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Abstract The formalism of quantum mechanics on phase space is used to de-
scribe the standard protocol of quantum teleportation with continuous variables
in order to partially investigate the interplay between this formalism and quan-
tum information. Instead of the Wigner quasi-probability distributions used in
the standard protocol, we use positive definite true probability densities which
account for unsharp measurements through a proper wave function representing
a non-ideal quantum measuring device. This is based on a result of Schroeck and
may be taken on any relativistic or non-relativistic phase space. The obtained for-
mula is similar to a known formula in quantum optics but contains the effect of
the measuring device. It has been applied in three cases. In the first case, the two
measuring devices, corresponding to the two entangled parts shared by Alice and
Bob, are not entangled and described by two identical Gaussian wave functions
with respect to the Heisenberg group. They lead to a probability density identical
to the @ function which is analyzed and compared with the Wigner formalism. A
new expression of the teleportation fidelity F' for a coherent state in terms of the
quadrature variances is obtained. In the second case, these two measuring devices
are entangled in a two-mode squeezed vacuum state. In the third case, two Gaus-
sian states are combined in an entangled squeezed state. The overall observation
is that the state of the measuring devices shared by Alice and Bob influences the
fidelity of teleportation through their unsharpness and entanglement.
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1 Introduction

Quantum theory succeeded in describing a large number of phenomena exhibiting a
non-classical behavior. Nevertheless, as noticed by many researchers, it suffers from
some inconsistencies. A new formulation of quantum mechanics on phase space
1], also called stochastic quantum mechanics [2], aims at solving many of these
paradoxes and problems [3]. It uses Positive Operator Valued (POV) measures
to describe the observables of a physical system, instead of the usual Projective
Valued (PV) measures associated with some self-adjoint operator via the spectral
decomposition theorem. In fact, it turns out that the PV measures formalism
constitutes a special case of the more general POV measures formalism. The POV
measures are encountered in many areas of research, both in the foundations of
quantum theory dealing with the quantum measurement problem [4], and in the
theoretical analysis of experiments dealing with individual quantum objects such
as atoms and photons[5]. They allow for a generalized notion of properties of a
system that account for both sharp and unsharp properties, and are useful in
the description of joint measurement of complementary observables, such as the
position and momentum of a particle or the quadratures of an electromagnetic
field mode, by means of unsharp joint observables called phase space observables.

One problem solved by stochastic quantum mechanics is the nonexistence of
probability distributions on phase space. For instance, the Wigner quasi-probability
distribution is not positive definite for all quantum states, but only for Gaussian
states [6]. In fact, stochastic quantum mechanics is formulated using wave functions
defined on the phase space, so that the positive definiteness of the corresponding
probability densities is guaranteed from the outset. To build such functions in the
spinless non-relativistic case, one uses a unitary transform W7 : L* (R, ;) —
L?(T'), which connects wave functions i (z) in the configuration space L* (R, ;)
with functions ¥ (q,p) belonging to a subspace W"L? (T') C L? (T'), where I' is the
usual phase space. The transform W7 is determined by the wave function n which
describes the measuring instrument [1]. The subspace W"L? (T) is constructed so
as to obtain an irreducible representation of the symmetry group of the system
under consideration. In the general case of non-relativistic spinless particles, that
symmetry corresponds to the Galilei group Gio.

The present work aims at investigating, in the particular case of quantum tele-
portation with continuous variables, the interplay between quantum information
theory and the (stochastic) phase space representation of quantum mechanics. In
fact, on the one hand, the latter claims to be consistent and fully quantum in the
sense of using a quantum description of non-ideal measuring devices. On the other
hand, quantum information is expected to shed some light on the foundations
of quantum mechanics through experiments which use fewer and fewer particles.
Hence, at some stage, consideration of the quantum nature of the measuring de-
vice will be necessary and its effect on quantum information processes will have
to be studied. In this context, we shall present a theoretical study of quantum
teleportation in a phase space representation of the one-dimensional Galilei group
G(L.1).

Quantum teleportation was discovered by Bennett ef al [7] for quantum states
(qubits) in Hilbert spaces of finite dimensions. It consists in the transfer of an
unknown quantum state between two separate stations, Alice and Bob, using a
classical channel and an entangled state shared between the two parties. The tele-



Quantum mechanics on phase space and teleportation 3

portation protocol was then reformulated for systems with continuous variables
(position and momentum) by Vaidman (8], using maximally entangled states orig-
inally introduced by Einstein, Podolsky and Rosen [9]. Later, Braunstein and
Kimble [10] proposed to extend the protocol using entangled states with a finite
degree of correlation, taking as continuous variables the quadratures of the electro-
magnetic field. In the latter case, the entangled states are created unconditionally
[11] using a two-mode squeezed state. The standard protocol for this teleporta-
tion is based on the description of quantum states in phase space by their Wigner
functions. It is this standard protocol that will be investigated in the stochastic
phase space representation by using its probability density rather than the Wigner
function.

The paper is organized as follows : In section 2, we will review the main re-
sults of quantum mechanics on phase space in a general symmetry group setting.
This will define our notations and will be useful in the calculation and physical
interpretation of the probability distributions for the different states involved in
the teleportation protocol. Section 3 is mainly devoted to the reformulation of the
teleportation protocol in the stochastic phase space, by replacing the Wigner func-
tions with the stochastic phase space probability distributions in the case of one
dimension Galilei symmetry G(1,1). We derive the teleportation and Fidelity for-
mulas. In section 4, we study a simple case where the measurement devices shared
by Alice and Bob are not entangled. Moreover, they are described by identical
Gaussian wave functions yielding a stochastic probability density which is identi-
cal to the Husimi @ function. Comparison of our results with those obtained in the
Wigner representation is carried out and the effect of the measurement unsharp-
ness on the fidelity is analyzed. In section 5, we consider the case where these two
measurement devices are in a two-mode squeezed vacuum state. The effect of this
entanglement is studied, particularly maximal entanglement recovers the Wigner
representation results. In section 7, we briefly discuss the fidelity in the case where
the two measuring devices are in an entangled state constructed from a squeezed
state and an anti-squeezed state. This case contains the two preceding ones and
enables comparison between the effect of apparatuses entanglement against their
unsharpness. We recapitulate the main results in the conclusion.

2 Probability distributions in stochastic quantum mechanics

We will concentrate on teleportation with continuous observables. This is crucial
as the theory of quantum mechanics on phase space fits well with this teleportation
scheme as we consider the teleportation of position and momentum which are just
continuous observables. We will take i = 1 and unit mass, this will enable easy
comparison with the standard scheme of quantum teleportation with continuous
variables. Given a locally compact symmetry group G with a finite-dimensional
Lie algebra, the phase space can be defined as a coset space G/H with respect to a
closed subgroup H which is to be determined according to the procedure outlined
in [3] and detailed in [1]. For the particular case of G being the Poincarijce or
Galilei group, this phase space may be relativistic or non-relativistic with points
(g,p,s), where ¢ and p are the position and momentum, and s stands for the
spin. The phase space representation can be obtained from the configuration or
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momentum representations by a unitary transformation W7 [3,2]:

W] (4,0, 5) = ¥ (q,p, 5) = fX Mepes (4)  (4) d(y), (1)

where X is the configuration (y = z) or momentum space (y = k) with invariant
measure v, and

Na.ps (4) = [Uqp.sm] (v) - (2)

Uy.p.s is the configuration or momentum representation of a translation ¢, a boost
p, and a rotation through an s vector of the sphere S2. The function 5 represents
the measuring apparatus and has to satisfy the a-admissibility criterion which
states that,

1.  must be admissible

| sl dutap.s) < oo )
G/H

where pu is the invariant measure on the phase space G/H.
2. and there exists a mapping « : H — C, such that for all h € H, we have

[U(h)n] (y) = a(h)n(y) (4)

This criterion insures that the transformation W" is an isometry between the
configuration or momentum representation and a subspace of L*(G/H).

The above considerations enable one to associate with every quantum state p
a positive definite probability density p" (¢, p.s) [3,2]

p" (q.p. 3) =Tr (:5|'??q,p,89 (Wq,p,SD : (5)

which simplifies to
p" (q.p.8) = ¥ (q.p, )| (6)

for pure states p = [} (1.
Now, we consider the non-relativistic spinless case in a one dimensional setting
corresponding to the one-dimensional Galilei group G (1. 1):

G(1.1) ={g = (b.a,v) |b,a,v e R}, (7)

where b and a represent translations in time and space, respectively, and v a
velocity boost [12]. We have

Na.p (2) = [Ug,pn] () = exp [2ip(x — q)] n(x — q). (8)

Il = (n|m)% = (x)~3, (9)

The states |ng,p) constitute an overcomplete family yielding a resolution of the
identity [2]

/ Ng,p) (Ma.pl dgdp =1, {10)
T
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where I represents the identity in L? (Reonr), L? (Ryom), or L? (I') according to
the representation of |ngp). Then, we note that p" (q,p) is not a quasi-probability
but a true physical probability density that a simultaneous measurement of po-
sition and momentum yields the stochastic (or unsharp) outcome (g, p, xq.p). The
confidence function ygqp(z, k) is the probability density that the real values be
(xz, k) when the outcome (q,p) is obtained, or inversely, that the outcome (q,p)
be obtained when the real values are (z,k). This interpretation stems from the
marginal relation in the configuration space

o(g) = L dp ¥ (¢,p)2 = /R dexg (@) ¥ ()], (11)

Xa(z) = [n(z—q)*. (12)
The confidence function yg4(z) has the same interpretation as yqp(zr, k) so that
its square root 5 represents the state of the quantum non-ideal measuring device.
Hence, p"(q) is the probability density that a quantum measuring device yields
the outcome g irrespective of the position x. Moreover, p"(g) tends to the usual
probability density in the limit of sharp measurement with a perfect quantum ap-
paratus (xq(z) — d(z — ¢)). Analogous relations and interpretations hold in the
momentum representation with confidence function y, (k) = 7| (k — p)|2, where 7
is the Fourier transform of 1. Accordingly. the variables (q,p) and (z, k) are phys-
ically different. The former are the readouts of the measurement while the latter
are statistically related to them through the y distributions (they may be mean
values for instance). This distinction will turn out to be important in discussing
teleportation in a particularly simple instance where the functions n are Gaussian
states with minimum uncertainties in position and momentum [2,3].

Again, working in the spinless case, an other important point is the calculation
of expectation values and variances in determining the fidelity of teleportation. For
a spinless particle, the operators acting in W"L? (T') for a given n are defined by
3

AT (f)= f f (a.p) na.p) (ng.p| dadp, (13)

where the real function f (g, p) of the phase space variables represents a classical
observable. We adopt the convention of Ref. [3], putting A"(f) =Q for f = ¢ and
A" (f) =P for f = p, with Q and P being the position and momentum operators.
The expectation value of the operator A" (f), in the state p, is defined by

Exp, = Tr (A" (f) 5)
= /F f(a,p)p" (g,p) dgdp. (14)

The second equality is the same as that used in the Wigner function formalism.
However, the variance

Var, (A7 () = Tr ([A” () 6) — [Tr (A" (£) )] (15)

contains the squared operator whose expectation has an expression which is dif-
ferent from that of the Wigner formalism. In fact,

Tf([A” (f)]2ﬁ) :/lﬂf;f(q,p)f(q’,p’) (Mg’ p | Ma.p) (16)

x p" (q.p:q’.p") dgdpdq'dp’
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where
P" (0.2, 0") = (gl B|mgrpr ) - (17)
The term (7 . | 7g,p) is a reproducing kernel for the Heisenberg group. It can be

generalized to the spinning case and everything in relations (13)-(17) remains the
same with the replacement (q,p) — (q.p, s).

r

3 Quantum teleportation in the quantum mechanics on phase space
formalism

The standard scheme of teleportation [10] can be reformulated in terms of the
probability distributions (5) for the spinless case, by simply replacing the Wigner
function description of states by the new phase space representation. For an entan-
gled bipartite system, with parts 1 and 2 shared by Alice and Bob, the mapping
(1) leads to the following phase space representation

Went (thhqg;j‘?z) - /2 HEI,PL,QQ.pz ($1-_~ 172) J"-.ﬂl;'ent(ﬂfl,EQ)dIldmg, {18)
R

where the corresponding bipartite measurement device, composed of apparatuses
1 and 2, is described by a function n(z1,z2) € L*(R?) with norm ||y = 7~ '. The
displaced function

Ng1.p1,q2,p2 (T1,T2) = €xp [21 (p171 — p1q1)]
x exp [21 (pax2 — p2g2)| 7 (z1 — g1, 22 — g2) (19)

is obtained through a tensor product transformation Uy, p, @ Ug,,p,. The proba-
bility density associated with the whole system formed by the unknown state p;,

to be teleported and the entangled state p! . (q1,p1.62,p2) = Went (q1=p1,q2,p2)|2
can be written as
p::?ut (‘-?En-:piu: q1,P1, q?-:pE) — Pin (Qin:pin) Pznt (Ql:pl: q2:~p2) " {20)
In accordance with [10], teleportation proceeds through the following steps.
(i) Alice performs the following change of variables
— 1 — 1
Gu — —= (4in — q1J s Pu— Pin —P1).

qv = 713{9'1n+91) and pv = ﬁ(Pm‘FPlJ-

Then, she measures the observables corresponding to g, and p. (in principle, an
infinite number of times) in order to obtain a distribution D(qu, pv). Knowing that
a single measurement outcome is (gu, pv). the total conditional probability density

15
1
p?ot (pu; G, q25p2|Qu,pv) = mpﬂjt {Qin-.-pin: qluplquﬁpz) ) {22)

where (¢in, Pin, g1. p1) must be replaced by their expressions in terms of (qu, pu, gv. pv).
The corresponding probability density for system (2) is obtained by integrating
over g, and py

Phor (@2:P2|qu,pv) = fquvdplxp?ot (Pus Qv G2, P2 |qu, Pv ) - (23)
B
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Using (21) along with the change of variable ¢ = 2¢, — q1 = gi, and p = v2¢, +
P1 = pin S0 that dgvdp. = 2dgdp, this probability density becomes
PBob (02, P2l0u,Pv) = Drges / dadpply, (a— V2au,V2pe — p.2,12)
R

Pin (¢, P) (24)

The probability density is obtained by averaging over all possible results (qu, pv),

Pon (a2, p2) = /2 dqudpy D(qu, pv) P (42, P2|qu, pv)
B
=2 [ dqudp. f dgudpy pin (9. )
B2 B2
P (q — V2, V2p, —p, Qz,pz) : (25)
(ii) Alice communicates the results of the measurement to Bob via a classical

channel.
(iii) Finally, Bob displacement leads to the following output variables

GJout — {2 + \/QQLL [:26)
Pout — P2 + \/va [:2?)

Substituting in (24) and integrating with respect to q. and p,., we obtain the
probability density describing an ensemble of teleported states

ey (Gout, Pout) = ) dqdppin (4,p) P (¢ — Gout, P — Pout)
B

= [pin o P] (QOut,pout) 3 [28)

where the positive function P
-P (q::ut — {, Pout — P) — 2/2 dQUdpv [:29)

B

l'.jc]gut, (q - \/Equ'-‘ ﬂp\-’ — Py Gout — 1*"’I’E{__ﬁ“u-; Pout — \/va) y

depends on the measuring apparatus wave function n and the entangled state
shared by Alice and Bob.

In order to determine the fidelity, we first rewrite the general relation (28) in
an operator form. For this, we write the probability density in the following form

pin(g,p) = Tr ([Uq.pT”(qout:pvut)Uc;:p] [Uquut!poutﬁi“Ugoutnpout}) (30)

where we define the operator T" according to the notation of [3]

TT“ [QOut-! pout) = |T?QUut,puut> {lnqbut yPout | " (3]‘)
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We then obtain

pin(q:p) = rI‘r [U;_qnut sP—Pout 'aiu
X UQ—Qoutgp—pwt T]'] (qautepuut)J 3 {32)

On the other hand, the left hand side of (28) can be written in a similar manner
as
p:.?el ((Iout:pout) =Tr [ﬁtelTn (QUut: Pout )] . {33)

Here we have assumed that the state T" of the measuring device for the input
system has been chosen to be identical to that of the output system. This choice
can be understood as we intend to measure the overlap between two states via their
associated probability densities. It is then convenient to measure these densities
in the same conditions and then with identical measuring devices.

Since the operators T" are informationally complete (that is if p and g’ are
two states, then Tr [pT"] = Tr [,Ei’Tﬂ if and only if p = p') and piei(gout, Pout) =
Tr [pte’ T (gout, Pout )|, relations (32) and (28) lead to

5= f 5
Prel — A?’ dqde(q—%mJ,(p—puuf,)me(q_q"“‘}’(p_p““t)
x P (Q‘ — Jout,pP — pout) 3 {34)

By making an appropriate change of variables, we finally obtain
= [ dadpP (0.5) Ujpia Vg (35)
B

A similar relation is known in quantum optics [13] with a positive P function
which, in contrast to our relation, does not depend on the state of the quantum
measuring device.

Now, the teleportation fidelity of a pure state |¢5,) is defined by [14]

F= (ﬁ"in| :a'tel |t.'5f"ir1> . {36)

Replacing p,.; by its operator relation, we get

F=1, dqdpP (q.p) [(¥in| Ugp [¥in)[* - (37)
Note that the measure of the probability densities defined in 5 requires, in principle,
an infinite number of trials as they represent the average number of times one gets
the state p in the observable defined via the POV measure T" in general. In
particular, the probability density defined in 20 requires a triply infinite number
of trials, as it represents a state in the product space L* (I},) @ L* (I')) @ L* (I3).
All the steps of the present formulation of teleportation could have been done
for a system of spinning particles with relativistic or non-relativistic symmetry.
The symmetry groups and corresponding subgroups have been thoroughly studied
in Ref.[1] and informationally complete functions n have been shown to exist. How-
ever, the entanglement resource pent needs to be determined or suitably chosen,
especially in the relativistic case.
In the following sections, we shall apply the above considerations in three situa-
tions using the same two mode squeezed vacuum state as an entanglement resource,
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as in the standard protocol [10]. Hence, the wave function of this entanglement

resource is given by [11]
— (El+$2J2_T($l_$2J2 (38)

. 2
Yent (T1,T2) = —exp 5

in the configuration representation, and will be the same in all cases. However, the
states of the two apparatuses used in the measurement of this entangled state will
change in each case. The measurement device corresponding to the system to be
teleported will be non-entangled with these two apparatuses in all three cases.

e—2r ez‘r

4 Teleportation with non entangled apparatuses

In order to have a first impression of the physical consequence of teleportation
in stochastic phase space, let us apply the general formula 28 when the two ap-
paratuses used in the measurement of the entangled state are identical and not
entangled. Then, their total wave function

n(xy,22) = n(x1)n(22), (39)

corresponds to the unitary tensor product transformation (W" © W"). Moreover,
the state of each apparatus is represented in the configuration space by the fol-

lowing function
1
1 1 x?

This function is called optimal since the variances <AX2}T? = 1% and <AK2)H =

%[z, in the normalized state 72 |77}, saturate the uncertainty relation

AzAk > (41)

Hes | =

The confidence functions being

wie)= () e (507, (2

2

i = (L) o (-8 (k- p)%). (43)

the length parameter | acquires the physical interpretation of accounting for the
unsharpness of the measuring device in a statistical point of view. The sharp
measurement limits in configuration or momentum spaces are obtained by the
limits lim; g xq(x) = 6(x —q) or lim;_, . xp(k) = 6(k —p) [2]. Obviously, these two
limits cannot be taken both together.

Before proceeding with teleportation, let us note that in this particular in-
stance, the phase space distribution can be directly related to the Wigner function

2]

0" (0.p) = [, dodboxg (o )W (. ), (44

Xa.p(7, k) = xq(z)Xp(k) = %exp <— (= Q_ngq) - 81 (k- P)z) ) (45)
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and is identified with the Husimi @ function[3]. This shows that the @ function can
be endowed with the physical interpretation of a true probability density rather
than being a mere positive quasi-probability distribution [3]. In order to outline
the steps of calculation, we shall not use (44) which holds for this particular case
only. We instead use (40) and (19), to get

1

1 :
Ng1.p1.q2,p2 (371 :I:z) (SW l ) ’ exp { 1z (3:1 —{j“1) — 1 ('Tl - ql)}
1 :
X exp {—E (z2 — g2)° — ipa (22 — qz)} . (46)

The probability density pl., (q1,p1,qz,p2) for the entangled state is obtained by
use of the expressions (38), (18) and (46) in (6). After some calculation, we get

16 1
Pewe (q1,D1,42,p2) = 35 &XP { - (G-tﬁ +ags + bqiqz + api + ap3 + .3;131102)}
(47)
where the coefficients o, a, b,a and 3 are functions of the two parameters r and [

1

o = 8cosh (2r) + 161° + BR

a= %cosh (2r) + 8,
4
b= - sinh (2r), (48)
o = 3217 cosh (2r) + 8,
3 = 641* sinh (2r).

Now, using the expression (47) of the probability density in (28), we get

= (q"—*u —q 2 Pout — P 2
P?.f] (Qbut;pout) = ?TV/E q p'om q, p) exp tH ) _ ( tp )
= ['Din o G,u,if] [:Q'out; pout) p (49)

where the function P has been denoted G, since it is a Gaussian with the variances

p=e"2" + 417, (50)
_ 1
v=re "+ e (51)

As for the teleportation based on Wigner functions, which yields|11]

M';tel(xout.: k‘out) — [I'F-in o GO’] (xoutu kout): (52)
_ 1 [~ R

with variance ¢ = ¢~2", the teleported stochastic probability density is the con-
volution of the input probability density and a Gaussian G,. The difference is
that the variances in position and momentum depend on the parameter | of the

10
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measuring device and are different in general, except for the value | = % Also, the
limit » — oc does not lead to a perfect teleportation.

Now, let us stress again that the entangled state (47) could have been obtained
directly from the Wigner function

Went (1, p1,72,p2) = % exp —e " [(31 +22)* + (p1 — Pz]z}

x exp —e>" [(31 —z2)% + (p1 + PZ)Z} (54)
of the two mode squeezed state (38) . Following this line of reasoning, the stochastic
teleported density would have been

p?el(qﬂ‘-lta Pout) = [wtil ] (gouts Pout) = [Win © Go 2 X] (Gout, Pout)
= [p}}, © Go] (qout, pout) (55)

in apparent contradiction with the result (49). This shows that the following dia-
gram is not commutative

i Teleportation :
Win > Wiel
Wi o x Wl ox
il n
Pin ~"mmmmmmmsmmmmm--- > P
' Teleportation tel

This can be explained by the fact that, in the Wigner functions formalism,
the measurement outcomes are supposed to be sharp values (z, k) while in the
stochastic case the outcomes are the unsharp variables (g,p). These are totally
different physical situations leading to different results as soon as a measurement
comes into play such as in the teleportation process. Hence, when the measurement
apparatus is considered to be ideal, the Wigner formalism has to be used. But when
it is a non-ideal quantum device, the stochastic phase space formalism has to be
applied.

In order to show that our results are really a generalization of the Wigner
formalism approach to the case where a non-ideal quantum measurement device is
considered into the formalism, we consider the sharp measurement limits. For this,
we note that the output density (49) satisfies the following marginal properties

2
Jout — ¢
fpt 1 (gout,, Pout ) dpout = \/_/ qdpp! (q.p) exp{ %} . (56)

2
fﬂ?el (q-:but;pout) dq::ut - ? /deppiL (q,p) exp _M} . (5?)

Then, taking the limit  — 0 in (56) and the limit [ — oo in (57), we obtain

{Gout| Pre1 |qout) = v,—e_r /dQEXp { (qm:—gtﬂ} (gl pin |q) , (58)

F — 2
{pout| yatel |pout> - / 'dp exXp |:_u}0:;_—2ﬁ:| {pl Iain |p> . (59)

ﬁe—’"

11
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These are the same marginal integrals that one would obtain using a Wigner func-
tion description of the teleportation protocol. However, since the functions  (after
normalization) represent true wave functions satisfying the uncertainty principle
(41), it is impossible to recover the Wigner function of the teleported system,
from limits on the probability distribution p | (gout, pout), without contradicting

the uncertainty relation (41).
Now, we consider the fidelity and take as input state [1/5,,) a coherent state

defined via the complex amplitude 3;,, = gg,, +ipg,,. Noticing that the effect of a
displacement in phase space U, , on a coherent state with a complex amplitude
Bin leads to a coherent state with complex amplitude 3;, + a, with a = ¢+ ip, the
fidelity of teleportation (37) for a coherent state becomes

1
; (60)
Vet 1)(v+1)
with p and v given by (50) and (51), respectively. The dependence of the fidelity
with respect to the parameter [ is illustrated in figure (1), for three values of the

parameter r.

r Y
0.4 "=
fa 3
0.24f
[
0.1 R -

1.0 20 3.0 40 50 6.0 7.0

Fig. 1 The fidelity F given by (60) as a function of [ for given values of the parameter r.

We note that the maximum fidelity for any value of r is obtained when [ = %
This corresponds to Az = Ak = %, i.e., to a tradeoff between the sharp measure-
ment limits in configuration (I — 0) and momentum (I — oc) spaces. In either
limit, the fidelity falls down to zero confirming the incompatibility of perfect ac-
curacy in either configuration or momentum representation with the phase space
representation when optimal functions are chosen. The boundary F' = 0.5 between
classical and quantum domains of coherent state teleportation is the maximum
value that can be obtained in the present case. This may be traced to the fact
that the measurement apparatuses shared by Alice and Bob are not entangled.

12



Quantum mechanics on phase space and teleportation 13

Hence, not only perfect teleportation of a coherent state is impossible when a non-
ideal quantum measurement device described by non-entangled optimal function
is used, but it appears as a classical teleportation even when the resource is a
maximally entangled state.

To account for these facts in relation to some recent experiments attaining a
high fidelity, as far as we know, this fidelity has not been directly measured but
deduced from an expression in terms of the experimentally accessible variances

<(&Qout)2> and <(.&P0ut)2> (15]. Our fidelity (60) can also be written as a func-

tion of the variances <(&Q0ut)2> and <(AP0M)2> for the output state. Using the
definitions (14) and (15), with a vacuum input, we find that

a1 1 e o1
a1 1\ e 1 1
(APow)?) = 5 (.v—l— §) =t ty (62)

The fidelity then reads

F= ! . (63)

2\/(<(Aqout)2> - %) (((APout)2> - %)

In the above experiment, the measuring device is treated classically so that the
usual formula has been used obtaining thereby a high fidelity such as in Ref.[15].
However, in an experiment with an non-ideal quantum measurement apparatus
which can be suitably represented by the optimal function 7, one should use our
result (63) which equals 1 only when both variances take their minimal values

<(&Qout)2> = <(&Pout)2> = é However, their expressions show that this is
impossible since | must simultaneously equal 0 and oc. Hence, using quantum
non-ideal measuring instruments results in constraining these variances so that

the fidelity cannot exceed one half. In the next sections, we shall bypass this issue
by entangling the measuring apparatuses.

5 Teleportation with apparatuses in a two-mode squeezed vacuum state

Now, we study the case when the apparatuses shared by Alice and Bob, are in an
entangled two mode squeezed vacuum state. The apparatus corresponding to the
state to be teleported is not entangled with them. In this case, we have

2 e—2a 5 82& 5
n(r1,a2) = 73 °XP (—T(«Tl+$2) —T(i"-l — 12) ): (64)

where a is the squeezing parameter. The variances in the normalized states nn are
the same for all variables

<Axf>n - <dP§?>n - %@“), i=1,2, (65)

13



14 Juba Messamah et al.

so that the uncertainty principle is observed, but saturated only when the two
apparatuses are not entangled (a = 0). These apparatuses can never yield sharp
measurements since Ax; and Ap; never vanish. The parameter a accounts for
unsharpness of the measurement and for entanglement. The displaced state

[ 2 . .
Mg1.p1.92.p2 (xlf‘r?) = W_SEXP (23}31 (I’l - {h) + 2ips ($2 - QQ)) {66)
—2a eQa

¥ exp (—62 (El—th +$2—92}2—T{I1—Q1 —$2—|-Q‘2)2),

leads to the following probability density representing the entangled state (38)

_ 4 alq? +pT + 43 +p3) + B(a1g2 — pip2) +
p"(q1,p1,q2,p2) = (e 4 %) ex (_ 1TP1Tq ezi far- ’
(67)
a=1+t, (68)
B=2 (1 - e’d‘f’"+a>) , (69)
vy = =2 (T‘ + a) (CQT + ega) ) {70)

Then, the function P (gout — g, Pout — P) becomes a Gaussian

1 out — 2 + (Pout — 2
GC"r-,u (q:.)ut — {, Pout — p) = H exp (_ (q t Q) 3 (p t p) ) {71)

with variance
A=e 2 e % (72)

Teleportation of a coherent state can be realized with fidelity

1 1

Fna) =t = 1o

(73)

which is symmetric with respect to the squeezing parameters r and a. It is plotted
in figure (2) and leads to the following cases:

14
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Fig. 2 The fidelity F given by (73) as a function of [ for given values of the parameter r.

— When both the systems shared by Alice and Bob and the corresponding appa-
ratuses are maximally entangled (r = a = o), perfect teleportation is realized
F=1.

— When only the apparatuses, or systems, are maximally entangled, the Wigner
representation fidelity is recovered

lim F(r,a) = 1 lim F(r,a) = 1

a—roo 14+e2r" rSac o 1+ e—2a’
— When only the apparatuses, or systems, are non entangled, the fidelity

- 1 N 1
Jm P(ra) = 5= I F(r0) = 5=
satisfies F' < 2. The equality is satisfied when the apparatuses are not entangled
(a = 0) and the systems are maximally entangled (r — o) as in the previous
section, or when the apparatuses are maximally entangled (a — oc) and the
systems are not entangled (r = 0).
— When both the apparatuses and systems are partly entangled (0 < a < =

and 0 < r < o), fidelity may be less, equal, or greater than 1 depending on

1 — 1 1 frelar
whether a < In e tihe In fer=nt or a>lIn 7 respectively.
. r thes . . _ 1 _ 1
Equivalently, these cases correspond to r < In e r=1In = or
. 1
r>In T

— When both the apparatuses and systems are non entangled, F' = 3.

6 Teleportation with apparatuses in a two-mode squeezed state

Let us now consider the shared apparatuses as being in the following state

15



16 Juba Messamah et al.

1 1/2 e—20 5 3 5
n(:cl,wz) = (W) exp ~ Rz (331 +I2) T (z1 — 32) } 1 {74)

which can be obtained by combining, via an SU (2) transform, a squeezed state
and an anti-squeezed state given by

(—1)i2a i 2
¢ (zi) = (‘5%7252) exp {—e(_l] 2%} . =12 (75)

The variances are

& cosh(2a)
2\ _ . Ap2\ — _
<.jX, >” cosh(2a) 5 <AP1 >:] o 1,2, (76)

so that the sharp position and momentum measurement limits correspond to [ — 0
and | — oo, respectively. The non-entangled limit a — 0 corresponds to the first
example treated in Sect.4 while [ = 3 corresponds to the second example treated
in Sect.5.

Following the same steps as before, we obtain the following fidelity:

1

F(r,al)=
\/(8_2’" +4i2e—2a 4 1) (8_2’" + e+ 1)

(77)

We observe that:

— Perfect teleportation is realized when both entanglement resources, systems
and apparatuses, are maximally entangled (r — oc,a — o0).

— For maximal entanglement of the measurement apparatuses only (¢ — oo), the
Wigner formalism result is recovered.

— For maximal entanglement of the systems (r — oc), the fidelity becomes

F (a,1) = ! . (78)

\/(4£2e—2a +1) (e—;[; + 1)

Plotting against [ for some values of a, as in figure (3), shows that when entan-

glement of the apparatuses is weak (small a), fidelity follows the same pattern
as when they are not entangled, attaining its maximum at [ = % and falling

down to zero in the limits | — 0,00, as may be deduced analytically. This
pattern is distorted gradually as a increases so that teleportation becomes
gradually less sensitive to the value of [, i.e. to the measurement unsharpness.
— When the systems and apparatuses are both unentangled, the fidelity varies

according to the bottom curve of figure (1) reaching a maximum value % at

I=1.
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L 4

1.0 20 3.0 40 5.0
[
Fig. 3 Fidelity against [ for » — oo and a =0, 0.5 and 2.

7 Conclusion

We have reformulated the continuous variables quantum teleportation in the for-
malism of quantum mechanics on phase space. For this, we followed the standard
protocol of continuous variables teleportation and easily obtained a generalized
formula which holds for any measuring device state n and any entangled state
since the formalism provides true positive probability densities. One fundamental
concept in this formalism are the informationally complete operators T"which pro-
vide the probability densities and which have been proven to exist in the spinning
and relativistic cases enabling thereby a further generalization of our results. The
main physical consequence of this work is that teleportation depends not only on
the state of the physical systems shared by Alice and Bob, but on the state of
quantum measurement devices associated with these systems as well.

To explicitly show this, we considered three cases where the same entangled
state is shared by Alice and Bob, the two mode squeezed vacuum state and changed
the state of the associated measurement devices. In the first case, these apparatuses
were not entangled and were described by the optimal function 7. The teleported
state is a convolution which has the same form as that obtained with the Wigner
functions. However, in our result the variances of the function G, are different
and contain the length parameter [ which accounts for the unsharpness of the mea-
suring instruments. Its appearance is mainly due to the fact that, when non-ideal
quantum apparatuses are used, the steps of the teleportation protocol have to be
applied to the stochastic probability density rather than to the Wigner functions.

17



18 Juba Messamah et al.

We have shown that the limits / — 0 and [ — oo recover the marginal results of
the Wigner function formalism confirming the claim that quantum mechanics on
(stochastic) phase space generalizes conventional quantum mechanics. Calculation
of the teleportation fidelity for a coherent state led to a new expression in terms
of the parameter [, and in terms of the experimentally accessible variances. The
classical coherent state teleportation boundary F = 0.5 is an upper bound corre-
sponding to the particular choice of the optimal function n with [ = 3. Expecting
this fact to be due to the non-entanglement of the measuring apparatuses, we
considered two situations where they are entangled.

We first considered a two-mode squeezed vacuum state described by a pa-
rameter a. This case clearly showed that the state of the apparatuses influences
teleportation. The latter is perfect only when both the systems and apparatuses
shared by Alice and Bob are maximally entangled. The Wigner formalism fidelity
is recovered when only the apparatuses are maximally entangled. When the sys-
tems or apparatuses are not entangled, fidelity can be no higher than 0.5. When
both the systems and apparatuses are partly entangled, fidelity can take any value
depending on the relation between their squeezing parameters r and a, respec-
tively. When both are not entangled, fidelity reaches a minimum ; which can be
interpreted as the new classical limit, since no entanglement was used.

We then considered a two-mode squeezed state containing two parameters a
and [. Even though a can account for both entanglement and unsharpness, the
latter can be fine tuned with /. The values [ = 3 and a = 0, recover the preceding
two cases. The main new result of this case is that unsharpness affects the fidelity
of teleportation but this effect can be washed out by maximally entangling the
apparatuses. In our opinion, this washout is due to our choice of the function 7
and may not be observed with another choice.
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