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Abstract

In obtaining a fuzzy quantization of space-time, one works
with the full Poincaré group P(1, 3) = P, obtains a phase space
Γ for a massive particle, and then takes L2(Γ). In order to obtain
a purely quantum mechanical approach to measurement theory,
one picks a wave function η for a particle in an irreducible rep-
resentation space H of P, and then intertwines H with L2(Γ).
Every state has averages of momentum, position, and spin, which
in turn produces a point in phase space. So, take the coherent
state {U(g)η | g ∈ P} against which one measures every state
ψ by computing the transition probabilities against the coherent
state. That will be the quantity that one considers here. These
coherent states result in a fuzzy quantization of space-time; i.e.,
this give the probability of measuring "distance" in the sense of
the Poincaré group.

1 Introduction

Coherent states have formed the basis for many theoretical and applied
applications of quantum physics. [1] From the group theory point of
view in any particular representation space, H, of the group, G, with
representation, U , when first viewed, a coherent state is a vector, η,
||η|| = 1, in that space along with the set of translates by means of the
group, {U(g)η, g ∈ G}. This set is a coherent state iff∫

G

|U(g)η〉〈U(g)η|dµ(g) = 1 (1)

for µ the Haar measure suitably normalized. Because the "states" in
{U(g)η, g ∈ G} always occur in the form

T η(g) = |U(g)η〉〈U(g)η|,
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we may write equation 1 in terms of the (1-dimensional) projections
T η(g) and we may convert to the more conventional definition of {T η(g), g ∈
G} being the coherent state. This is in keeping with having a density
operator (which is a sum of 1-dimensional projections with convex coef-
ficients summed over a set of an orthonormal basis of vectors); for the
density operator to be a mixed state then none of these coeffi cients may
be 1.
This view was found to be insuffi cient for some groups as the integral

in equation 1 may be infinite for all vectors in H. For these groups,
one may have X = G/H and H = L2

µ(G/H) where now µ is a G-
left-invariant measure on the space X. This agrees with the previous
definition if H is normal in G, but is a natural extension otherwise.
Now, if

U(h)η = α(h)η

for all h ∈ H and where α is a complex number, then the expression∫
G/H

|U(σ(x))η〉〈U(σ(x))η|dµ(x) = 1 (2)

for µ suitably normalized and σ : G/H → G is a Borel section, provides
a generalization of the definition of "coherent state."
This latter case is the case when G is one of the Galilei or Poincaré

groups. We will obtain the specific form(s) for coherent states of the
Poincaré group in all massive representations. In fact, we will obtain
these reults for any locally compact Lie group with a finite dimensional
Lie algebra. This will include the Galilei group but we will not discuss
that further here. For the Poincaré group, these forms of coherent states
will appear at the end of sections 4 and 5. Then in section 6, we provide
the fuzzy quantization of space-time, and in section 7 we give an example.

2 The Setting

First the general method for obtaining the phase spaces for any locally
compact Lie group with a finite dimensional Lie algebra will be de-
scribed. We have in mind taking the Lie group to be the Poincaré group,
but we begin by obtaining the phase space in outline for any Lie group
of this category. See [2] for a more detailed discussion.
Start with any locally compact Lie group, G. Form the Lie algebra,

g, which we assume is finite dimensional, and take its dual, g∗. From
the structure constants in any basis for g, construct the coboundary
operator, δ, between the various alternating forms in ∧ng∗. Take one
ω ∈ Z2(g∗) = {ω ∈ g∗ ∧ g∗) such that δω = 0}. Define the (Lie sub-)
algebra hω = {X ∈ g | ω(X, ·) = 0}. Exponentiate hω to obtain the
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Lie subgroup, Hω, of G. Assuming Hω is a closed subgroup of G, form
Γ = G/Hω, which by a theorem of Guillemin and Sternberg [3] is a phase
space (symplectic space). We may take µ = π∗(ω∧n) with the largest n
such that ω∧n is non-zero and π∗ is the correspondent of the canonical
map π from G to G/Hω for elements of Zn(g∗). π∗(ω∧n) is (a multiple
of) the volume measure on Γ. Thus we may define L2

µ(Γ), a Hilbert space
that hosts a left-regular representation V (G) : [V (g)Ψ](x) ≡ Ψ(g−1 ·x),
g ∈ G and x ∈ G/Hω.
Now take α equal to a one-dimensional unitary representation of Hω

with values in C. Take σ : G/Hω → G to be a Borel section. In
particular, for x ∈ G/Hω, one has σ(x)Hω = x. Therefore, for g ∈ G,
g ◦ σ(x)Hω = g · x; i.e., there exists a unique h(g,x) ∈ Hω such that
g ◦σ(x) ◦h(g,x) = σ(g ·x). Such an h is called a cocycle of G. One can
show that V α on L2

µ(G/Hω) is a unitary representation of G, where

[V α(g)Ψ](x) = α(h(g−1,x)Ψ(g−1 · x).

Now neither V α(G) nor V (G) is irreducible. So take an irreducible
representation space H of functions over Γ, and hosting an irreducible
representation, U(G). [4] Then take 0 6= η ∈ H such that η is "square-
integrable on G/Hω" and is "α-admissible":∫

G/Hω

|〈U(σ(x))η, η〉H|2dµ(x) <∞, U(h)η = α(h)η. (3)

Define W η : H → L2
µ(Γ) by

[W ηϕ](x) = 〈U(σ(x))η, ϕ〉. (4)

We have then thatW η intertwines U(G) onH with V α(G) on L2
µ(G/Hω).

Thus all irreducible representations are phase space representations.
Consider, for ||η|| = 1,

T η(x) = U(σ(x))PηU(σ(x))† (5)

where Pη is the one dimensional projection onto the subspace generated
by η. This is a coherent state in one sense because of the orthogonality
condition∫
G/Hω

〈ψ, T η(x)ϕ〉Hdµ(x) =

∫
G/Hω

〈ψ,U(σ(x))η〉H〈U(σ(x))η, ϕ〉Hdµ(x)

= 〈η, C2η〉H〈ψ, ϕ〉H, (6)

where C is some positive self-adjoint operator in H. So, letting ψ vary
among an orthonormal basis {ψj} of H, the Fourier coeffi cients 〈ψj, ϕ〉H
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are all determined, and hence ϕ is determined. This is what is frequently
termed "the property of the coherent state {U(σ(x))η | x ∈ G/Hω}."
Now σ(x) only differs from any other vector in σ(y) by the multipli-

cation by some h ∈ Hω on the right. Hence η is invariant under U(Hω)
modulo a factor of α. But this does not change any of (1) and (3)-(4).
So one may also express {U(σ(x))η | x ∈ G/Hω} as {U(g)η | g ∈ G}.
Consequently, one has a "coherent state" also in the group sense.
We also have

U(g)U(σ(x))η=U(g ◦ σ(x))η

=U(σ(g · x) ◦ h(g,x)−1)η

=U(σ(g · x))U(h(g,x)−1)η

=U(σ(g · x))α(h(g,x)−1)η.

Now, U(g) acting on any function will just replace the variables of the
function with g of the variables. Hence, U(σ(g ·x))α(h(g,x)−1)η = some
α′U(σ(g · x))η with α′ a phase. Then

U(g)T η(x)U(g)†=U(g)U(σ(x))PηU(σ(x))†U(g)†

=T η(g · x).

Again one has, for g ∈ Hω, T η(g · x) = T η(x). Consequently, the set of
group coherent states corresponding to η is {T η(x) | x ∈ G/Hω}.
Now for any state (i.e., density operator) ρ on H, with η satisfying

in addition
〈U(σ(x))η, η〉H > 0 (7)

for almost all x ∈ G/Hω, one can prove [5] that ρ is completely de-
termined by the set of expectation values {Tr(ρT η(x)T η(y)) | x, y ∈
G/Hω}. This is termed "the informational completeness of the {T η(x)}."
We can show that there is an η which is α-admissible and for which
{T η(x)} is informationally complete in any irreducible, unitary repre-
sentation of G.
Hence, in either the vector or the group interpretation, one has co-

herent states on all states ρ that have the informational completeness
property.
This has the following physical interpretation. One starts with an

η at "the origin" and uses it to obtain the transition overlap with any
other vector ψ by means of some measuring device. Then one carries
the device, i.e., the T η, to any other point in the group space. But that
means rotating, boosting, and translating the measuring device by the
Poincaré group. Hence, we have constructed a basis of frames for the
group. This is equivalent to having one measuring device somewhere
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and rotating, boosting, and translating the vector ψ by the inverse:
〈U(g)η, ψ〉 = 〈η, U(g−1)ψ〉.
Now one considers moving to a different frame, say by premultiplying

the vectors in {U(σ(x))η | x ∈ G/Hω} by U(g). In particular, one should
look at what the effect of moving to a different frame is on the value of
α(h). One may do this by exactly the same computations as before.
In moving to a different frame, one has gone to a different ω′ in the

orbit of ω, hence hω′ , henceHω′ , and hence G/Hω′ . In particular, one has
ω → g∗ω, hω → g∗hω, Hω → g ◦Hω ◦ g−1 = H(g−1)∗ω for a left-invariant
ω, and G/Hω → G/H(g−1)∗ω. Thus the "origin" may be taken as any
point in G.
Now, having the coherent states in hand, one considers the quantiza-

tion of any classical observable (a µ-measureable, real valued function on
G/Hω). Start with a vector, ψ, in H and then, by a theorem [2], move
to L2

µ(Γ) by means of W η. Then one multiplies W ηψ by the classical
observable, f , as a multiplication function, M(f). However, the result
is not in general in the image of W η, but is a new vector in L2

µ(Γ). So,
one defines P η as the canonical projection (see [2]) from L2

µ(Γ) to W ηH.
Thus P ηM(f)W ηψ is in W ηH and so

Aη(f) ≡ [W η]−1P ηM(f)W η (8)

is taken as the (quantized) operator corresponding to the classical ob-
servable f . It has been proven [2] that

Aη(f) =

∫
Γ

f(x)T η(x)dµ(x) (9)

where
T η(x) = |U(σ(x))η〉〈U(σ(x))η| (10)

and where µ is the invariant measure on Γ. Consequently, the quantum
expectation Tr(ρAη(f)) is equal to the classical expectation

∫
Γ
f(x)ρcl(x)dµ(x),

where ρcl(x) = Tr(ρT η(x)) = ρηcl(x). But

Tr(ρAη(f)) =
∑
j

ρjTr(PψjA
η(f))

=
∑
j

ρj

∫
Γ

f(x)|〈U(σ(x))η, ψj〉|2dµ(x)

where Pψj is the one-dimensional projection onto the vector ψj and ρ =∑
j ρjPψj for some orthonormal basis {ψj}, ρj ≥ 0,

∑
j ρj = 1.

Hence, one has a fuzzy view of measurement with the fuzz being a
consequence of using the coherent state {U(σ(x))η for x ∈ Γ}. This qan-
tum mechanical view of measurement is also referred to as the measure-
ment of f on ρ with respect to the coherent state {T η(x) | x ∈ G/Hω}.
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One stresses that it is the quantum probability of the measurement op-
erator Aη(f) on any quantum density state that is all that matters, and
this is given by the transition probability to another quantum particle
η. It also gives one interpretation of the η in Aη(f).
We could also generalize this by replacing |η〉〈η| with a density ma-

trix, and obtaining the T (x) from this. We will leave this to the reader.

3 The Poincaré Group, its Lie Algebra and the
Dual of the Lie Algebra

The full Poincaré group P is a semidirect product; i.e., P = R4 o
SO(1, 3), with R4 given the Minkowski metric. We will write elements
of P by (a, A) with a = (a0, a1, a2, a3) ∈ R4, a0 the "time component"
of a, and A ∈ SO(1, 3). P is a Lie group. Therefore its Lie algebra, p,
is a sum of Lie algebras: p = m4 + so(1, 3), where m4 is the Lie algebra
for Minkowski space. A basis for elements in p are as follows:
P = (P1, P2, P3), generators of "space translations" i.e., translations

in a 3-dimensional part of R4 each of which has signature -1,
P0, generator for "time translations" i.e., translations in the remain-

ing part of R4 that has signature 1,
J = (J1, J2, J3), generators of rotations, and
K = (K1, K2, K3), generators of boosts

with the commutation relations

[Jj, Jk] = Jl, [Kj, Kk] = −Jl, [Jj, Pk] = Pl, [Kj, Pj] = P0,

[Pj, Pk] = 0, [Jj, Kk] = Kl, [Pj, P0] = 0 (11)

where j, k, l are a cyclic permutation of 1, 2, 3 and all other commutators
are zero. The dual basis for p∗ is the same set of symbols with * after,
and we obtain

δ(P ∗l ) = J∗j ∧ P ∗k − P ∗j ∧ J∗k , δ(P ∗0 ) =
∑
j=1,2,3

K∗j ∧ P ∗j ,

δ(Jl) = J∗j ∧ J∗k −K∗j ∧K∗k , δ(K∗l ) = J∗j ∧K∗k −K∗j ∧ J∗k . (12)

One may also consider the covering group P̃ = R4 o SL(2,C) where
theR4-part is considered as the set of two-by-two complex matrices in the
Cayley representation using standard Pauli spin matrices as a basis: One
has, for x = (x0, x1, x2, x3) ∈ R4 and σj being the Pauli spin matrices
with σ0 = 1, r =

∑3
j=0 xjσj. Only this covering group is considered,

letting P̃ = P in the sequel.
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4 Massive Coherent States for Spin Zero for the
Poincaré Group

The 2-form in Z2(g∗) corresponding to a massive spinless particle is

ω = mδ(P ∗0 ) = m
∑
j=1,2,3

K∗j ∧ P ∗j . (13)

Therefore, hω is the set generated by J and P0. Next set Hω = exp(hω),
which is a closed subgroup of P. Then one has the familiar phase space

P/Hω = {exp(q ·K + p · P )◦Hω | q and p ∈ R3} (14)

with an invariant measure given by

dµ = π∗(ω∧3) = m3d3q ∧ d3p. (15)

Now Hω is also the stability subgroup for t0 = (m, 0, 0, 0) in R4:

Hω = exp(Rt0)o SL(2,C)t0 . (16)

Next, let

u0 = m(0, 1, 0, 0), v0 = m(0, 0, 1, 0), q0 = m(0, 0, 0, 1). (17)

Then {At0, Au0, Av0, Aq0} are a Minkowski orthogonal set of vectors
with Minkowski "norms" equal to respectively m2, -m2, -m2, -m2. Thus,
for any vector a′ in R4,

a′ = βAu0 + γAv0 + ζAw0 + ϑAt0.

Here β is the usual Fourier coeffi cient of a′ in the direction Au0, and so
forth.
Next work in the Cayley representation for R4 with the standard

Pauli matrices, and obtain the representation of At by 2×2 matrices so
that At · r = AtrA

†
t. One has t0 represented by m1. Thus for A ∈

SL(2,C)t0 we now have A · (m 1) = mA1A† = m1. Consequently,

A ∈ S̃O(3), the covering group of SO(3).
One then obtains

Hω ' exp(Rt0)o S̃O(3). (18)

Noting now that Hω = exp(Rt0) o SL(2,C)t0 , coordinatize P/Hω.
To do this, observe that

(a, A) = (a′, A′)(λt0, B), B ∈ SL(2,C)t0
iff (a, A) = (a′ + λA′t0, A

′B)

iff a=a′ + λA′t0 and A = A′B for some B. (19)
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Now

a′ + λA′t0 = βAu0 + γAv0 + ζAw0 + ϑAt0 + λA′t0

= βAu0 + γAv0 + ζAw0 + (ϑ+ λ)At0

since At0 = A′Bt0 = A′t0. But for λ ∈ R, ϑ+ λ ∈ R. Hence

π(a, A) = (βAu0 + γAv0 + ζAw0 + Rt0, AtSL(2,C)t0) (20)

where At is any element of SL(2,C)/SL(2,C)t0 with Att0 = t, and π is
the canonical projection from G to G/Hω. Thus choose

σ ◦ π(a, A) = (βAtu0 + γAtv0 + ζAtw0, At)

= (a−m−2(aµt
µ)t,At). (21)

One may choose [2, p. 465]

At =

(
(t0 + t3)1/2 0
t1 + it2 (t0 − t3)1/2

)
. (22)

Hence, one has a homomorphism between SL(2,C)/SL(2,C)t0 and the
forward mass shell V +

m = {t ∈ R4 | tµtµ = m2, t0 > 0}. Similarly, one
has a homomorphism between P/Hω and R3 o V +

m .
G/Hω also may be taken as isomorphic to R6 = R3 for position ×

R3 for momentum. Properly, one has all z in Minkowski space mod
Rt0, and consequently one obtains R3 for the position in P/Hω. The
momentum comes from SL(2,C) which is factored by SL(2,C)t0 , i.e.,
by the full rotation group. This leaves another R3 for the momentum in
P/Hω. This P/Hω is the phase space.
To obtain an irreducible representation space, H, of P for a spin zero

massive particle with representation U one uses the Mackey machine [4]
of induced representations. This H is just the usual representation space
of quantum mechanics for zero spin and mass m > 0.
Now, take η ∈ L2(V +

m ) satisfying the square-integrability condition∫
R3oV +m

|〈U(σ(x))η, η〉H|2dµ(x) <∞

and the extra (α-admissibility) condition for Hω at (0, 1)

U(h)η = α(h)η, h ∈ Hω.

But any h is of the form (λt0, R) where R ∈ S̃O(3), and α is a one
dimensional representation of Hω. The only one dimensional represen-

tation of S̃O(3) is 1. Thus, η may have dependence on p2
1 + p2

2 + p2
3
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only, (p0, p1, p2, p3) ∈ V +
m . The remaining factor of λt0 one can eliminate

in favor of 1 by simply requiring η to be time independent, or more
properly, requiring that the η which describes the measuring instrument
is regenerated by turning on the instrument at any time and then per-
forming the measurement with Aη(f). In this way one avoids the wave
function spreading of η with time.
When one moves to (a, A) by means of the group, then U(a, A)η

satisfies the same conditions at (a, A); i.e., At0 = t is not a variable
in U(a, A)η and there is no spin/angular momentum as a variable in
U(a, A)η.
One now is in a position in which any coherent state based on η

as any α-admissible square-integrable vector is defined, with or without
the condition of informational completeness. [5] As an example without
the condition of informational completeness on η, take η = χ∆ for ∆
a sphere in all the variables in p1, p2, p3, the square-integrability being
trivial and the α-admissibilty following from the condition of no spherical
dependence and time independence. To obtain a coherent state with the
extra condition, take η = a Gaussian in the variables p1, p2, p3 convolved
with χ∆ or even the Gaussian alone. One stresses that there are many
coherent states with various properties, such as analyticity, for example.

5 Massive Coherent States with Spin for the Poincaré
Group

The 2-form for a massive, spinning particle in the Poincaré group is

ω = δ(mP ∗0 + SJ∗3 ) (23)

where m is the mass and S is the spin. (One may take S to be in R3,
||S|| = S, and replace SJ∗3 with S · J∗ if one chooses to have a general
expression.) Now from (10),

ω = m
3∑
j=1

K∗j ∧ P ∗j + S(J∗1 ∧ J∗2 −K∗1 ∧K∗2). (24)

Thus hω is just the subalgebra generated by P0 and J3. Take Hω =
exp{hω}, which is a closed subgroup of P again. Then the phase space
is

P/Hω =

{exp(q ·K + p · P + θ1J1 + θ2J2) ◦Hω | q,p ∈ R3, θ1, θ2 ∈ R}(25)

with the invariant measure

dµ = π∗(ω∧4) = Sm3d3kd3pdΩ (26)
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where dΩ is the invariant measure on the surface of the sphere of radius
S.
Now Hω is also the stability group of t0 = m(1, 0, 0, 0) and s0 =

S(0, 0, 0, 1) :
Hω = exp(Rt0)o SL(2,C)t0,s0 . (27)

To coordinatize P/Hω, one notes again that

(a, A) = (a′, A′)(λt0, B), B ∈ SL(2,C)t0s0
iff (a, A) = (a′ + λA′t0, A

′B)

iff a=a′ + λA′t0 and A = A′B for some B. (28)

Now A′ ∈ SL(2,C)/SL(2,C)t0s0 , A
′ : t0 7→ t, A′ : s0 7→ s; so,

a = a′ + λt. However, using the Cayley representation of R4 by the
standard Pauli matrices gives t0 represented by m1 and s0 represented
by Sσ3. Thus SL(2,C)t0,s0 = {diag(a, a) | a ∈ C, |a| = 1} ' O(2)˜.
Consequently, A ∈ SL(2,C)/SL(2,C)t0s0 , A : t0 7→ t, A : s0 7→ s,
implies A ∈ {AtsSL(2,C)t0s0}, where [2, p. 468]

Aps =

[
a b

c d

]
(29)

and
a = N [S(t0 + t3) +m(s0 + s3)]1/2,

b = N [(t1− it2)(s0 + s3)− (s1 + is2)(t0 + t3)][S(t0 + t3) +m(s0 + s3)]−1/2,

c = N [(m(s1 + is2) + S(t1 + it2)][S(t0 + t3) +m(s0 + s3)]−1/2,

d = N [(t0−t3)(s0+s3)−(t1+it2)(s1−is2)+mS][S(t0+t3)+m(s0+s3)]−1/2,

whereN = (2mS)−1/2. Consequently, one has a homomorphism between
SL(2,C)/SL(2,C)t0s0 and the set

X = {(t, s) ∈ R4 × R4

| tµtµ = m2, tµs
µ = 0, sµs

µ = −S2, t0 > 0}. (30)

One may also write a ∈ R4 in the basis

{At0, Au0, Av0, Aw0} = {t, Au0, Av0, Aw0};

so, one may choose the λ such that a = a′ + Rt with

a′=m−2(aµ[Atsu0]µ)Atsu0 +m−2(aµ[Atsv0]µ)Atsv0

+m−2(aµ[Atsw0]µ)Atsw0. (31)
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Note that the last term may be shortened, as w0 is a multiple of s3, and
as such is invariant under Ats. We will abbreviate a′ as a−m−2(aµt

µ)t.
Thus [(a, A)] ∈ P/Hω implies that [(a, A)] = (a′, Aps)Hω. This estab-
lishes a homomorphism from P/Hω to R3 oX.

The canonical projection is

π(a, A) = (a−m−2(aµt
µ) t+ Rt,AtsSL(2,C)t0s0) (32)

where At0 = Atst0 = t, and As0 = Apss0 = s. The (continuous) Borel
section is

σ ◦ π(a, A) = (a−m−2(aµt
µ)t,Ats). (33)

Coherent states based on η ∈ L2(X) = H (or any other repre-
sentation like the familiar representation with the spin being repre-
sented by vectors in Cn) are defined as any vector satisfying the square-
integrability condition and the α-admissibility condition which now reads

U(exp{λP0 + θJ3})η = α(exp{λP0 + θJ3})η. (34)

Thus, having η as an eigenfunction of J3 and "time independent" as
in the spin zero case, one obtains the α-admissibility condition. This
conforms to the usual decomposition of η as being time independent,
having a Y m

l dependence on the J’s, and having a dependence on the
momenta p1 and p2 only through p2

1 + p2
2. This holds for all massive

particles of any non-zero spin and in particular for spin 1/2 and spin 1
particles.

6 Fuzzy Quantization of Space-time

There are two ways to discuss this.
The first way: Having the coherent states in hand, one now turns

to the quantum measurement of the position of any massive quantum
particle. Take f equal to any function that has a dependence on position
of, say, any characteristic function of a Borel set, and is unconstrained
otherwise. Take η to be a vector in H that has quantum expectation
of position to be zero in all components other than the nonzero spin
in which case it is N , the North pole of the sphere. Then U(g)η, g ∈
G, will have quantum expectation of having the momentum = p, the
configuration position = q, and the spin direction s for g = σ(q,p, s).
η must also be square-integrable and α-admissible (and perhaps even
informationally complete). One uses η(x), or really T η(x), to mark the
point x ∈ Γ = G/Hω. Then any state ρ has the probability Tr(ρT η(x))
of being observed at x. If we take the marginals over the spin and the
momentum, we will obtain the probability of ρ being at the resulting
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position when measuring with η. This is a fuzzy position. If η has more
than one position at which

”|η(z)|2” ≡
∫
y∈Γ(mom,spin)

|η(x)|2dµ(y, z),

x = (y, z), with Γ(mom, spin) = the part of Γ involving momentum
and spin only, is a maximum, then the position will be effectively not well
defined but rather having a multiplicity equal to the number of positions
at which "|η(z)|2" is a maximum. One assumes a single maximum. Then
the position is well-defined albeit fuzzily.
Notice that then the position is defined independent of spin and

momentum in a G-invariant fashion! Now, one may take a collection ηs
of square-integrable and α-admissible vectors, one for each spin s, and
compute the fuzzy positions accordingly in H = ⊕sHs with Hs equal to
the Hilbert space for particles with spin s (and m > 0). The variances
of each will depend on s, but the centers will not.
This will be the fuzzy quantization of space-time. Notice that the

fuzziness is necessary if one takes the resonable requirement that one
must measure a quantum particle with another quantum particle (η)
that is chosen beforehand.
The second way: One may consider the measurement operator Aη(f)

and its spectrum. First take f = the characteristic function of a Borel
set

∆ = {(q, p) | a1,j ≤ qj < a2,j, b1,j ≤ pj < b2,j, j ∈ {1, · · ·, n}}

for some a1,j < a2,j and b1,j < b2,j for all components j. If one has
the usual interpretations that q is the position operator and p is the
momentum operator, then one would expect that

∑
j(a2,j − a1,j)(b2,j −

b1,j) . ~ would give that Aη(χ∆) has one eigenvalue equal to 1 and the
rest 0. But in general, there is also the spin to consider. One could
take for spin variables that they have variances equal to the entire spin
space, or for spin J that they could have variances equal to 1/(2J+1)th
the entire spin space because all one is interested in are the q’s and p’s.
Ignore this for the present.
A problem arises at once. Having only eigenvalues in the set {0, 1}

turns out to be impossible for the Aη(χ∆) as it is not a non-trivial
projection. [6] What one may say is that Aη(χ∆) is a positive operator
bounded by the min{1, µ(∆)}, is compact so has discrete spectrum only,
and has its spectrum in lp, 1 ≤ p ≤ ∞. [2, pp. 121-133, 243-247]
Plotting its spectrum in decreasing order one discovers that initially the
eigenvalues are close to but less than 1 and eventually are close to but
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strictly larger than 0. What is surprising is that, for our choice of ∆,
the drop is quite dramatic. (That is also the fact if ∆ is a Borel set with
for example a non-fractal boundary.) One now asks what the "channel
capacity theorem" is for Aη(χ∆), practically speaking.

Definition 1 A Hilbert space vector ψ is said to be η-localized in Borel
region ∆ with attenuation factor |γ|2 iff Aη(χ∆)ψ = γψ.

For the spectrum as described above, the eigenvalues have the first n
of them about equal to 1 and thus their eigenvectors are η-localized, the
eigenvectors of the middle eigenvalues have a questionable localization,
and the remaining ones are practically annihilated by Aη(χ∆). With
our particular choice of ∆, one may arrange it so that n = 1 and the
remaining eigenvectors are effectively annihilated by Aη(χ∆). This is
what we describe as ∆ having the minimum uncertainty property.
Next take a group element that describes translation by integral mul-

tiples of a2,j − a1,j and b2,j − b1,j. Repeated application of these transla-
tions to χ∆ gives a tiling of the space G/Hω, modulo the spin. Because
the operator Aη(χ∆) is covariant under the group [2, p. 312], and the op-
erators of translation are unitary, one finds that each of these displaced
Aη(χ∆)’s has exactly the same spectrum (and with the first eigenvec-
tor) as the translation of Aη(χ∆) (and with the first eigenvector of it).
Thus, for all practical purposes, one has discretized the space. One may
include the spin in a similar fashion.
Because the operators Aη(χ∆) and Aη(χ∆′) are fuzzy, one doesn’t

have their first eigenvectors orthogonal for ∆ ∩ ∆′ = ∅. But one may
make the overlap quite small; it is a matter of fiddling with the expression
for η.

7 An Example - Planck Length

Suppose one has two particles of the same mass and spin impinging on
each other with some initial relative momentum p. Let the two particles
have wave functions equal to ψ and ϕ. Take η to be the square-integrable
and α-admissible vector of the same mass and spin generating a well-
defined position distribution. Then one has the appropriate marginals of
the probϕ(x) = Tr(PϕT

η(x)) and probψ(y) = Tr(PψT
η(y)) describing

the positions of both. For whatever reason, the trajectories of both are
such that there is a closest "distance" each gets to the other. What is
that "distance"? It will be the Euclidean distance from the R4 part of
x to the R4 part of y at the closest distance since we have defined η to
have a unique maximum of |η(z)|2. (And note that the time component
of both is the same.) It seems that this is independent of the other
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particulars of η, since the probϕ(x) depends on η only on x and this is
the location of the classical center of U(σ(x))η. Also note that at the
closest approach point one obtains the Planck length squared which is
reflected in σ(z) and may be realized in

〈η, C2η〉H〈ψ,U(σ(z))ϕ〉H

=

∫
G/Hω

〈ψ, T η(x)U(σ(z))ϕ〉Hdµ(x)

=

∫
G/Hω

〈ψ,U(σ(x))η〉H〈U(σ(x))η, U(σ(z))ϕ〉Hdµ(x)

≤
∫
G/Hω

[
Tr(PψT

η(x))Tr(PU(σ(z))ϕT
η(x))

]1/2
dµ(x).

This Euclidean-distance-at-closest-approach is what may be described
as the Planck length. But what about the dependance on the momentum
or spin? Here there may be a closest approach with relative momentum
p and/or spin s that depends on p and/or s. That can be handled with
our phase space approach. Then the "closest" they get is the minimum
over p and s of all the closest distances that depend on p and s.
Having the ϕ describe the electron in orbit around a nucleus and the

ψ a free electron is a special case, and won’t be further discussed except
to note that for that, one would have to use the particular case of spin
equal to 1/2.

8 Conclusion

We have shown that the phase spaces for massive representations of the
Poincaré group lead to general formulas for the coherent states which
we have made explicite here for the first time. This is interpreted as
measurement theory based on a quantum particle. This, in turn, leads to
fuzzy quantization of space-time (1) by taking the marginals of σ(q,p, s)
over p and s or (2) by taking space-time-momentum and tiling it with
tiles ∆ such that Aη(χ∆) has one eigenvector with eigenvalue equal to
1− ε and all the rest of the eigenvalues being less than ε ≈ 0.
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