IDEMPOTENT RESIDUATED STRUCTURES:
SOME CATEGORY EQUIVALENCES AND THEIR
APPLICATIONS
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ABSTRACT. This paper concerns residuated lattice-ordered idempotent com-
mutative monoids that are subdirect products of chains. An algebra of this
kind is a generalized Sugihara monoid (GSM) if it is generated by the lower
bounds of the monoid identity; it is a Sugihara monoid if it has a com-
patible involution —. Our main theorem establishes a category equivalence
between GSMs and relative Stone algebras with a nucleus (i.e., a closure
operator preserving the lattice operations). An analogous result is obtained
for Sugihara monoids. Among other applications, it is shown that Sugihara
monoids are strongly amalgamable, and that the relevance logic RM?* has
the projective Beth definability property for deduction.

1. INTRODUCTION

The theory of residuated structures descends from three essentially indepen-
dent sources—the algebra of binary relations, the study of ideal multiplication
in rings, and the semantic analysis of nonclassical logics (see [23] and its ref-
erences). In the structures that concern us here, the key ingredients are a
commutative monoid (A; -, t), a lattice order < of A, and a binary operation —
such that the law of residuation

a-c<biff c<a—b

holds for all elements a,b,c € A. When interpreting some deductive systems
at the intersection of relevance logic and many-valued logic, we encounter the
following properties as well:

e idempotence: a-a = a for all elements a

e semilinearity: the structure is a subdirect product of chains.

None of these demands implies
e integrality: the monoid identity t is the greatest element.

On the whole, varieties of integral residuated structures are better understood
than their non-integral counterparts, so the discovery of a category equivalence
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between a non-integral and an integral class may increase our understanding
of the former. Amalgamation and epimorphism-surjectivity properties will be
preserved, for instance, because they are purely categorical. As it happens,
they reflect interpolation theorems and definability properties of the deductive
systems modeled by the algebras (see Theorem 11.2). Moreover, a category
equivalence between varieties induces an isomorphism between their subvariety
lattices, along which categorical properties can still be transferred. Thus, it car-
ries positive and negative results from one family of logics to another, yielding
swift new discoveries in some cases and easier proofs in others.

This strategy was exploited in [26], where we proved that the variety OSM
of odd Sugihara monoids and the variety RSA of relative Stone algebras are
categorically equivalent. Both classes consist of idempotent semilinear algebras.
A residuated structure of this kind belongs to RSA iff it is integral; it is a
Sugihara monoid iff it possesses a compatible involution —. The odd Sugihara
monoids are the ones in which -t = t. Using known categorical properties
of relative Stone algebras, we were able to establish some new features of the
uninorm-based logic IUML (see [45, 42]), which is algebraized by the bounded
odd Sugihara monoids.

For the sake of such applications, it is desirable to extend the category equiv-
alence in [26] to a wider class of residuated structures than OSM. The equiv-
alence functor from OSM to RSA simply constructs the negative cone of the
non-integral algebra, which is based on the lower bounds of t. If this natural
construction is still to be used, then we should deal with non-integral residuated
structures that are determined by their negative cones. Assuming semilinearity
and idempotence, the algebras generated by their negative elements are exactly
the ones in which (e — t) — t = a whenever a > t. This demand defines
the variety GSM of generalized Sugihara monoids, which is therefore a natural
boundary for our investigation.

The negative cone of a generalized Sugihara monoid is still a relative Stone
algebra, but the negative cone construction is no longer a category equivalence.
To restore equivalence in the context of GSM, we must eliminate some RSA-
morphisms by adding structure to the relative Stone algebras. We prove that
it suffices to add a single unary operation ¢ (called a nucleus), with axioms
x < Oz = OOz and Oz A Qy = O(x A y), where A is the lattice meet. Thus,
we arrive at a variety NRSA of nuclear relative Stone algebras, and our central
result shows that GSM and NRSA are categorically equivalent (Theorem 8.7).
Because of the hereditary character of equivalence, we derive integral reductions
of other non-integral classes too.

This allows us to show, for instance, that Sugihara monoids are strongly amal-
gamable, whence they enjoy a strong form of epimorphism-surjectivity. On the
logical front, we obtain the finite Beth definability property for deduction in all
axiomatic extensions of the relevance logic RM® (that is, R—mingle, formulated
with Ackermann constants [2]). For RM?" itself, we obtain the projective Beth
property for deduction, and a new proof of deductive interpolation. Finally, we
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generalize the following result from [49]: in the negation-less fragment of RM?®,
every extension is an axiomatic extension.

2. RESIDUATED STRUCTURES

An algebra A = (A;-, —, A, V,t) of type (2,2,2,2,0) is called a commutative
residuated lattice (briefly, a CRL) if (A;-,t) is a commutative monoid, (A; A, V)
is a lattice, and for all a,b,c € A,

c<a—biff a-c<b,
where < denotes the lattice order. In this case, A also satisfies
- (x—=y) <y
Ly <= t<z—y
r+-z<y-z and
r<y = z—r<z—y and
y—z2<xr—=2
t—z=2x
(xry)—z=y—=(x—2)=2x— (y— 2).
The class of all CRLs is an arithmetical variety with the congruence extension
property [1, 22]. Every CRL A is t-regular, i.e., each congruence 6 of A is
determined by the equivalence class t/0 := {a € A : a =¢ t}. This follows
from the quasi-equations
(1) (e yANt=t < ==y,

which are valid in all CRLs, where x <+ y := (z = y)A(y — x). For additional
background on CRLs, see [23, 29].

3. SEMILINEARITY AND IDEMPOTENCE

A CRL A is said to be distributive if its lattice reduct is distributive; it
is semilinear if it can be embedded into a direct product of totally ordered
CRLs. In the latter case, A is actually a subdirect product of totally ordered
CRLs (because total order persists in subalgebras) and, when verifying that A
satisfies a quasi-equation, we may assume without loss of generality that (A; <)
is a chain.

The semilinear CRLs can be characterized as the distributive ones that satisfy

t<(z—yVy—a),

whence they form a variety [29]. In the literature, ‘representable’ is a common
synonym for ‘semilinear’.
Whereas every CRL satisfies the distribution laws

(2) z-(yVvz) = (z-y)V(z-2),
(3) = (ynz) = (@—=y) A —2),
(4) (xVy) =z =(x—2)A(y—2),
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the semilinear ones also satisfy

(5) z-(ynz) = (x-y)A(z-2),
(6) x—(yVz) =(x—=y V(e—z2),
(7) (zAy) =z = (zr—2)V(y—2).

The following lemma is easily verified (see [26] if necessary).

Lemma 3.1. Let A be a semilinear CRL—or more generally, a CRL satisfying
(5). Then A satisfies x = (x At) - (x V).

We adopt the abbreviations
¥ i=x—t and |z|:= 2z — 2.
Every CRL satisfies

x <z and ™ =2z" and t < |z|

If a CRL is idempotent (i.e., it satisfies x - x = z), then it also satisfies

(8) x <z,

9) r=|zr] <= t<u,
(10) =z = z<t,
(11) r=1" < z=t.

A CRL A is finitely subdirectly irreducible iff its identity element t is join-
irreducible in the lattice reduct (A; A, V), see [24]. If the set {a € A :a < t}
has a greatest element, then A is subdirectly irreducible. The converse holds

when A is idempotent—and somewhat more generally [48]. Thus, by Jénsson’s
Lemma (see [34] or [12, Thm. IV.6.8]),

a semilinear idempotent CRL A is finitely subdirectly irreducible

iff (A; <) is a chain; it is subdirectly irreducible iff (A; <) is a

chain in which t is the cover of some element.
This remains true for CRL-expansions (i.e., CRLs, possibly enriched with extra
operations), provided that A and its CRL-reduct have the same congruences.

The variety of semilinear idempotent CRLs is locally finite, i.e., every finitely

generated member of this class is a finite algebra [54]. A totally ordered idem-
potent CRL A is determined by its reduct (A;*, <); it is also determined by
(A; -], <). These claims follow from (9)—(11) and the next theorem.

Theorem 3.2. ([54]) Let A be a totally ordered idempotent CRL. Then
(i) A satisfies

x if |yl <zl
Ty = Yy if x| <yl and :c—>y:{
r ANy if |z =yl

*Vy if <y
¥ Ny if x> vy.
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(ii) Let t <a € A and define
Yo={ceA:c"=a}, ie, Yo={ceA:c<t and |c| =a}.

Then Y, is an interval of (A;<). Also, Yo # 0 iff a** = a, in which
case a* is the greatest element of Y,.

An element a of a CRL will be called negative if a < t, and positive if t < a.
Given a totally ordered idempotent CRL A, the non-empty sets of the form
Y. (a positive) clearly partition the negative elements. Thus, by Theorem 3.2,
A will be generated as an algebra by its negative elements iff a** = a for all
positive a € A. This motivates the next definition.

Definition 3.3. The variety GSM of generalized Sugihara monoids consists of
the semilinear idempotent CRLs that satisfy

(12) (z V)™ =z Vt,

or equivalently, t <z = 2™ = z. (The reason for this name will become clear
in Section 5.) The algebras in GSM are therefore just the subdirect products of
totally ordered idempotent CRLs A in which Y, # ) for all positive a € A.

b =0 =2a" = |z| forallz e,
a = a* = 2" = |z| forallzey,
t =t" =2 = |z forallz el
Y
a*
Y,
b*
Y,

Figure 1. A totally ordered member of GSM, illustrating Theorem 3.2(ii)

Lemma 3.4. Fvery generalized Sugihara monoid satisfies
x=(xAt).(z"At)".

Proof. By (4), every CRL satisfies (z V t)* = 2* At* = 2* A t, so GSM satisfies
xVt=(zxVt)™* = (2* At)*, and the result follows from Lemma 3.1. O

Corollary 3.5. A semilinear idempotent CRL is a generalized Sugihara monoid
iff it is generated by its negative elements.
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Proof. The forward implication follows from Lemma 3.4. By semilinearity, the
converse need only be checked in the totally ordered case, as surjective homo-
morphisms always map generating sets onto generating sets. Thus, the remarks
before Definition 3.3 complete the proof. U

4. RELATIVE STONE ALGEBRAS

An integral CRL is one whose identity element t is its greatest element. In
these algebras, we always have a < b — a, while a < b iff a — b = t; in
particular, a — t =t and (1) simplifies to
(13) rToy=t <= r=y.

A Brouwerian algebra is an integral idempotent CRL, i.e., a CRL in which
a+b = aAb for all elements a,b. Clearly, these algebras have the contraction
property x — (x > y) = x — y.

Every totally ordered Brouwerian algebra satisfies

ot it <y
(14) x—)y—{y it 7>y and
_ rz if z<y;
(15) (:U—>y)—>x—{t it x>y

The variety RSA of relative Stone algebras consists of the semilinear Brouwerian
algebras. Thus, RSA is the class of all integral members of GSM and it is
very well understood. If A € RSA is totally ordered, then, in the notation of
Theorem 3.2(ii), we have Y; = A.

Lemma 4.1. For any elements a,b of a relative Stone algebra, the following
conditions are equivalent:
(i)a—=b=band b— a=aq;
(ii) aVb=t.
In a totally ordered relative Stone algebra, these conditions are equivalent to
(iii) a=t or b=t.
Proof. Clearly, the lemma’s second assertion follows from its first, and the first

need only be verified in the totally ordered case. The result is therefore an easy
consequence of (14). O

Lemma 4.2. RSA satisfies ((z = y) > z)V (x = y) =t.

Proof. Again, an examination of the totally ordered algebras suffices, and the
result follows readily from (14) and (15). O

5. INVOLUTION AND SUGIHARA MONOIDS

An involutive CRL is the expansion of a CRL A by a basic unary operation
= such that =—a = a and ¢ — —b = b — —a for all a,b € A. In this case,
the De Morgan laws for —, A,V hold as well. Involutive CRLs still have the
congruence extension property, because they are termwise equivalent to CRLs
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with a distinguished element f such that (a — f) — f = a for all elements a.
(Define f = —t in one direction, and —a = a — f in the other.) In an idempotent
involutive CRL, we always have f < t.

An involutive CRL A is said to be odd if -t = t, i.e., if a** = a for all a € A.
In this case, A is termwise equivalent to its CRL-reduct, as —a = a* for all
a € A.

Definition 5.1.

(i) The variety SM of Sugihara monoids consists of the idempotent dis-
tributive involutive CRLs.

(ii) The class PSM of positive Sugihara monoids consists of the CRLs A
that can be extended to Sugihara monoids (i.e., A is a subalgebra of
the -, —, A, V, t reduct of some Sugihara monoid).

(iii) OSM denotes the variety of odd Sugihara monoids.

J.M. Dunn, in his contributions to [2], showed that Sugihara monoids are
semilinear. In fact, SM is the smallest variety containing the unique Sugihara
monoid

Z—{0}={a:0#a€Z};-—,NV,—1)

on the set of all nonzero integers such that the lattice order is the usual total
order, the involution — is the usual additive inversion, and the term function
of |x| := = — x is the natural absolute value function. In this algebra,

the element of {a,b} with the greater absolute value, if |a| # |b;
a-b = .
aNb if |a| = 0],

and the residual operation — is given by

- (—a) Vb if a<b;
@ |l (ma)Ab ifakd

(cf. Theorem 3.2). Note that t is 1 and f is —1 in Z — {0}, so (—1)* = 1.
Although Z — {0} is not odd, it has only one element a for which a** # a,
namely a = —1. In particular, the identity (12) is valid in Z — {0}, and hence
in SM. It follows that

OSM™ C PSM C GSM,

where OSM™ is the variety of CRL-reducts of odd Sugihara monoids. Both
inclusions are strict. It is shown in [49] that PSM is itself a variety.

In the Sugihara monoid Z = (Z;-,—,A,V,—,0) on the set of all integers,
the operations are defined like those of Z — {0}, except that 0 takes over from
1 as the identity element for -. Both t and f are 0 in Z, so Z € OSM.

It follows from Dunn’s results in [2] that OSM is the smallest quasivariety
containing Z, and that SM is the smallest quasivariety containing both Z — {0}
and Z. Observe that Z is a homomorphic image of Z — {0}. The kernel of
the homomorphism identifies —1 with 1; it identifies no other pair of distinct
elements. We cannot embed Z into Z — {0}, owing to the involution. Never-
theless, the CRL-reduct of Z is isomorphic to the subalgebra on Z — {—1,0}
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of the CRL-reduct of Z — {0}. Consequently, PSM is the smallest quasivariety
containing the CRL-reduct of Z — {0}.

6. CATEGORICAL EQUIVALENCE

Recall that two categories C and D are said to be equivalent if there are
functors F': C — D and G: D — C such that F o G and G o F are naturally
isomorphic to the identity functors on D and C, respectively. In the concrete
category associated with a class of similar algebras, the objects are the members
of the class, and the morphisms are all the algebraic homomorphisms between
pairs of objects. The set of homomorphisms from A into B is denoted, as
usual, by Hom(A, B). Two isomorphically-closed classes of similar algebras,
C and D, are said to be categorically equivalent if the corresponding concrete
categories are equivalent. For this, it is sufficient (and necessary) that some
functor F': C — D should have the following properties:

(i) for each U € D, there exists A € C with F/(A) 2 U, and
(ii) the map h +— F(h) from Hom(A, B) to Hom(F(A), F(B)) is bijective,
for all A, B € C.
In this case, F' and some functor GG from D to C witness the equivalence of these
concrete categories. We call G a reverse functor for F', and vice versa. Note
that C and D are not assumed to have the same algebraic similarity type.

In [26], we proved that OSM is categorically equivalent to RSA. As categori-
cal properties often reflect metalogical features of deductive systems, it would
be desirable to extend this correspondence beyond OSM—for instance to the
variety SM of all Sugihara monoids, or at least to PSM. These classes model
the well known system RM? from relevance logic [2, 18] and its negation-less
fragment.

The equivalence functor from OSM to RSA is the ‘negative cone’ functor. In
general, the negative cone of a CRL A = (A;+,—, A, V, t) is the integral CRL

A" =(A"; 7, =, A,V t)
on the set A~ := {a € A:a < t}, where -7, A7, V™ are just the respective
restrictions of -, A,V to A~ x A7, and the residual —~ is given by

a—"b=(a—b At foralabecA.

(If A is an involutive CRL, then A~ denotes the negative cone of the CRL-
reduct of A.)

The negative cone of a positive Sugihara monoid is still a relative Stone al-
gebra, but PSM and RSA are not categorically equivalent, as their subvariety
lattices are not isomorphic (see Theorem 9.2 below). To restore equivalence,
we need to eliminate some RSA-morphisms by adding structure to the rela-
tive Stone algebras. We shall prove that it is sufficient to add a single unary
operation, which is a nucleus in the sense of the next section, having certain
properties. But it makes sense to try to extend the domain of the equivalence
from PSM to the widest possible variety of CRLs, relaxing the properties of the
nucleus accordingly. If a negative cone construction is still to be used, then the
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non-integral algebras should be determined by their negative elements. Since
a semilinear idempotent CRL is generated by its negative elements iff it is a
generalized Sugihara monoid, the variety GSM is a natural boundary for this
investigation. We shall show that GSM is categorically equivalent to the variety
of all relative Stone algebras with an arbitrary nucleus (Theorem 8.7).

Once established, the desired equivalence can be restricted to subvarieties
of GSM, including PSM. The algebras in GSM (and PSM) need not have an
involution, however, and every involutive algebra in GSM is in fact a Sugihara
monoid. Therefore, we shall also establish a category equivalence between Sug-
ihara monoids and another variety of enriched relative Stone algebras. For that
purpose, we shall add a special constant (as well as a nucleus) to the type of
RSA; see Theorem 10.5.

7. NUCLEI
A nucleus of a CRL A is a function N: A — A such that, for all a,b € A,
(16) a < Na= NNa,
(17) if a <b then Na < Nb,
(18) Na-Nb< N(a-b).

Nuclei are used extensively in the theory of residuated structures, particularly in
connection with embedding problems, see [23]. A nuclear CRL is the expansion
of a CRL A by a nucleus N. In this case, for all a,b € A, we have

(19) a—b< Na— Nb,

because Na - (a — b) < Na-N(a —b) < N(a-(a — b)) < Nb. Consequently,
N is compatible with every congruence 6 of A. Indeed, since A/0 is again a
CRL, it follows from (1) that, for all a,b € A,

(20) a=gbiff (a<>b)ANt=gt.

So, if a =4 b, then
(Na <+ Nb)At =g (Na <> Nb) A (a <+ b) At [by (20)]
=(a<b) At [by (19)] = t,

whence Na =y Nb. In other words:

Theorem 7.1. A nuclear CRL B and its CRL-reduct A always have the same
congruences. In particular, B is [finitely] subdirectly irreducible iff A is.

Notation. For a class C of CRLs, we use NC to denote the class of all nuclear
CRLs (A, N) such that A € C.

The inequalities in (16)—(18) can be rendered as equations involving A, and
the definition of a nucleus can be made purely equational, because (17) can be
replaced by N(a A b) < Nb. This, with Theorem 7.1, establishes the following
facts.
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Corollary 7.2. If V is a variety of CRLs, then NV is also a variety, and NV
is arithmetical, congruence extensible and t—regular.

In this case, if B € NV and the CRL-reduct of B is semilinear, then B is
a subdirect product of totally ordered members of NV.

Now suppose A is a Brouwerian algebra and N a nucleus of A. It is easy to
see that N(a Ab) = Na A Nb for all a,b € A, but N need not preserve joins.
When A is a relative Stone algebra, however, the law N(a V b) = Na V Nb
follows from the semilinearity of A and the isotonicity of N. So, in this case, N
is an idempotent endomorphism (i.e., a retraction) of the lattice reduct of A.
In summary: a unary operation N on a relative Stone algebra A is a nucleus
iff it is a retraction of the lattice reduct of A and a < Na for all a € A.

In the variety NRSA of nuclear relative Stone algebras, we tend to denote
the nuclear operation as ¢, rather than N, because it is a closure operator that
preserves joins.

Example 7.3. For every CRL A, if a € A7, then ¢ € A~. When A is
semilinear and idempotent, then A~ € RSA, and a nucleus of A~ is defined
by ¢a = a** (i.e., Oa = (a =4 t) =4 t for all @ € A7). This nucleus need
not be a term function of A~. We use Ay to denote the resulting algebra
(A7, 0) € NRSA, which we call the nuclear negative cone of A.

Notation. If A is a Sugihara monoid, then A stands for the nuclear negative
cone of the CRL-reduct of A. If C is a class of [involutive] CRLs, then C~ shall
abbreviate {A” : A € C} and, where appropriate, C; := {A; : A € C}.

Our immediate aim is to prove that GSM and NRSA are categorically equiv-
alent. Example 7.3 gives us a way to associate a nuclear relative Stone algebra
A, with a given generalized Sugihara monoid A. The construction becomes a
functor from GSM to NRSA if we also restrict GSM—morphisms to the negative
cones of their domains. We call this the nuclear negative cone functor. It is
much less obvious how to construct a reverse functor from NRSA to GSM. That
will be done in the next section.

8. A FuncTOR FROM NRSA TO GSM

Let A = (A;A,—, A, V, 0, t) be a nuclear relative Stone algebra, where, as
usual, < denotes the lattice order of A. We define

S(A)={{a,dy e AxA:aVvd =t and Od' =d'}.
Thus, by Lemma 4.1,
S(A)={{a,d) e AxA:a—d =d =0d and d - a=a}.

Let (a,d’), (b,b') € S(A). We define

{a,a’y A (b,b) (aNb, a' V),
{a,a’)y v (b, V') (aVb,d NV,
(a,d') - (b)Y = {(((a=V)N(Db—=d))— (anb), O((a—=V)A(b—d))),
(a,d") — (b,b) ((a=b)AY —d),0(((a—=b)AY —d)) = (anl))).

b,V
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The genesis of these definitions will be discussed in Section 14.

To see that S(A) is closed under A, observe that
(anb)V(d V)= (avd V)NV V) > (avd)ABVY) =t
and O(a’ V) = 0d' vV OV = d' VI, because (a,d’), (b,b') € S(A). Similarly,
S(A) is closed under V.

Regarding closure under -, let m = (a — b') A (b — a’). Since OOm = Om,
we need only show that (m — (a A b)) VOm = t. By Corollary 7.2, A is a
subdirect product of totally ordered nuclear Brouwerian algebras, so it suffices
to prove the equality under the assumption that A is totally ordered. Then,
by Lemma 4.1, a or o’ is t, and b or V' is t, because (a,d’), (b,b') € S(A). If
a=>b=1tthen m = (aAb) =t, and if a’ =V =t then m = t, so the result
holds in these two cases. If a = b’ = t, then the equation to be proved is
((b—a')—b)VO(b—a')=t, and, because NRSA satisfies x < Qx, it suffices
to prove ((b — a’) = b) V (b — a’) = t. This follows from Lemma 4.2. Finally,
if a’ = b = t, then the result follows from the previous case, by symmetry.

Thus, S(A) is closed under -. The proof that S(A) is closed under — is very
similar. Clearly, (t,t) € S(A), so we may consider the algebra

S(A) = (S(A);-, =, A, V, (t, t)).

Theorem 8.1. If A is a nuclear relative Stone algebra, then S(A) is a gen-
eralized Sugihara monoid.

Proof. Because (A; A, V) is a distributive lattice, so is (S(A); A, V). The lattice
order of S(A) is just
(21) (a,a’) < (b,b) iff (a<b and V' <d).
Note that - is commutative on S(A), by symmetry. Also, - idempotent with
identity (t,t): from a — a’ = a’ = Qd’ and a’ — a = a, we infer

{a,d'y - (a,ad"y = {(a = d) = a, O(a —d)) = (d — a, Od’) = (a,d),
and similarly, (a,a’) - (t,t) = (a,d’).

For associativity of -, let u = (a,a’), v = (b, V') and w = (¢, ') be elements of
S(A),soaVad =bVvbd =cVd =tand ¢a’ =a and OV = b and Oc’ = . Let
(p.g)=u-(v-w) and (r,s) = (u-v)-w.

Each of p,q,r,s has the form fA4(a,a’,b,V,c,c) for some term f in the lan-
guage of CRLs. So, by the subdirect decomposition, it suffices to prove that
(p,q) = (r,s) under the assumption that A is totally ordered. This gives rise

to eight cases, which reduce to the following four independent cases, because -
is commutative:

t ((6,0) - (t,¢)) = ((t,a') - (£,0)) - (8,),
t,a') - ((8,0) - (e, t)) = ((t,a') - (£,V)) - (c, 1),
t.a) - ((0,t) - (e, t) = ((t,d') - (b,t)) - (e, t),
a,t) - ((b;t) - (e, £)) = ({a,t) - (b, %)) - {c, ).



12 N. GALATOS AND J.G. RAFTERY
In the first of these equations, both sides simplify to (t, a’ AV A '); in the last,
both sides become (a A b A ¢, t). The second and third equations boil down to
(k= 0(c—=V)—=c), Ok)y = ((c—= (W ANd)) = ¢, O(c— (W Ad'))) and
(- (bAc),0l) = {lc—=00b—ad)) = ((b—d)—=b)Ac),0(c— OO — d))),
respectively, where

ki=0c—=b)A((c—=b)—=c)—d) and £ := (bAc)—d.

The reader should separate the cases ¢ < b’ and ¢ > b’ when checking the second
equation. In the third, separate b < o’ from b > a’. Properties (14) and (15)
are useful in both verifications.

Next, we establish the residuation axiom

(22) w<u—v iff u-w<w,

where u, v, w are as above. This amounts to showing that, of the four conditions
below, the first two are jointly equivalent to the last two:

(23) c<(a—=b) A0 —d)

(24) O(((a—=b)A@D —d)) = (anl)) <
(25) ((a—=d)A(c—d))—(anc)<b
(26) bV <O((a—d)A(c—d)).

Again, we may assume without loss of generality that A is totally ordered.
Suppose (23) and (24) hold, and note that (23) yields

(27) aAc<b and ¥ Aec<d.

We shall prove (26) first. Since A satisfies x < Qz, it suffices to show that
bV <a—  and V/ <c¢ — da/. The latter is an immediate consequence of the
second inequality in (27). For the former, set

d:= ((a—=bAb —d))— (anl).

Then a AV < d (as A is integral) < Od < ¢ (by (24)). So, ¥ < a — ¢,

completing the proof of (26). Note that (25) will be true if b = t, so assume

b # t. Then v/ = t, because bV V' =t and A is totally ordered. Now ¢ < a/, by

(27),i.e.,c = d =t. If ¢ =t, then

(28) ((a—=d)A(c—d)) = (ane)=t = (ahc)=ahc<Dh,

by (27), i.e., (25) holds. We may therefore assume that ¢’ # t, whence ¢ = t,

and so @’ =t (as ¢ < d’). Now, using integrality and (24) again, we have
a<(a—b)—a=d<d</,

i.e., a — ¢ =t. This allows us to repeat the calculation in (28), thus completing

the proof of (25).
Conversely, assume (25) and (26). Then

ahc<((a= )N (c—=ad)) = (anc)<b,



IDEMPOTENT RESIDUATED STRUCTURES 13

by (25), so ¢ < a — b. Also,
VAe <eAO((a— )N (c—d)) (by (26))
< OcAQ(c—d)=0(cA(c—d)) <0d =d,
so ¢ < — d’, whence (23) holds. With a view to proving (24), let
g:= ((a=b)AD —d))— (anb).
We must show that Qg < ¢’. This will be true if ¢ = t, so assume that ¢’ # t,
hence ¢ = t. We cannot have a = V' = t, as that would lead, via (26), to
the contradiction t = O(d Ad') < O = . If b = o’ = t, then (26) yields
b < O(a — ), whence
O0g=0(ant)<O(andla—))=0(aN(a— ) <O ={,
as required. If a = b =t, then (26) gives b/ < O(d' ANd') = O NQd' = Nd, so
Og = O((t) = d) = V) <O(((I ANd') = d) = (d Ad))
=0t = (dAd) =0 nd) <O =¢.
Finally, suppose o' = b = t. If a > ¢/, then (26) and (14) give t = O’ = ¢/,
whence Qg < ¢. So, assume a < ¢. Then (25) entails that a < b, whence
Og=0a <O =/,
as required. We have now shown that S(A) is a (distributive) CRL.
Because S(A) is distributive, it will be semilinear if
(t.4) < ((a.a) = (.)) V ((5,5) > (a,0")

for all (a,d’), (b,t') € S(A). This translates, via (21), into two inequalities, one
for each co-ordinate. Since t is the greatest element of A, the claim for the
second co-ordinate is trivial. In the first co-ordinate, we need to show that

(29) t=((a—=b0) AW —=d)V(b—a)A(d —=V)).

Once again, we may assume that A is totally ordered. Now (29) will hold when
a=0b=tand when a’ = = t, because A satisfies (z - y)V (y > z) =t. In
the remaining cases, viz. a = b =t or «/ = b =t, (29) is true as well, because

it asserts that t =tV h for a certain h € A. Thus, S(A) is semilinear.
Observe that, for all (a,a’) € S(A), we have

(30) {a,a’y* = {(d', 0a).

Indeed, (a,a)* = (t Ad, O((t Ad') — (aAt))) = (d, O(d' — a)) = (d, Oa).
To see that S(A) € GSM, suppose (t,t) < (a,a’) € S(A), so a = t, by (21).

We must show that (t,a’)** = (t,d). By (30), (t,a’)* = (¢/,0t) = (d,t), so

(t,ay™* = (d,t)* = (t,0d) = (t,d), as required. O

The universe S(A)~ of the negative cone of S(A) is {(a,t) : a € A}, by (21).

Theorem 8.2. If A is a nuclear relative Stone algebra, then A = S(A), the
isomorphism being a — (a,t).
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Proof. Obviously, a — (a,t) is a bijection from A to S(A)~ that preserves A,V
and t. It remains to note that if a,b € A, then

(31) (a,t) =~ (b,t) = (a — b, t), and

(32) (a,t)** = (Qa, t).

Indeed, ({(a,t) — (b,t)) A (t,t) = (a — b, O((a — b) — a)) A (t,t) = (a — b, t),
and, by (30), (a,t)* = (t, 0a)* = (Oa, Ot) = (Oa, t). O

Lemma 8.3. Let A be a nuclear relative Stone algebra, with (a,a’) € S(A).
Then

(33) {a,d"y = {a,t) - (t,d').
Proof. This is a special case of Lemma 3.1, in view of Theorem 8.1. Alterna-
tively, a — a’ = a’ = {a’ and a’ — a = a, by assumption, so

{a,t) - (t,d) = ((a = d') = a, O(a — d)) = (' —a, Od') = (a,d’). O
Example 8.4. Suppose A € NRSA is based on the chain d < ¢ < t. If 04 is
the identity function, then S(A) is based on the following chain X:

(d,t) < (c,t) < (t,t) < (t,c) < (t,d).
In this case, S(A) is isomorphic to the CRL-subreduct of Z on
—2<-1<0<1<2,

or equivalently to the CRL-subreduct of Z — {0} on -3 < —2 <1 <2< 3.1
On the other hand, if 0d = d and (Qc = t, then S(A) is based on X — {(t,c)}
and it matches —2 < —1 < 1 < 2 in the CRL-reduct of Z —{0}. If 0d = Qc = t,
then S(A) = A. Finally, if Od = ¢, then A is the free 1-generated algebra in
NRSA, while S(A) is based on X — {(t,d)} and is generated by (d,t). In this
case, S(A) is isomorphic to the (unique) algebra in GSM freely generated by a
single element a subject to the relation a At = a. These facts will be needed
in Corollary 14.4.

Theorem 8.5. Let A be a generalized Sugihara monoid. Then A = S(Ay).
The isomorphism h is given by a — (a A t, a* At).
Proof. Note first that h(a) € S(A,) for all a € A, because
(ant)V™ (a"At) = (ant)V(a"At)
=(aVa')At=(t—=a)V(a—t)At=t,

by the semilinearity of A, while {(a* At) = (a* At)™ = a™* At*™ = a* At, by
(7) and (4).

It follows from Lemma 3.4 that h is one-to-one. To see that it is onto, let
(a,a’) € S(Ay),s0t > a,a’ € Aand aVa' =aV™ d =t and Qa’ = d’. Let
b= (a — da') = a. We claim that h(b) = (a,d’), i.e., that

{((a = d)—=a)At, ((a—d)—a)" At) = (a,d).

LA subreduct of an algebra A is a subalgebra of the indicated reduct of A.
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Because A is semilinear, it suffices to prove this under the assumption that A
is totally ordered, whence a or a’ is t. If a = t then, since a’ < t, we have
b=a*>tand b* = ad** = Qa’ = d’, hence

h(b) = ('* At, d At) = (t,d') = (a,d’).

On the other hand, if a’ = t > a, then a* > t, whence a* > a, so by Theo-
rem 3.2(i), b = a* — a = a™ A a = a. In this case,

h(b) = (a At, a* At) = (a,t) = {a,d),

so h is indeed onto.

Clearly, h(t) = (t,t). To see that h preserves V and A, use the fact that
semilinear CRLs satisfy (z V y)* = 2* Ay* and (z Ay)* = 2* vV y* (by (4) and
(7)), as well as the distributive laws for A, V.

To show that h preserves -, let a,b € A. As aAt,bAt < t, we have
t <(ant)", (bAt)". The desired result h(a) - h(b) = h(a - b) boils down to

(34) (u—="(aANbAt), Qu) = ((a-b)At, (a-b)" At),
where
u:= ((ant) =" (B"At)A((DAL) = (a" AL))
= ((ant) > (" At)A((DAL) = (a*At)) AL
= ((ant) =D )A(ant)" A((bAt) > a™)AN(BAL)" At (by (3))
((ant) = b")A((BAL) > a™) At

= ((a= )YVE)A((b—a*)Va*) At (by (7).

Again, we may assume that A is totally ordered.

Suppose first that ¢ < b*. This means that a - b < t, whence b < a*. Thus,
t <a— b b— a* and so u = t. Recall that a -b € {a A D, a V b}, by
Theorem 3.2(i). Buta-b=a-a-b<a-t=caanda-b=a-b-b<t-b="b,so
ab<aAnb, hence a-b=aAb Now

u—"(aANbAt)=(t = (a-D)At=(a-b)At,
and (a-b)* At=((a-b) > t)At=1t=Ou,

because a - b < t = u. In other words, (34) holds when a < b*.

We may therefore assume that a £ b*, i.e., a+b £ t,i.e., b L a*, so b* < a
and t < a-b and a* < b. Dualizing the argument in the previous paragraph,
we obtain ¢ -b = aVb. Also, a — b* = a* Ab* and b — a* = b* A a”, by
Theorem 3.2(1). So, u = ((a* Ab*) V) A ((B* Aa*)Va*) ANt =b" Aa* At. Tt
follows that

Qu=u"=u=(aVb)*"ANt=(a-b)"At.
Also, u < a AbAt, because b* < a and a* < b. So,
u—=" (aAbAt)=(u— (aADAE) At =t =(a-b)At,

i.e., (34) holds. Thus, h preserves -.
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We have shown that A is an isomorphism between the lattice-ordered monoid
reducts of A and S (Ag) In each of these reducts, we already know that z — y

is always the largest z for which -z < y, so — is first order definable in terms
of -, A. Therefore, h(a — b) = h(a) — h(b) for all a,b € A, whence h is an

isomorphism of generalized Sugihara monoids. U

Theorem 8.6. Let A and B be nuclear relative Stone algebras.
(i) If h: A — B is a homomorphism, then S(h): {(a,a’) — (h(a),h(a’))
is a homomorphism from S(A) into S(B).
(ii) The map h +— S(h) is a bijection from Hom(A, B) to Hom(S(A), S(B)).
Proof. (i) follows straightforwardly from the definitions of the operations.
(ii) If a € A, then (a,t) € S(A). From this it follows easily that the function
h+— S(h) is injective on Hom(A, B).
For surjectivity, consider g € Hom(S(A), S(B)). If t5(4) > w € S(A) then
g(w) < g(t5A)) = t5(B) 50 there is a function §: A — B such that
(g(a),t) = g({a,t)) for all a € A.
We claim that ¢ € Hom(A, B). This follows from the fact that g is a homo-
morphism. For example, let a,a’ € A. Then
(Gla—d), t) = g(la = d’, t)) = g({a,t) =7 (d',t)) (by (31))
= g({a,t)) =~ g((d’,t)) = (4(a),t) =~ (§(a’),t)
= (g(a) = g(d’), t) (by (31)),
so gla — d') = g(a) = g(a'), while

< (0a),t) = g((0a,t)) = g((a,t)™) (by (32))
9({a, )" = (9(a), £)" = (0g(a),t) (by (32)),
whence g(0a) = 0g(a).
Moreover, if (a,a’) € S(A), then ¢a’ = d’, hence ¢g(a’) = g(a’), and so
(35) (a',t)" = (t,d') and (§(a'),t)" = (t,3(d)),

by (30). In this case, by (33) and (35),

9({a,a’)) = g((a,t) - (t,a)) = g((a,t) - (d,£)")

= g({a,t)) - g((d’.£))" = (§(a),t) - (9(d’), )"

= (g(a),t) - (t,5(a)) = (3(a), §(a)).
Thus, g = S(g), and the proof of surjectivity is complete. O
Theorem 8.7. The variety of generalized Sugihara monoids and the variety of
nuclear relative Stone algebras are categorically equivalent.

In particular, a category equivalence from NRSA to GSM is witnessed by the

functor that sends A to S(A) and h to S(h) for all A,B € NRSA and all
h € Hom(A, B) (where S(h) is as in Theorem 8.6).

The nuclear negative cone functor (sending A to A, and g to gla- for all
A,B € GSM and g € Hom(A, B)) is a reverse functor for S.
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Proof. The first two assertions follow from Theorems 8.1, 8.5 and 8.6 (cf. items
(i) and (ii) in the first paragraph of Section 6). The last assertion follows easily
from Theorems 8.2 and 8.5. U

9. CATEGORICAL ALGEBRAIC PROPERTIES

By Theorem 8.7, all purely categorical properties of NRSA will persist in
GSM, and some of them are easier to establish in the integral setting of NRSA.
We identify a number of properties of this kind.

Let K be a quasivariety of algebras. A congruence 0 of an algebra A is
called a K—congruence if A/6 € K. We say that K has the relative congruence
extension property if, for each B € K, the K—congruences of any subalgebra A
of B are just the restrictions to A x A of the K—congruences of B. This reduces
to the ordinary congruence extension property when K is a variety.

Recall that a homomorphism h between algebras in K is called a (K-) epimor-
phism provided that, for any two homomorphisms f, g from the target of h to
a single member of K, if f o h = go h, then f = g. Clearly, every surjective
homomorphism between algebras in K is an epimorphism, but the converse is
not generally true. If every K—epimorphism h is surjective, then K is said to
have the ES property. Note that, when verifying this property, we may assume
without loss of generality that h is an inclusion map.

The strong epimorphism-surjectivity (or strong ES) property for K asks that
whenever A is a subalgebra of some B € K and b € B — A, then there are two
homomorphisms from B to a single member of K that agree on A but not at
b. This clearly implies the ES property. The weak ES property for K forbids
non-surjective K—epimorphisms h: A — B in all cases where B is generated
(as an algebra) by X U h[A] for some finite X C B. It makes no difference to
this definition if we stipulate that X is a singleton.

The amalgamation property for a class K of similar algebras is the demand
that, for any two embeddings gg: A — B and go: A — C between algebras
in K, there exist embeddings fp: B — D and fo: C — D, with D € K,
such that fgogp = fo o go. The strong amalgamation property for K asks, in
addition, that D, fp and fc can be chosen so that (fpogp)[A] = fr[B]Nfc[C].

These conditions are linked as follows (see [33, 55, 37] and [32, Sec. 2.5.3]).

Theorem 9.1. A quasivariety has the strong amalgamation property iff it has
the amalgamation and weak ES properties. In that case, it also has the strong
ES property.

Clearly, a category equivalence functor F' between quasivarieties sends mono-
morphisms (i.e., embeddings) to monomorphisms, and epimorphisms to epimor-
phisms. Less obviously, the same applies to surjective homomorphisms (see [44,
p. 222], for instance). Thus, the amalgamation, ES and relative congruence ex-
tension properties are preserved by F. Consequently, strong amalgamation
transfers as well, by Theorem 9.1. The strong and weak ES properties persist
under F' too, even in the absence of amalgamation (see [26, Remark 5.10]).
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We shall want to apply Theorem 8.7 in conjunction with the following general
result, which derives from [5, 6] (see [26, Remark 7.2] for explanation).

Theorem 9.2. Suppose F': C — D witnesses a category equivalence between
quasivarieties. Then, for each subquasivariety E of C, the restriction of F' to
E witnesses a category equivalence between the concrete categories E and

E :={BeD:BxF(A) for some A € E},

and the map E — E’ defines an isomorphism between the subquasivariety lattices
of C and D, which takes the subvarieties of C onto those of D.

Let F be as in Theorem 9.2. If an algebra A € C possesses one of the
following properties, then so does the algebra F'(A) € D:

A is finite
A is finitely generated.

This is explained in [44]. Consequently, if C is locally finite, then so is D. For
example, Theorem 8.7 implies that NRSA is locally finite, although it is not
hard to prove this directly.

We have noted that F' preserves the injectivity and surjectivity of homo-
morphisms, and it sends products to products, as these are determined, up to
isomorphism, by their categorical features. So, if g is a subdirect embedding of
A into [],c; Ai, where A, A; € Cfor all i € I, then F(g) is a subdirect em-
bedding of F(A) into [],.; F(A;). In particular, when C and D are varieties,
the list of F-invariant properties includes:

A is finitely subdirectly irreducible
A is subdirectly irreducible.

From Theorem 9.2 and the above remarks, we obtain:

Theorem 9.3. Let F': C — D be a category equivalence between varieties. Let
X be a subvariety of C and Y a subvariety of D. Then F restricts to a category
equivalence from X to Y iff the [finitely] subdirectly irreducible algebras in Y
are exactly the isomorphic copies of the F—images of the [finitely] subdirectly
irreducible algebras in X.

10. SUBVARIETIES AND EXPANSIONS OF GSM

Definition 10.1. The variety CGSM of centred generalized Sugihara monoids
consists of the algebras in GSM that satisfy

t<z™ V(2™ — x).

The finitely subdirectly irreducible algebras in CGSM are exactly the totally
ordered idempotent CRLs A such that, for all a € A, we have

a*=a or a"=t>a.
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In this case, in the notation of Theorem 3.2(ii), if t < b € A, then |Y3| =1 or
Y, = Y;. The CRL-reduct of Z — {0} is therefore centred (with Y; = {—1,1}
and Y, = {—b} for 2 < b € Z), so PSM C CGSM.

b:b**

a = a

t = 2% forallz € Y;
Y:

b*

Figure 2. A totally ordered centred algebra in GSM
Theorems 8.7 and 9.2 show that CGSM and PSM are categorically equivalent
to suitable subvarieties of NRSA. Let us identify those subvarieties.

Lemma 10.2. The following conditions on an algebra A € NRSA are equiva-
lent.

(i) A satisfies O(Qx — ) = t.
(ii) A satisfies x — Qy = Oz — y).
(iii) A satisfies © — Qy < O(z — y).

Proof. Assume without loss of generality that A is totally ordered. We make
repeated use of (14).

(i) = (ii): Let a,b € A. If a < b, then a < Ob and
a—Ob=t=30t=230(a —b).

Now assume a > b, so a — b =b. If a > Ob, then a — O0b = 0b = O(a — b).
And if a < Ob, then Qb > b, whence

a— Ob=1t=0(0b—b) [by (i)] =0b=0(a — b).
(ii) = (iii) is trivial.
(iii) = (i): Given a € A, we have O(0a — a) <t = Qa — Ca < O(Oa — a),
by (iii), so ¢(Qa — a) = t. O

Let V be the subvariety of NRSA axiomatized (relative to NRSA) by
O(0r — z) =t.

By Theorem 7.1, the finitely subdirectly irreducible algebras in V are the totally
ordered nuclear Brouwerian algebras A such that, for each a € A, the element
O4a is a or t. In any such A, the set

F:={acA: 0% =t}

is upward-closed, and {“ is the identity function on the complement of F.
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Theorem 10.3. CGSM is categorically equivalent to V.

Proof. Let A be a generalized Sugihara monoid. Then A = S(A;), by The-
orem 8.5. So, by the above remarks, A is a finitely subdirectly irreducible
member of CGSM iff A, is a finitely subdirectly irreducible member of V, and
the result follows from Theorem 9.3. U

Let W be the subvariety of NRSA axiomatized by
(Qx = 2)V((yV(y—x)) Adx) =t.

By Theorem 7.1, the finitely subdirectly irreducible algebras in W are the totally
ordered nuclear Brouwerian algebras A such that

either (1) ¢4 is the identity function of A, or (2) (A; <) has a

co-atom ¢ and OA¢ = t and O = a whenever ¢ #a€ A
Consequently, W C V and, if B denotes the CRL-reduct of Z — {0}, then
B, €W.

Theorem 10.4. PSM is categorically equivalent to W.

Proof. Whenever C'is a subdirectly irreducible algebra in the quasivariety gen-
erated by a class Y of similar algebras, then C' can be embedded into an ultra-
product of members of Y.2 So, because PSM is the smallest quasivariety con-
taining the CRL-reduct B of Z — {0}, every subdirectly irreducible positive
Sugihara monoid embeds into an ultrapower of B. Theorems 8.7 and 9.2 show
that PSM is categorically equivalent to PSM, and that PSM, is a variety
(because PSM is). We show that PSM; = W.

Let A € PSM and suppose A, is finitely generated (hence finite). Then A
is finite, because A = S (Ag), by Theorem 8.5. Consequently, A is a subdirect
product of finite algebras A; (i € I), each of which embeds into an ultrapower
of B. For each i, the property of not containing a subalgebra isomorphic to A;
persists in ultraproducts, as it is first order (owing to the finite size and type
of A;). So, each A; embeds into B itself. Because the nuclear negative cone
functor is a category equivalence from GSM to NRSA, it follows that Ag is a
subdirect product of the algebras (A;),, i € I, and that each (A;), embeds
into By, whence A, € W (because B, € W). Therefore, PSMy C W, as every
variety is generated by its finitely generated members.

Conversely, suppose A € W. Since A = S(A), (Theorem 8.2), it suffices to
show that S(A) € PSM. Again, because S is an equivalence functor, S(A) is
a subdirect product of algebras S(A;) (i € I), where each A; is a subdirectly
irreducible member of W. Thus, each A; is a totally ordered Brouwerian algebra
with a co-atom ¢;, and (47 fixes all elements of A; except possibly ¢; (in which
case, Odic; = t; := tAi). Tt follows that each S(A;) is a totally ordered
member of GSM, and that the universe S(A;) of S(A;) is

X = (Al X {tz}) U ({tz} X Az)

2 This is well known. For a stronger result, see [16, Lem. 1.5].
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if 04 is the identity function on A;; otherwise, S(A4;) = X — {{t;,c;)}. Tt is
then easy to see that every finitely generated—i.e., finite—subalgebra of each
S(A;) embeds into B (cf. Example 8.4). Therefore, each S(A;) belongs to
PSM, and so S(A) € PSM. O

Sugihara Monoids.
Let X be the class of all (A, f), with A € NRSA and f € A, satisfying
(36) zV(x—1f)=t=0(0x — x),
(37) Qr=t «<— f <.
By considering subdirectly irreducible algebras, we can show that the equations
Of =t and (Qz—»x)vV({f—2x)=t
could replace (37) in the definition of X, so X is a variety.
For A € NRSA and f € A, the algebra (A, f) is a finitely subdirectly irre-
ducible member of X iff it is totally ordered and
either (1) f = t and (! is the identity function of A, or (2) f is a
co-atom of (A; <) and Of =t and Qa = a whenever f # a € A.
Thus, if (A, f) € X, then A € W.

Theorem 10.5. SM is categorically equivalent to X.
Proof. Given (A, f) € X, we define S((A,f)) := (S(A), ), where
(38) —{a,d’) := (a,a’) — (£f,t) for all (a,d’) € S(A).

Note that S(A) € PSM, by the proof of Theorem 10.4. We claim that S({A,f))
satisfies =—x = z. As in the proof of Theorem 8.1, it suffices to verify this under
the assumption that A is totally ordered, whence, for each (a, a’) € S(A), either
a or d is t, and Qa’ = a’. It follows straightforwardly from the definition of —
in S(A) that =—(t,d) = (t,d’) if Oa’ = a’. To show that =—(a,t) = (a,t), the
reader should separate the cases a < f, a =f, a = t. Thus, S((A,f)) € SM.
Because — is defined in terms of — on S((A,f)), Theorems 8.5 and 8.6 go
through with X and SM in the respective roles of RSA and GSM. This gives an
equivalence functor S from X to SM. g

It is easily checked that a reverse functor F': SM — X for S is given by
F(A) = (A;,~t) and F(h) = h|4- for all A, B € SM and h € Hom(A, B).

If A € RSA is considered as a member of X satisfying 0o = x and f = t,
then (38) simplifies to

—{a,a’) = (da’,a) for all (a,a’) € S(A)

and (S(A),—) is an odd Sugihara monoid. This recaptures the category equiv-
alence between OSM and RSA established in [26].

The above results are summarized in Figure 3. The horizontal double lines
signify category equivalence, while the solid single lines indicate containment.

The broken single lines signify that the algebras in the lower variety are (or are
termwise equivalent to) expansions of suitable algebras in the upper variety.
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GSM NRSA
CGSM v
PSM W
| |
| |
SM $ X
|
|
OSM ¢ RSA

Figure 3. Summary of category equivalences

Bounds.

If a CRL A has a least element |, then T = 1 — 1 is its greatest element.
In this case, the expansion B of A by the distinguished element L is called a
bounded CRL, and we sometimes write B = A . The negative cone B~ of B
is defined as before, except that LB is distinguished in B~. If C is a class of
CRLs, then C; shall denote the class of all bounded CRLs whose CRL-reducts
belong to C. We extend these conventions to involutive and nuclear CRLs in
the obvious way. We also extend the notation NC to bounded classes C.

Let GA denote the variety of bounded relative Stone algebras, a.k.a. Gédel
algebras. The category equivalence between GSM and NRSA can be extended
to one between GSM | and NGA. In the construction of S(A), we simply define
15(4) = (14 t) for A € NGA. Similarly, CGSM,, PSM, SM, and OSM | are
categorically equivalent to V, W, X; and GA, respectively.

11. DEDUCTIVE SYSTEMS

For present purposes, a deductive system is any substitution-invariant fini-
tary consequence relation F over formulas in an algebraic language. In this
context, basic operation symbols and terms are usually called connectives and
formulas, respectively. Substitutions are the homomorphisms between formula
algebras, i.e., between absolutely free algebras generated by sets of variables of
the language. Thus, the defining postulates of deductive systems are as follows,
where ' UIT U {s} is any set of formulas:

if sel then T F s

if O+t foralltell, and II+ s, then I' F s;

if I' - s, then A[I'] - h(s) for every substitution h;

if I' - s, then I = s for some finite IV C T’ (finitarity).

The theorems of F are the formulas s such that () - s (briefly, F s). We signify

TrHtforallt €e I' by I' F II, and ‘I' - IT and IT + I'” by I" 4+ II. Also,
I'yr F s means I' U {r} F s. Deductive systems can be characterized as the
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natural deducibility relations Fg of arbitrary formal systems F consisting of
axioms and finite inference rules [39].

Example 11.1. For each quasivariety K of CRL-expansions, we define a binary
relation Fk from sets of formulas to single formulas as follows:

I g s iff, for some finite IV C I, the quasi-equation
(&rer t <7(Z)) = t < s(T)
is valid in K.

Here, & denotes first order conjunction. Many familiar nonclassical logics are
specified by formal systems F, where kg is kg for some such K. For exam-
ple, RM?® and TUML correspond in this way to the varieties SM and OSM |,
respectively (see [2, 18, 45]), while exponential-free linear logic corresponds to
the variety of all bounded involutive CRLs (see [4, 27, 57]). Since CRLs satisfy
(1), bk is always an algebraizable deductive system in the sense of [11], with K
as its equivalent algebraic semantics. This allows us to apply ‘bridge theorems’
such as those in the next result.

Theorem 11.2. Let K be a [quasi]variety that is the equivalent algebraic seman-
tics for a deductive system .

(1) ([10]) & has a local deduction theorem iff K has the [relative] congruence
extension property.

(i1) ([9]) F has the infinite Beth definability property iff all epimorphisms
between algebras in K are surjective.

(i) ([9]) & has the finite Beth property iff K has the weak epimorphism-
surjectivity property.

(iv) ([31]) F has the projective Beth property iff K has the strong epimor-
phism-surjectivity property.

(v) ([17]) When the conditions in (i) hold, then F has the interpolation
property iff K has the amalgamation property.

The metalogical notions in Theorem 11.2 are defined below. 3

Definition 11.3. Let F be a deductive system.

(i) F has the interpolation property if the following is true: whenever I' I s,
then I' = IV and I - s for some set IV of formulas, where every variable
occurring in a formula from I" already occurs both in s and in some
formula from I' (unless I" and s have no common variable).

(i1) ([14]) F has a local deduction (-detachment) theorem if there is a family
{A; : i € I} of sets of binary formulas such that the rule

I',r s iff there exists ¢ € I such that (I' - ¢(r, s) for all £ € A;)

3Ttems (ii)—(v) of Theorem 11.2 appear in their full generality in the sources cited, but
they were first established in more concrete settings. For accounts of their antecedents, see
Czelakowski and Pigozzi [17], Gabbay and Maksimova [21], Hoogland [32], and Kihara and
Ono [36]. In particular, (iii) was proved in a restricted form by I. Nemeti in [30, Thm. 5.6.10].
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applies to all sets of formulas I' U {r, s}. The word ‘local’ is dropped if
we can arrange that |I| = 1.

Example 11.4. (cf. [25]) Let K be a variety of [involutive] [bounded] CRLs.
Then kg has the following local deduction theorem:

(39) I',r bk s iff there exists n € w such that I' g (r At)" — s.

Here, 2° := t and 2" := 2" .1 for each n € w. If K satisfies (x At)? = 2 At,
then (39) becomes a deduction theorem:

Dyrbk s iff T (rAt) — s,
It reduces to the classical deduction theorem
(40) Dirbgs it Tk r —s

when the algebras in K are integral and idempotent. In (40), the implication
from right to left does not depend on any special assumptions about K.

We continue to use x,y, z, with or without indices, to denote variables. If X
is a set of variables, then Fm(X) denotes the set of all formulas involving only
variables from X.

From now on, our deductive systems F will be assumed equivalential in the
sense of [52, 15], i.e., there is a set A of binary formulas such that

FA(z,z) (ie., Fd(z,z) for all d € A)

{z} UA(z,y) by

Uiy Az, i) A (21, zn), (Y1, - -5 Yn))
for every connective r, where n is the rank of . Any such A is essentially unique,
i.e., if A’ serves the same purpose, then A(z,y) 4F A’(z,y). All algebraizable

systems are equivalential [11]. For the systems kg in Example 11.1, we can
take A to be {x — y, y — x}, or alternatively {x <> y}.

Definition 11.5. The following terminology applies if X, Y and Z are disjoint
sets of variables, where X # () or the language contains some constant symbols.

Let ' C Fm(X UY U Z). We say that I' implicitly defines Z in terms of X
via Y in F provided that, for every z € Z and every substitution h, defined on
XUYUZ, if h(z) =z for all x € X, then

TURT]F A(z, h(2)).

In the event that Y = (), we simply say that I' implicitly defines Z in terms of
X. On the other hand, we say that I' explicitly defines Z in terms of X via Y
in F provided that, for each z € Z, there exists t, € Fm(X) such that

' Az, t,).

Again, we omit ‘via Y’ if Y = ().
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Example 11.6. In classical propositional logic (CPL), the set
F:={z—>x,2z—> 29, 21— (22 = 2)}

implicitly defines {z} in terms of {z1,z2}. It does so explicitly as well, because
I' FepL 2z < (21 A x2). In the implication fragment of CPL, however, I" still
defines {z} implicitly in terms of {x1, z2}, but there is demonstrably no explicit
definition (see [9]).

Definition 11.7.

(i) ([9]) F has the infinite Beth (definability) property provided that, in +,
whenever I' C Fm(X U Z) implicitly defines Z in terms of X, then I’
also explicitly defines Z in terms of X.4

(ii) The finite Beth property is defined like the infinite one, except that Z
is required to be finite in the definition.

(iii) (cf. [8, p.76]) F has the projective Beth property provided that, in F,
whenever I' C Fm(X UY U Z) implicitly defines Z in terms of X via Y,
then I' also explicitly defines Z in terms of X via Y.

In the definitions of the finite and projective Beth properties, it makes no
difference if we stipulate that Z is a singleton (see [9, 31]). According to [9], it
is not known whether the finite Beth property implies the infinite one, but the
latter is strictly weaker than the projective property.

12. BROUWERIAN EXPANSIONS

Our category equivalences reduce a number of questions about non-integral
structures to questions about (integral) Brouwerian algebras and their expan-
sions. In this section, therefore, we gather some facts about the latter. The
following observation is well known.

Lemma 12.1. Let A be a Brouwerian algebra with a;,b;,c,d € A, for i =
1,...,n, and let 0 be the congruence of A generated by {{a;,b;) : i =1,...,n}.
Then ¢ =¢ d iff Ni—jai <> b; <c < d.

Recall the definition of Fk from Example 11.1. Note that when K consists
of integral algebras and T is finite, then I' Fk s iff K satisfies

(&perr=t) = s=t.

Lemma 12.2. Let K be a variety of enriched Brouwerian algebras. Then the
classical deduction theorem (40) holds for ty iff every member of K has the
same congruences as its Brouwerian algebra reduct.

4 There is a subtlety here. The meaning of a Beth property should not depend on the
number of variables of F, otherwise Theorems 11.2(ii)—(iv) could not hold. But the cardinality
of a set of variables constrains the options for I' and the meaning of implicit definability. The
problem is resolved by assuming that the variables of - form a proper class V, and that F is
really a family of relations—one for each infinite subset of V, see [9, 17]. (Because F is finitary,
it can be recovered from any one of these relations.) This explains why substitutions have
been defined here as homomorphisms between formula algebras, rather than endomorphisms
of a single algebra.
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Proof. (=) Let f be an n-ary basic operation symbol of K. By (13),

xlﬁylu"'uxnﬁyn '_K f(xlu'”?xn)Hf(ylw")yn)'

So, the deduction theorem and the Brouwerian identity

(41) r—=y—z2)=(@xANy) =z
yield Fk (Al zi < yi) = (f(z1, ..., z0) < f(y1,-..,yn)), L.e., K satisfies
(42 A @64 < @1, smn) S g

Let 0 be a congruence of the Brouwerian reduct B of some A € K, and suppose
a; =g b; for i = 1,...,n. Then fA(ay,...,a,) =g f2(b1,...,by), by (42) and
Lemma 12.1.

(<) Suppose T',r" Fx s, where, without loss of generality, T' is finite. Let
r be the A—conjunction of 7' and the elements of I, so r g s, i.e., K satisfies
r=t = s =t. We aim to show that Fg r — s, as this, with (41), yields
Itk — s. Let A € Kand let A be a homomorphism from a formula algebra
for Fk into A. Then (h(s),t) belongs to the congruence of A generated by
(h(r),t), because K is closed under homomorphic images. So, by assumption,
(h(s),t) belongs to the congruence of B generated by (h(r),t), where B is the
Brouwerian reduct of A. Then, by Lemma 12.1, h(r) < h(s), i.e., h(r — s) = t.
Since A and h were arbitrary, this shows that Fg r — s. O

The next theorem generalizes an argument of G. Kreisel [38] straightforwardly.
It will be important in the sequel, so we include a proof.

Theorem 12.3. Let K be a variety of enriched Brouwerian algebras, where
every member of K has the same congruences as its Brouwerian algebra reduct.
Then g has the finite Beth property.

Proof. We abbreviate g as . The classical deduction theorem holds for I,
by Lemma 12.2. Let X U {z} be a set of variables, with z ¢ X, and suppose
I' C Fm(X U{z}) defines {z} implicitly in terms of X in . By the remark
after Definition 11.7(iii), it suffices to show that I' defines {z} explicitly in
terms of X in . Choose a substitution i such that h(z) = z for all x € X
and h(z) = t. By assumption, I' U A[['| F z <> t, hence I" U A[I'] I 2. Since F is
finitary, there is a finite subset IV = {ry,...,r,} of I such that I'" U h[I"] - z.
Let r be the formula 7 A --- A1y, so h(r) € Fm(X), by definition of h, and
I' = r and r,h(r) - z. Then r F h(r) — z, by the deduction theorem. On the
other hand, K satisfies the quasi-equation

(r=t & z=t) = h(r) =t,

by definition of h, so r,z = h(r). By the deduction theorem, r - z — h(r), so
rF z < h(r), whence I' F z +> h(r). O

A Heyting algebra is a bounded Brouwerian algebra. Let BrA and HA denote
the varieties of Brouwerian and Heyting algebras, respectively. For any class K
of CRL-expansions, let K¢ be the class of all algebras (A, f) such that A € K
and f € A.
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Lemma 12.4. Let A be an algebra in one of the following varieties: NBrA,
NBrAg, NHA, NHA¢. Then A has the same congruences as its Brouwerian
algebra reduct.

Proof. The case of NBrA is covered by Theorem 7.1. In the other cases, A is an
expansion by constants only of some algebra in NBrA, so the result follows. [

Corollary 12.5. Let K be a subvariety of one of the following varieties: NBrA,
NBrAg, NHA, NHA¢. Then K has the weak ES property.

Proof. This follows from Theorems 11.2(iii) and 12.3, by Lemma 12.4. O

Theorem 12.6. (Maksimova) Let K be a variety of enriched Brouwerian al-
gebras, where every member of K has the same congruences as its Brouwerian
algebra reduct. Then the following conditions are equivalent.

(i) K has the amalgamation property.
(ii) The class of finitely subdirectly irreducible algebras in K has the amal-
gamation property.

This is shown in Chapter 6 of [21], without the provision for extra operations.
The proof needs no modification, however, in view of the additional assump-
tions, Lemma 12.2 and the characterization of finitely subdirectly irreducible
algebras in Section 3. The result below is derived as a corollary in [21]. Both
theorems originate in [40, 41].

Theorem 12.7. The variety RSA of relative Stone algebras and the variety GA
of Gddel algebras have the amalgamation property.

Suppose A and B are totally ordered Brouwerian algebras with a common
greatest element t, where AN B = {t}. The ordinal sum A @ B is the unique
totally ordered Brouwerian algebra with universe A U B such that the order <
of A @ B restricts to the original order of A and to that of B, while a < b
whenever t # a € A and b € B. The same construction produces a Godel
algebra when A is bounded, regardless of whether B is bounded.

Lemma 12.8. The varieties V, W and X from Section 10 have the amalgama-
tion property, and so do V1, W, and X, .

Proof. We deal with V first. Let V be the class of all totally ordered (i.e.,

finitely subdirectly irreducible) algebras in V. Let A;, A3 € V, and let A be a

subalgebra both of A; and of As. By Theorem 12.6, we need only show that

there exist B € V and embeddings hi: A; — B and hy: Ay — B, with

hila, = hala,- We may assume without loss of generality that Ay = A; N As.
Given i € {0, 1,2}, the sets

A? :={a€ A;: Qa=1t} and A := (4; — A))U {t}
are subuniverses of A; and, because Ay is a subalgebra of A;, we have

[ = Ay Ay and Af = A7 AL,
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Let A} and A/ be the RSA-subreducts of A; whose universes are A} and A7,
respectively. By Theorems 12.6 and 12.7, there exist totally ordered algebras
B', B” € RSA such that, for each i € {1, 2}, there are embeddings ¢;: A, — B’
and g/': A7 — B”" with 9/1’A{) = gé|A6 and gi’|A6/ = gé’|Ag. Let B= B @ B”,
so B € RSA, and B is totally ordered. Let B® € NRSA be the expansion of B
in which Ob = b for all b € B’ and b =t for all b € B”, so B° € V. For each
i € {1,2}, the relation h; = g, U g/ is a function embedding A; into B°, and
hila, = ha|a,. This completes the proof in the case of V.

In the case where W replaces V, the argument needs modification. In an
algebra from W, if ¢ maps an element other than t to t, then that element
must be a co-atom of the algebra. However, the algebra need not have a co-
atom, and ¢ need not map a co-atom to t. Because Ay is a subalgebra of A;
and of Ay, we must have 1 < |Aj] < |A]|,|A45] < 2, and if |Aj| = 2, then

b=A] = A} If A] = AJ, we replace B” by A} and g/ by the identity
automorphism of A7 for each i € {1,2}. If |A| = 2 and |A}| = 1, replace
B" by A7 and ¢} by the identity function and g4 by the inclusion map. We
proceed symmetrically if the roles of 1 and 2 are reversed. Finally, suppose

!'={a1,t} and AJ = {ag,t}, where the elements a1, as,t are distinct, hence
ai,az ¢ Ag. In this case, replace B” by A} and g/ by the identity function
and ¢4 by the isomorphism that sends a2 to a;. These amendments ensure that
B°® € W, without compromising the amalgamation process.

Now consider the case where X replaces W. An algebra from X is an f-
expansion of one from W, and if f # t, then fis a co-atom with Of = t. Because
Ay is a subalgebra of Ay and of As, the identity f = t holds in all three alge-
bras or in none of them. Also, Ajj already contains the Ag-interpretations of
both f and t, and it has no other element. Consequently, no modification of
the W—approach is needed, although some cases disappear. The B°—value of f
is defined as the ¢g{—image of the Ap—value of f.

The entire argument can be carried out in the bounded case, with no essential
modification. Because the algebras A} are bounded, the amalgamation property
for GA (Theorem 12.7) is applied to them, but the A/ are still amalgamated in
RSA, before the ordinal sum is constructed. O

Theorem 12.9. Every subquasivariety of V is a variety.

Proof. The argument is well known, except for the involvement of ¢. Let Q be a
subquasivariety of V, and let h: A — B be a surjective homomorphism, with
A € Q. We must show that B € Q. Every quasivariety is axiomatized by quasi-
equations (of finite length), so it suffices to show that every finitely generated
subalgebra of B belongs to Q. Any such subalgebra is the image under h of a
finitely generated subalgebra of A, and Q is closed under subalgebras, so we
may assume without loss of generality that A is finitely generated. But NRSA
is a locally finite variety containing V, so A is finite.

Let 6 = ker h (the congruence kernel of h). By Theorem 7.1, the congruences
of A are just those of the (—free reduct of A. This reduct is a relative Stone
algebra, so t/6 is a filter of the lattice (A4;A,V). Since A is finite, t/6 has a
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least element, ¢ say. Define g: A — A by g(a) = ¢ — a (a € A). Clearly,

g preserves A and t. Integrality and contraction can be used to show that g

preserves —, so it preserves V as well, because RSA satisfies
eVy=((z—=y) =2y Ay —z) ).

Furthermore, g preserves ¢, because { — Oa = O(¢ — a) for all a € A, by
Lemma 10.2 and the definition of V. Thus, g is an endomorphism of A, so its
image g[A] is a subalgebra of A, hence g[A] € Q. For each a € A, we have

act/kerg iff t >a=tiff £<a iff a €t/0,
so t/kerg = t/6. Since V is a t-regular variety, it follows that kerg = 6. By
the Homomorphism Theorem, B = A/ = A /ker g = g[A], so B € Q.° O

The following quasi-equations prevent us from extending Theorem 12.9 to
NRSA, to V|, and to Vg, respectively, as they are not preserved by homomorphic
images in these varieties:

Qr=t — z=t,
Ol =t = z =y,
f=t = z=y.

13. APPLICATIONS

We can now present some new results about non-integral varieties and logics,
which follow from the category equivalences proved here.

Theorem 13.1. Let K be any variety of (possibly bounded) generalized Sugihara
monoids or Sugihara monoids. Then K has the weak ES property.

Proof. This follows from Corollary 12.5, Theorems 8.7 and 10.5, their bounded
extensions (at the conclusion of Section 10) and Theorem 9.2. O

From Theorems 9.1 and 13.1, we infer:

Corollary 13.2. If a variety of (possibly bounded) generalized Sugihara monoids
or Sugihara monoids has the amalgamation property, then it has the strong
amalgamation property.

Theorem 13.3. The varieties CGSM, PSM and SM have the strong amalga-
mation property, and therefore the strong ES property. The same applies to
their bounded expansions.

Proof. Amalgamation follows from Lemma 12.8, the category equivalences in
Theorems 10.3-10.5 and the bounded extensions of these. Then strong amal-
gamation follows from Corollary 13.2, and the strong ES property from Theo-
rem 9.1. g

5 g is the algebraic analogue of ‘Prucnal’s substitution’ from [51]. In general, a locally finite
variety K has no subquasivarieties other than varieties iff every finite subdirectly irreducible
member of K embeds into each of its homomorphic pre-images in K, see Gorbunov [28].
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On the other hand, most of the varieties mentioned in Theorem 13.1 are not
amalgamable, see [21, 26, 43].

Theorem 13.4. Every quasivariety of centred generalized Sugihara monoids is
a variety.

Proof. This follows from Theorems 9.2, 10.3 and 12.9. O

Theorem 13.4 generalizes the main result of [49], which showed directly that
every subquasivariety of PSM is a variety. The present proof is much simpler,
modulo the category equivalence.

Applications to Deductive Systems.

A formal system F is said to aziomatize a deductive system F if - and kg
coincide. An extension of I is a deductive system in the same language that is
a superset of . It is an aziomatic extension if it has the form g/, where F’
adds only axioms (not inference rules) to some axiomatization of .

A postulate r1,...,7r, b s is called an admissible rule of F if its addition to
F yields no new theorems. We say that F (or Fg) is structurally complete if
its admissible rules are already derivable, i.e., they belong to Fg. Hereditary
structural completeness makes this demand for the axiomatic extensions of the
system as well, and it is equivalent to the claim that every extension is an
axiomatic extension (see [50]).

Remark 13.5. For any variety K of CRL-expansions, the map M +— ) defines
a lattice anti-isomorphism from the subquasivarieties of K onto the extensions
of Fk, and it takes the subvarieties of K onto the axiomatic extensions of Fg.
(This follows from results in [11]; it is explained in greater generality in [53].)

Remark 13.5 and Theorem 13.4 yield the next result.

Theorem 13.6.

(i) Fcesm is hereditarily structurally complete. In particular:
(i) ([49]) The negation-less fragment of RM?® is hereditarily structurally
complete.

As we pointed out in [26], hereditary structural completeness for ITUML
follows similarly from the category equivalence between GA and OSM | , because
every quasivariety of Godel algebras is a variety [20].

We say that a formal system F has the finite Beth property for deduction if g
has the finite Beth property according to Definitions 11.5 and 11.7. Similarly
for the other two Beth properties. This terminology becomes necessary in
substructural logics (e.g., RM?"), as these have an implication connective — for
which the classical deduction theorem may fail. In such cases, there are rival
notions of definability, where — takes over the role of Fg in Definition 11.5,
and we want to avoid confusion.

6RM® itself is not structurally complete, e.g., z <> —x F y is admissible but not derivable.
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Theorem 13.7. All aziomatic extensions of RM® and all extensions of the
negation-less fragment of RM?® have the finite Beth property for deduction.

Proof. This follows from Remark 13.5, together with Theorems 13.1, 11.2(iii)
and 13.6(ii). O

Theorem 13.8. RM" and its negation-less fragment have the projective Beth
property for deduction.

Proof. This follows from Theorems 11.2(iv) and 13.3. O

Note that relevant and many-valued logics rarely possess even the finite Beth
property [59, 9, 47]. It seems to be difficult to prove 13.1-13.3 (and therefore
13.7 and 13.8) without using the category equivalences revealed here.

For the reasons given before Theorem 13.7, a formal system F is said to have
the deductive interpolation property if Fg has the interpolation property in the
sense of Definition 11.3(i). In substructural logics, the rival (implicative) form
of interpolation is usually called Craig interpolation.

It follows from Theorems 11.2(v) and 13.3 and the congruence extensibility
of [involutive] CRLs that

RM?* and its negation-less fragment have the deductive interpo-
lation property,

but the former assertion is not new. Indeed, R.K. Meyer established Craig in-
terpolation for RM?* in [46], inferring deductive interpolation as a corollary (see
[3] also). Recently, E. Marchioni and G. Metcalfe have shown that deductive
and Craig interpolation coincide for axiomatic extensions of RM?, and they
have isolated the axiomatic extensions with this property by determining the
amalgamable varieties of Sugihara monoids [43].

14. GENESIS OF THE FUNCTOR S

To conclude this paper, we explain how the definition of S(A) in Section 8
was arrived at.

An algebraic characterization of categorical equivalence for arbitrary pairs of
quasivarieties is provided in R. McKenzie’s paper [44]. This makes it easier, in
principle, to establish an equivalence without producing two explicit functors.
The characterization involves two constructions: idempotent images and matrix
powers. We recall the definitions here.

Given an algebra A and a positive integer k, let T;(A) be the set of all k-ary
terms in the language of A, and let T(A) = Uycpco, Tn(A). For a unary term
o of A, the og-image of A is the algebra

A(o) = (o[A];{ts : t € T(A)}),
where, for each positive n and each t € T,,(A),
tA) (ay, ... an) = oA (a1, ..., an)) for ai,...,a, € oAl

Thus, every term of A gives rise to a basic operation of A(0o).
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For each positive n, the n-th matriz power of A is the algebra
Al = (A" {m, : t € (Tjn(A))" for some positive k € w}),

where, for each t = (t1,...,t,) € (Tkn(A))", we define m;: (A™")F — A" as
follows: if a; = (aj1,...,an) € A" for j =1,...,k, then

m(mt(al, .. ,ak)) = t?(an, N AL TR ¢ 7 5 B .,a;m)

for each of the n projections m;: A™ —» A. In short, A" has A™ as its universe,
and its basic operations are all conceivable operations on n-tuples that can be
defined using the terms of A.

Let K be a class of similar algebras. A unary term o of K is said to be
idempotent in K if K satisfies o(o(z)) = o(z), and invertible in K if K satisfies
x = t(o(t1(x)),...,0(t,(x))) for some positive integer r, some unary terms
ti,...,t, and some r-ary term t. Let K(o) and K" denote the isomorphic
closures of {A(c) : A € K} and {A™ : A € K}, respectively. Thus, K (o) =
K(o). If K is a [quasi]variety then so are K(o) and K[, provided that o is
idempotent in K. McKenzie’s result, restricted to quasivarieties, is as follows.

Theorem 14.1. (McKenzie [44]) Two quasivarieties K and M are categorically
equivalent iff there is a positive integer n and an invertible idempotent term o
of K™ such that M is termwise equivalent to K" (o).

In [26], we proved directly that OSM(o) and RSA are termwise equivalent,
where o(x) is A t. This o is obviously still idempotent in GSM. It is also
invertible there, because Lemma 3.4 says that GSM satisfies

(43) z=(zAt)- (" Nt)" = t(o(ti(x)), o(t2(2))),
where
ti(x) is x and to(x) is * and t(z,y) is z - y*.

If A € GSM, then A, is a reduct of A(c) (see Example 7.3), and it seems
reasonable to hope that NRSA is termwise equivalent to GSM(c). This assertion
amounts to the following:

for every term s of GSM, there exists a term r of NRSA such
that, for every A € GSM, we have (s A t)A|A_ = Ao,

Unfortunately, the terms of GSM are not as tame as those of OSM. We shall
return to the above claim shortly. For the moment, we make do with two special
cases, set out in the next lemma. Note that

x —, y abbreviates (z — y) At
in the language of GSM.
Lemma 14.2. Let A be a generalized Sugihara monoid, with a,b € A~. Then
(44) a-b"=(a—,0") = ((a =4 b") =4 a),
(45) (@-b")" =a—b™.
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Consequently, by the contraction property,
(46) (a b)Y At = (a =% Ob) =% q,
(47) (a-b)* At =a—% Ob.

Proof. Since CRLs satisfy (z+-y) — 2 = 2 = (y — 2), they also satisfy (45).
So, it suffices to prove (44), and we may assume without loss of generality that
A is totally ordered. The proof is accomplished with the aid of Theorem 3.2,
by considering cases. O

Taking the term equivalence of GSM(c) and NRSA as a working hypothesis,
and using the analysis of [44], we can partially predict the form of a category
equivalence functor S from NRSA to GSM. More exactly, we can determine
analytically the universe of the GSM—image of each A € NRSA. Indeed, by the
symmetry of categorical equivalence and Theorem 14.1, our hypothesis implies
that GSM is termwise equivalent to NRSA™! () for some positive integer m
and some invertible idempotent term 7 of NRSAI™. Because the term ¢ in (43)
is binary, we can predict from [44, Remark 2] that m = 2, so 7 has the form
(11(z,y), 72(2,y)) for some binary terms 71 and 75 of NRSA.

Since NRSA and GSM(o) were assumed to be termwise equivalent, GSM will
be termwise equivalent to GSM(c)(7/) for a suitable invertible idempotent
term 7' of GSM(O‘)[z]. As it happens, we can solve for 7/, and hence for 7.
Indeed, Remark 2 of [44] tells us that

m(z,y) = (o(ta(t(z,y))), olt2(t(2,9))) = ((@-y") AL, (x-y")" At)
will be a solution and, using (46) and (47), we obtain
(48) T(z,y) = ((z = Qy) = z, =z — Qy).

Now let A be a nuclear relative Stone algebra. According to [44], the equiv-
alence functor S can be chosen so that the GSM-image S(A) of A is termwise
equivalent to AP/(7). Its universe S(A) must then consist of the fixed points
of 7in A x A, because 7 is idempotent. In other words,

S(A)={(a,dy e AxA:(a—0d) > a=a and a — Q¢da’ =d'}.
It follows readily that
S(A)={(a,dy e AxA:aVvd =t and Qd' =d'}

(use (14), (15) and Lemma 4.1).

The general theory in [44] deals with the full clone of term operations of
a class, so it doesn’t tell us how to isolate appropriate basic operations for
S(A). There seems to be no analytical way to determine these in advance. In
[26], where we dealt only with the special case of RSA and OSM, our simpler
definitions of -5(4) and —5(4) were partly inspired by Dunn’s semantic analysis
of the logic R—mingle (see [19]), but it is not obvious how to incorporate ¢ when
constructing the operations of generalized Sugihara monoids.
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In [26, Sec.9], however, we noted a serendipitous connection between our
construction and an earlier one of P.H. Chu (discussed in [7, 56, 58, 13]). When
applied to any integral nontrivial CRL A, Chu’s construction yields a non-
integral involutive CRL with universe A x A, but it fails to preserve the idem-
potence of A, so it is not directly applicable to our investigation. Nevertheless,
when A € NRSA, it can be shown that Chu’s operations A,V and t are invari-
ant under the function 7 in (48), making them plausible candidates for AS(A4),
vS8(A4) and t5(A4), (They also feature in an earlier and simpler construction of
J.A. Kalman [35], which does not deal with operations like - and —.) Chu’s -
and — are not T-invariant, but their 7-images become experimental candidates
for -5(4) and —5(A) because 7 is idempotent. These images are very com-
plicated in the first instance, but they can be shown to coincide, over S(A),
with the ones in Section 8, provided that A € NRSA. In the special case where
A € RSA, ie., 04 is the identity function on A, our %) reduces to Chu’s
(and Kalman’s) —, which is then 7-invariant. It ceases to be 7-invariant when
A merely belongs to X, i.e., when the intended Sugihara monoid S(A) is not
expected to be odd. But in that case, our inferential definition of =5(4) in (38)
is a natural idea.

These considerations motivate the operations of S(A), but they contain no
guarantee of success, and no short-cut to the work done in Section 8. Since the
nuclear negative cone functor turns out to reverse .S, our working hypothesis
can be confirmed via the next result—which is the case n = 1 of [44, Thm. 6.1].

Theorem 14.3. (McKenzie) Let F': K — M be a category equivalence between
quasivarieties, and let o be an invertible idempotent unary term of K. Let A
be the free 1—generated algebra in M, and B the algebra in K freely generated
by a single generator b subject to the relation o(b) = b.

If F(B) = A, then K(o) and M are termwise equivalent, and the algebras
C(o) and F(C) are termwise equivalent for all C € K.

Corollary 14.4. The varieties GSM(a) and NRSA are termwise equivalent,
where o(z) := x At.

Proof. Set K = GSM and M = NRSA. Let F be the nuclear negative cone
functor, A the algebra in Example 8.4 with {d = ¢, and B = S(A). Now
apply Theorems 8.7 and 14.3. U

Although we need a description of S in Section 10, a direct proof of Corol-
lary 14.4 would yield categorical equivalence for GSM and NRSA, without re-
course to S. And it would be enough to show that for any term s involving
only +,— and *, there exists a term r of NRSA such that (s At)4]4- = 4 for
every generalized Sugihara monoid A (cf. the proof of [26, Thm.5.5]). This is
made plausible by Lemma 14.2 and the next proposition, the nontrivial parts
of which can be verified using Theorem 3.2.

Proposition 14.5. Let a,b,c be negative elements of a generalized Sugihara
monoid A. Then
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(i) a-b=aANb

(ii) a* - b* = (a A b)*

(iil) a* —b=a" Ab

(iv) a = b* = (a AN b)*

(v) c=>(a—b)=(cAha)—b
(Vl) (@-b*) wc=a— (b Ac)

With the exception of (vii), the right hand sides of these equations contain no
occurrence of «, and the - in (vii) can be eliminated by a subsequent application
of (44). Thus, when a,b,c € A~ and s%(a, b, c) is the right hand side of one of
the above equations, we can easily find an NRSA—term r such that

sA(a,b,c) At = r4 (a,b, c).

It seems likely that, by composing these seven re-write rules and (44)—(47)
judiciously, we can extract a suitable r from every GSM—term s. In the final
step, we would trade in all occurrences of the GSM—symbols —, and ** for the
NRSA-symbols — and ¢, respectively. In the penultimate step, where ‘At’ is
applied, the contraction property allows us to shorten any (@ — (a —4 b)) At
to a =, b. The following examples are obtained in this way.

(x—y)" (—=y) = 0z = y) = =)
(r —y)— 2 (x = y) = [z2A0((x = y) = )]
= (y-27) (@A (y—02)) = ((y = 02) = y)
(r —y):-z w— (2N (x—y))

In the last line, w abbreviates (z A (z — y)) = O((x — y) — x).

These calculations pre-date the proof of Theorem 8.7, but they gave us
enough confidence in Corollary 14.4 to develop the material in Section 8.
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