilterisy,

Tr@) (U R1 (7)) = Un R (4). (15)

Additionally, notice that ifZ € U,|R1(j) then the cardinality function of with respect tary(;) is defined as
Cz(p) = 1Z Nzl (). forp e Ri(i). (16)

A simple counting argument shows that for ed&thk R4, eachn < w and eaclp € R+ (i) [ S(n),

. _ n—1
Cr,nst) = Rali) 150wty < (0 1). (17)
Next we outline the basic definitions of the Tukey theory dfafilters. The Tukey types of ultrafilters have been
studied by many authors (sée [9], [14], [3]} [6]) [7] ahdI[L5For a survey of the area séé [4] by Dobrinen.

Definition 5.1 Suppose thdf andV are ultrafilters. A functiorf fromi{ to V is Tukeyif every cofinal subset
of (U, D) is mapped byf to a cofinal subset df), 2). We say thaV’ is Tukey reducible té/ and writeV < U
if there exists a Tukey map: U — V. If U <7 V andV < U then we write} =, U/ and say thal/ and)’ are
Tukey equivalenfThe relation=r is an equivalence relation ard; is a partial order on its equivalence classes.
The equivalence class are also calledkey typesr Tukey degrees

The Tukey reducibility relation is a generalization of thedi-Keisler reducibility relation. Ifh(U) = V
then the map sending € U/ to h” X € Vis Tukey. So ifV <grx U, thenV <; U. This leads to the following
question: For a given ultrafiltér, what is the structure of the Rudin-Keisler ordering witttie Tukey type of
u?

Dobrinen and Todorcevic in[6], have given an answer to thisstjon ifl/ is a Ramsey fofR; ultrafilter
on [T1] generated by a generic subset&;, <*). Furthermore, Dobrinen and Todorcevic describe the Rudin-
Keisler structure of the p-points within the Tukey type of anisey forR; ultrafilter generated by a generic
subset of R1, <*). In particular, the Tukey type of such an ultrafiltér consists of a strictly increasing chain of
rapid p-points of order type: V1 <grr Vo <gk ... where);;1 = Ui|R1(i) fori < w. The next proof is the
main result of this section.

Proof of TheorerfL9l Suppose thal/; is a Ramsey fofR, ultrafilter on[T}] generated by a generic subset
of (Ry,<*). LetY be a p-point ultafilter in the Tukey-type bfi andg be a map from the base 9fto w. Let
(S, L) be the cut associated @ andg. By Theorem 5.10 and Example 5.17 frdm [6] there exisjs< w such
thati < j, Y = Y;+1 andg(Y) = V,;+1. Notice that sinc€S, L) is not proper we have< j. By RemarKLYV, it
is enough to prove the this theorem in the case whena Y; ., andg(Y) = V;1. In particular, we may assume
without loss of generality that: R1(j) — R1(i).

Sincel{; is generated by a generic subse{(Rf;, <*), we find that Theorem 4.25 and Proposition 5.87in [6]
imply that there exist§” € C andi’ < i such that for allp,q € R1(i) | T, g(p) = g(q) if and only if
7 (p) = 7 (q). SOIfT’ € C, then for each < w and eactp € Ry (i) | T'(n),

. _ , _ n—1
Cry@yiramy () = [R1@) [ (T'NT)Ng~ ()] = [R1(@) | (T"NT) Ny (p)] < (Z B i,)- (18)
Let f : R4 (i) — w be given and suppose thais not constant mot{|R(i). For eachn < w, let
. n—1
Xo = (pe Rl 100 = (211 (19

Sincelt;|R4 (i) is an ultrafilter oriR4 (7) we find that for eachn < w, eitherX,, € U1|R1(7) or R1(i) \ X,, €
U1 |R1(i). If there existsr < w such thatR, (i) \ X, € U1|R41 (%) thenf would be bounded by modif; | R (4).
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However, this can not happen since we assumedfthigot constant mott; |R,(i). Hence for eachh < w,
X, € Z/{1|R1 (2)

Note thatX, O X; 2 X, DO ... is a decreasing sequence of member&dfR,(i). Sinceld; is selective
for R, there existsS’ € C such that for eaclh < w, R1(¢) | S\ r»(S") € X,,. For eachn < w and
eachp € R1(i) | S'(n),p € Ri(i) | (8" \ rn(5")) C X,. So [[§) implies that for eaclh < w and each
p € R1(7) [ S'(n),

-/

7
i’> > Cr, ()1 (rns (P)- (20)

So Rl(l) [ (T n S/) S L{1|R1(Z) and[f] > [CR] (i)[(TﬁS’)]- So [f] € L asRl(i) [ (T n S/) S yi+1.
Additionally, note that the cardinality function of any mber of Y, is not constant mog(Y;+1) = U1 |R1(4).
Therefore the cutS, L) is the standard cut in1®) /4, | R (7). O

6 Conclusion

In this section we use the two main results to prove that, u@ék certain special ultrafilters exists. Additionally,
we ask some questions about the types of cuts that can beethfaom similarly defined topological Ramsey
spaces. The two main results of this paper only associatgdheard cut to a given ultrafilter mapping. However
the results of Blass from[1] only require the lower half of ttuts to be closed under certain operations. These
differences allow us to show that, under CH, certain spedigdfilters exists which are not Ramsey .

Corollary 6.1 Assume CH. There exists a p-point ultrafilter @] which is neither weakly Ramsey nor
Ramsey fofR; .

Proof. Recallthatunder CH, p-point ultrafilters exist. Lete a p-point ultrafilter ow, [ f] be a nonstandard
element otv* /U and

S=J{lgl e w/tt: [g] <m-[f]}. (21)

n<w

Notice thatS is closed under addition and contains the standard past'gé{. Let L be the complement o5.
The condition thaf. is nonempty and every countable subseL dfas a lower bound in L, will be automatically
satisfied ifS has a countable cofinal subset, becaut$@/ is countably saturated (seée[10]). &) L) is a proper
cut such thatS is closed under addition and every countable subsétlods a lower bound ii.. By Theorem
[LSlthere is a p-point ultrafiltey’ and a Rudin-Keisler mapsuch thap(V) = U/ and(S, L) is the cut associated
to p andV. Since(S, L) is not the standard cut Theor&n® implies thatV is not Ramsey foR;. Since(S, L)

is not closed under exponentiation TheofE@implies thatV is not weakly-Ramsey. O

We remind the reader of the recursive definitiontefated exponentiald-or each natural numberand: we

let,
0, _
{ln—l, . 22)

For example32 = 22° and26 = 65. Note that ifk, n andm are natural numbers, th¢hk)"* < nmj.
Corollary 6.2 Assume CH. There exists a weakly Ramsey ultrafiltéZgnwhich is not Ramsey foR ;.

Proof. Recall that under CH, selective ultrafilters existtd4 be a selective ultrafilter ow, [f] be a non-
standard element af* /I and

S=J{lg) e w st : [g) <"([f]}. (23)

n<w

If [¢g] and[R] are inS then there exists natural numbersandm such thatlg] < "[f] and[h] < ™[f]. So
[g)"] < m+m[f]. ThereforeS is closed under exponentiation. Additionalfycontains the standard part of
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10 T. Trujillo: Dedekind Cuts

w®/U. Let L be the complement &f. The condition thaf. is nonempty and every countable subseLdfas a
lower bound in L, will be automatically satisfied$fhas a countable cofinal subset, becaus@/ is countably
saturated (se€[10]). S&, L) is a proper cut such that is closed under exponentiation and every countable
subset ofZ has a lower bound ifh. By Theorenil.@lthere is a weakly Ramsey ultrafilterand a Rudin-Keisler
mapp such thatp(V) = U and(S, L) is the cut associated wwand). Since(S, L) is not the standard cut
Theoreni.§ implies that) is not Ramsey foRR ;. O

In Trujillo has shown that assuming CH there exists acte forR, ultrafilter which is not Ramsey for
R1. Using a similar proof to that in TheordiiBlit is possible to characterize the cuts obtainable fromecsee
for R, ultrafilter and the map; they are exactly the standard cuts. However, it is uncfeheie is a selective for
R4 ultrafiltert/ and a Rudin-Keisler mapsuch that the cut associateditandl/ is not standard. This motivates
the following question:

Question 1 Can the notions of selective f@®&, and Ramsey foiR, be distinguished by characterizing the
Dedekind cuts obtainable from selective fr ultrafilters on[7]?

If it is shown that the only cuts obtainable are standard thenmethod will not distinguish between the two
notions. However if there exists a selective for ultrafilter and a Rudin-Keisler mgpsuch that S, L) is not
standard thety will not be Ramsey fofR, and the two notions will be distinguished.

Dobrinen and Todorcevic in[7] have defined generalizatifitbe spacék, for 1 < o < wy. The spaces are
built from treesT, in much the same way that, is built from 7} . Trujillo [L7] has shown that for each positive
integern, under CH, there are selective f&, ultrafilters on[7},] which are not Ramsey fdR,,. However it
is still unknown if, under CH, there are selective ®y, ultrafilters on[T,,] which are not Ramsey foR,, for
w < a < wy. The methods used in [117] fail for infinite as the tree§, have infinite height.

Question 2 Assume that < a < w;. Can the notions of selective f@®, and Ramsey foR, be distin-
guished by characterizing the Dedekind cuts obtainable Belective and Ramsey f&,, ultrafilters on[T,]?

We may also prove similar existence results using the secmid result, Theorei.9

Corollary 6.3 Assume CH holds arld; is a Ramsey foR, ultrafilter on [T1] generated by a generic subset
of (R1, <*). There exists a weakly Ramsey ultrafilteon [T3] such thaty £, U;.

Proof. Notice thatr(l/) is a selective ultrafilter by Theoreim B.3. Lgi be a nonstandard element of
w* /m(Ur) and

S = Al € w/n(th) : [9] < "[f]}- (24)

n<w

S'is closed under exponentiation. Additionaffycontain the standard partof’ /= (l{). Let L be the complement
of S. The condition thatf. is nonempty and every countable subsef dfas a lower bound i, is automatically
satisfied ifS has a countable cofinal subset, becausgér ({4, ) is countably saturated (see [10]). 68 L) is a
proper cut such that is closed under exponentiation and every countable sulbdehas a lower bound itd.
By TheoreniL@lthere is a weakly Ramsey ultrafilt®rand a Rudin-Keisler map such thaip(V) = = (U4, ) and
(S, L) is the cut associated fwand). Since(S, L) is not the standard cut Theorélfl implies that) is not
Tukey-reducible t@/; . O

Corollary 6.4 Assume CH holds arld; is a Ramsey foR, ultrafilter on [T1] generated by a generic subset
of (R1, <*). There exists a p-point ultrafilten’ on [T;] which is not weakly Ramsey such théit>r U .

Proof. Notice thatry;)(U) is a p-point ultrafilter by Theorein 3.3. Lgf] be a nonstandard element of
w“’/ﬂ'T(l) (L{l) and

S = J{lg) € w/mry(th) : [9) < n-[f]} and (25)

S is under addition. Additionallys contain the standard part of’ /771y (U). Let L be the complement of
S. The condition thaf. is nonempty and every countable subseLdfas a lower bound i, is automatically
satisfied ifS has a countable cofinal subset, becausg¢r; (1) (U ) is countably saturated (see [10]). 8% L)
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is a proper cut such thét is closed under addition and every countable subsét bés a lower bound itL.
By TheoreniLil there is a p-point ultrafilteyV and a Rudin-Keisler map such thatp(W) = 771y (U1) and
(S, L) is the cut associated pandW. Since(S, L) is not the standard cut Theor&n®l implies that)V is not
Tukey-reducible té/;. On the other hands; (1) (U1 ) is Tukey equivalent té/;. ThereforeV >7 V. O

Remark 6.5 Notice that the previous corollary shows that the convefSéheoreni.9] under CH, does not
hold. In particular there is a p-poiiy such that there is no p-point in the Tukey-typelf which gives the
standard cut iw“ /YV since otherwis@V would be Tukey reducible #;.

This leads naturally to the next question.

Question 3 Is it possible to strengthen the conclusion of Theollefhso that, under CH, a converse to the
modified theorem holds?

The previous remark shows that at the very least one needstong that the not only ig a p-point but it is
also Tukey-reducible t&/;. We conclude this paper with a more general question of Debrfrom [17] which
has motivated much of the work in this paper.

Question 4 For a given topological Ramsey spake are the notions of selective f& and Ramsey foRR
equivalent?
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